1
|
Shetty BD, Pandey PK, Mai K. Microbial diversity in dairy manure environment under liquid-solid separation systems. ENVIRONMENTAL TECHNOLOGY 2024; 45:5838-5854. [PMID: 38310325 DOI: 10.1080/09593330.2024.2309481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
In dairy manure, a wide array of microorganisms, including many pathogens, survive and grow under suitable conditions. This microbial community offers a tremendous opportunity for studying animal health, the transport of microbes into the soil, air, and water, and consequential impacts on public health. The aim of this study was to assess the impacts of manure management practices on the microbial community of manure. The key novelty of this work is to identify the impacts of various stages of manure management on microbes living in dairy manure. In general, the majority of dairy farms in California use a flush system to manage dairy manure, which involves liquid-solid separations. To separate liquid and solid in manure, Multi-stage Alternate Dairy Effluent Management Systems (ADEMS) that use mechanical separation systems (MSS) or weeping wall separation systems (WWSS) are used. Thus, this study was conducted to understand how these manure management systems affect the microbial community. We studied the microbial communities in the WWSS and MSS separation systems, as well as in the four stages of the ADEMS. The 16S rRNA gene from the extracted genomic DNA of dairy manure was amplified using the NovoSeq Illumina next-generation sequencing platform. The sequencing data were used to perform the analysis of similarity (ANOSIM) and multi-response permutation procedure (MRRP) statistical tests, and the results showed that microbial communities among WWSS and MSS were significantly different (p < 0.05). These findings have significant practical implications for the design and implementation of manure management practices in dairy farms.
Collapse
Affiliation(s)
- B Dharmaveer Shetty
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Pramod K Pandey
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Kelly Mai
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
- Mechanisms of Disease and Translational Research, School of Medical Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
2
|
Roques S, Martinez-Fernandez G, Ramayo-Caldas Y, Popova M, Denman S, Meale SJ, Morgavi DP. Recent Advances in Enteric Methane Mitigation and the Long Road to Sustainable Ruminant Production. Annu Rev Anim Biosci 2024; 12:321-343. [PMID: 38079599 DOI: 10.1146/annurev-animal-021022-024931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Mitigation of methane emission, a potent greenhouse gas, is a worldwide priority to limit global warming. A substantial part of anthropogenic methane is emitted by the livestock sector, as methane is a normal product of ruminant digestion. We present the latest developments and challenges ahead of the main efficient mitigation strategies of enteric methane production in ruminants. Numerous mitigation strategies have been developed in the last decades, from dietary manipulation and breeding to targeting of methanogens, the microbes that produce methane. The most recent advances focus on specific inhibition of key enzymes involved in methanogenesis. But these inhibitors, although efficient, are not affordable and not adapted to the extensive farming systems prevalent in low- and middle-income countries. Effective global mitigation of methane emissions from livestock should be based not only on scientific progress but also on the feasibility and accessibility of mitigation strategies.
Collapse
Affiliation(s)
- Simon Roques
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France; , ,
| | | | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, Caldes de Montbui, Spain;
| | - Milka Popova
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France; , ,
| | - Stuart Denman
- Agriculture and Food, CSIRO, St. Lucia, Queensland, Australia; ,
| | - Sarah J Meale
- School of Agriculture and Food Sustainability, Faculty of Science, University of Queensland, Gatton, Queensland, Australia;
| | - Diego P Morgavi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France; , ,
| |
Collapse
|
3
|
Xie F, Tang Z, Liang X, Wen C, Li M, Guo Y, Peng K, Yang C. Sodium nitrate has no detrimental effect on milk fatty acid profile and rumen bacterial population in water buffaloes. AMB Express 2022; 12:11. [PMID: 35122537 PMCID: PMC8818069 DOI: 10.1186/s13568-022-01350-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/22/2022] [Indexed: 11/24/2022] Open
Abstract
This study evaluated the influence of dietary sodium nitrate on ruminal fermentation profiles, milk production and composition, microbial populations and diversity in water buffaloes. Twenty-four female water buffaloes were randomly divided into four groups and fed with 0, 0.11, 0.22, 044 g sodium nitrate per kg body weight diets, respectively. Results showed that the concentration of acetate, propionate, butyrate and total VFA in all sodium nitrate–adapted water buffaloes were greater than the control group (P < 0.05). Although the milk fatty acids value at 0.11 g sodium nitrate/kg/d were slightly lower than other treatments, no significant differences were observed among different treatments (P > 0.05). Compared to the control group, the archaea richness (ace and chao1) and diversity (Shannon index) indices were increased by nitrate supplementation (P < 0.05). Compared with the control group, sodium nitrate did not affect bacterial abundance at the phylum and genus level, but the relative abundance of the methanogen genera was greatly changed. There was a tendency for Methanobrevibacter to decrease in the sodium nitrate group (P = 0.091). Comparisons of archaea communities by PCoA analysis showed significant separation between the control group and nitrate treatments (P = 0.025). It was concluded that added 0.11–0.44 g sodium nitrate/kg of body weight increased the rumen VFA production and archaeal diversity of water buffaloes but had no detrimental effect on milk yield or composition, fatty acids profile, rumen methanogen or Butyrivibrio group population related to biohydrogenation.
Collapse
|
4
|
Ortiz-Chura A, Gere J, Marcoppido G, Depetris G, Cravero S, Faverín C, Pinares-Patiño C, Cataldi A, Cerón-Cucchi ME. Dynamics of the ruminal microbial ecosystem, and inhibition of methanogenesis and propiogenesis in response to nitrate feeding to Holstein calves. ACTA ACUST UNITED AC 2021; 7:1205-1218. [PMID: 34754962 PMCID: PMC8556761 DOI: 10.1016/j.aninu.2021.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022]
Abstract
It is known that nitrate inhibits ruminal methanogenesis, mainly through competition with hydrogenotrophic methanogens for available hydrogen (H2) and also through toxic effects on the methanogens. However, there is limited knowledge about its effects on the others members of ruminal microbiota and their metabolites. In this study, we investigated the effects of dietary nitrate inclusion on enteric methane (CH4) emission, temporal changes in ruminal microbiota, and fermentation in Holstein calves. Eighteen animals were maintained in individual pens for 45 d. Animals were randomly allocated to either a control (CTR) or nitrate (NIT, containing 15 g of calcium nitrate/kg dry matter) diets. Methane emissions were estimated using the sulfur hexafluoride (SF6) tracer method. Ruminal microbiota changes and ruminal fermentation were evaluated at 0, 4, and 8 h post-feeding. In this study, feed dry matter intake (DMI) did not differ between dietary treatments (P > 0.05). Diets containing NIT reduced CH4 emissions by 27% (g/d) and yield by 21% (g/kg DMI) compared to the CTR (P < 0.05). The pH values and total volatile fatty acids (VFA) concentration did not differ between dietary treatments (P > 0.05) but differed with time, and post-feeding (P < 0.05). Increases in the concentrations of ruminal ammonia nitrogen (NH3–N) and acetate were observed, whereas propionate decreased at 4 h post-feeding with the NIT diet (P < 0.05). Feeding the NIT diet reduced the populations of total bacteria, total methanogens, Ruminococcus albus and Ruminococcus flavefaciens, and the abundance of Succiniclasticum, Coprococcus, Treponema, Shuttlewortia, Succinivibrio, Sharpea, Pseudobutyrivibrio, and Selenomona (P < 0.05); whereas, the population of total fungi, protozoa, Fibrobacter succinogenes, Atopobium and Erysipelotrichaceae L7A_E11 increased (P < 0.05). In conclusion, feeding nitrate reduces enteric CH4 emissions and the methanogens population, whereas it decreases the propionate concentration and the abundance of bacteria involved in the succinate and acrylate pathways. Despite the altered fermentation profile and ruminal microbiota, DMI was not influenced by dietary nitrate. These findings suggest that nitrate has a predominantly direct effect on the reduction of methanogenesis and propionate synthesis.
Collapse
Affiliation(s)
- Abimael Ortiz-Chura
- Institute of Pathobiology, CICVyA National Institute of Agricultural Technology, IPVet, UEDD INTA-CONICET, Hurlingham, C1686, Argentina
| | - José Gere
- Engineering Research and Development Division, National Technological University (UTN), National Scientific and Technical Research Council (CONICET), Buenos Aires, C1179, Argentina
| | - Gisela Marcoppido
- Institute of Pathobiology, CICVyA National Institute of Agricultural Technology, IPVet, UEDD INTA-CONICET, Hurlingham, C1686, Argentina
| | - Gustavo Depetris
- Agricultural Experimental Station of Balcarce, National Institute of Agricultural Technology (INTA), Balcarce, B7620, Argentina
| | - Silvio Cravero
- Institute of Agrobiotechnology and Molecular Biology, IABIMO, National Institute of Agricultural Technology (INTA), National Scientific and Technical Research Council (CONICET), Hurlingham, C1686, Argentina
| | - Claudia Faverín
- Agricultural Experimental Station of Balcarce, National Institute of Agricultural Technology (INTA), Balcarce, B7620, Argentina
| | - Cesar Pinares-Patiño
- The Agribusiness Group, Lincoln University, PO Box 85016, Lincoln, 7674, New Zealand
| | - Angel Cataldi
- Institute of Agrobiotechnology and Molecular Biology, IABIMO, National Institute of Agricultural Technology (INTA), National Scientific and Technical Research Council (CONICET), Hurlingham, C1686, Argentina
| | - María E Cerón-Cucchi
- Institute of Pathobiology, CICVyA National Institute of Agricultural Technology, IPVet, UEDD INTA-CONICET, Hurlingham, C1686, Argentina
| |
Collapse
|
5
|
Sun K, Liu H, Fan H, Liu T, Zheng C. Research progress on the application of feed additives in ruminal methane emission reduction: a review. PeerJ 2021; 9:e11151. [PMID: 33850664 PMCID: PMC8019312 DOI: 10.7717/peerj.11151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Ruminal methane (CH4) emissions from ruminants not only pollute the environment and exacerbate the greenhouse effect, but also cause animal energy losses and low production efficiency. Consequently, it is necessary to find ways of reducing methane emissions in ruminants. Studies have reported that feed additives such as nitrogen-containing compounds, probiotics, prebiotics, and plant extracts significantly reduce ruminant methane; however, systematic reviews of such studies are lacking. The present article summarizes research over the past five years on the effects of nitrogen-containing compounds, probiotics, probiotics, and plant extracts on methane emissions in ruminants. The paper could provide theoretical support and guide future research in animal production and global warming mitigation. METHODS This review uses the Web of Science database to search keywords related to ruminants and methane reduction in the past five years, and uses Sci-Hub, PubMed, etc. as auxiliary searchers. Read, filter, list, and summarize all the retrieved documents, and finally complete this article. RESULTS Most of the extracts can not only significantly reduce CH4 greenhouse gas emissions, but they will not cause negative effects on animal and human health either. Therefore, this article reviews the mechanisms of CH4 production in ruminants and the application and effects of N-containing compounds, probiotics, prebiotics, and plant extracts on CH4 emission reduction in ruminants based on published studies over the past 5 years. CONCLUSION Our review provides a theoretical basis for future research and the application of feed additives in ruminant CH4 emission reduction activities.
Collapse
Affiliation(s)
- Kang Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huihui Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huiyu Fan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chen Zheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Zhao L, Caro E, Holman DB, Gzyl KE, Moate PJ, Chaves AV. Ozone Decreased Enteric Methane Production by 20% in an in vitro Rumen Fermentation System. Front Microbiol 2020; 11:571537. [PMID: 33224114 PMCID: PMC7667233 DOI: 10.3389/fmicb.2020.571537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Ozone (O3) is volatile, highly oxidative, and has theoretical potential to reduce ruminant enteric methanogenesis by interactions between archaea and bacteria, and substrate and oxygen. The effects of O3 on the rumen microbiota, fermentation parameters, and CH4 emissions were studied through in vitro fermentation using a RUSITEC apparatus with O3 dissolved in the salivary buffer. The substrate consisted of maize silage or grain concentrates, and the treatments were (1) control (no O3) and (2) O3 at 0.07 ± 0.022 mg/L in the buffer. A 4-day adaptation period followed by a 6-day experimental period was used for measuring gas production and composition, as well as fermentation characteristics, which included ruminal volatile fatty acids (VFA) and liquid- and solid-associated microbial communities. Ozone treatment decreased total gas production by 15.4%, most notably CH4 production by 20.4%, and CH4 gas concentration by 5.8%, without compromising dry matter digestibility (DMD) of either maize silage or grain concentrates. There were no significant effects of O3 treatment on VFA production or pH. Ozone treatment reduced the relative abundance of methanogens, particularly Methanomicrobium. This study demonstrates the potential use of O3 as a method to reduce ruminant enteric methanogenesis.
Collapse
Affiliation(s)
- Lucy Zhao
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Eleonora Caro
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia.,Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Devin B Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Katherine E Gzyl
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Peter J Moate
- Agriculture Victoria Research, Ellinbank, VIC, Australia.,Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Alex V Chaves
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
7
|
Ma Y, Li Y, Li Y, Cheng Y, Zhu W. The enrichment of anaerobic fungi and methanogens showed higher lignocellulose degrading and methane producing ability than that of bacteria and methanogens. World J Microbiol Biotechnol 2020; 36:125. [PMID: 32712756 DOI: 10.1007/s11274-020-02894-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 07/12/2020] [Indexed: 12/20/2022]
Abstract
In this study, rumen content was used to obtain three enrichments of anaerobic fungi and methanogens (F + M enrichment), bacteria and methanogens (B + M enrichment), and whole rumen content (WRC enrichment), to evaluate their respective ability to degrade lignocellulose and produce methane. Among the treatments, F + M enrichment elicited the strongest lignocellulose degradation and methane production ability with both rice straw and wheat straw as substrates. Quantitative real-time PCR analysis and diversity analyses of methanogens in the three enrichment treatments demonstrated that F + M had larger number of 16S rRNA gene copies of methanogens and higher relative abundance of Methanobrevibacter, the predominant methanogen found in all enrichments. Caecomyces was the main anaerobic fungal genus for co-culturing to provide substrates for methanogens in this enrichment. Importantly, the F + M enrichment was stable and could be maintained with transfers supplied every 3 days, confirming its potential utility in anaerobic digestion for lignocellulose degradation and methane production.
Collapse
Affiliation(s)
- Yuping Ma
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanfei Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Effects of Mannan Oligosaccharides on Gas Emission, Protein and Energy Utilization, and Fasting Metabolism in Sheep. Animals (Basel) 2019; 9:ani9100741. [PMID: 31569418 PMCID: PMC6826375 DOI: 10.3390/ani9100741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Mannan oligosaccharides (MOS) are a promising feed additive to improve animal health, immune capacity, and antioxidation. Based on the previous studies, we carried out three experiments to investigate the effects of MOS on the gas emission, protein and energy utilization, and fasting metabolism of sheep. The results showed that 2.0% MOS supplementation led to the lowest in vitro CO2 production and lower CH4 production and decreased in vivo intake. However, it also decreased urine nitrogen excretion and energy released as CH4, and then improved the utilization of crude protein and energy of sheep. There were no differences in the parameters of respiration and energy metabolism of sheep under the fasting condition. The findings indicated that MOS slightly affected the gas emission and nutrients and energy utilization of sheep. Abstract This study investigated the effects of mannan oligosaccharides (MOS) on in vitro and in vivo gas emission, utilization of crude protein (CP) and energy, and relative parameters of sheep under fasting metabolism conditions. In vitro gas productions were evaluated over 12 h in sheep diets containing different amounts of MOS (from 0% to 6.0%/kg, the increment was 0.5%). A control experiment was used to assess the gas emission, utilization of CP and energy, and fasting metabolism in control sheep and sheep treated with 2.0% MOS over 24 days (d). The results showed that 2.0% MOS supplementation led to the lowest in vitro CO2 production and less CH4 production, while also leading to decrease in vivo nutrients intake, CP and energy excretion, digested and retained CP, and energy released as CH4 (p < 0.05). Furthermore, 2.0% MOS supplementation appeared to decrease in vivo O2 consumption and CH4 production per metabolic body weight (BW0.75), and increase the CP retention rate of sheep (p < 0.074). MOS did not affect other parameters, along with the same parameters of sheep under fasting metabolism conditions (p > 0.05). The findings indicate MOS has only slight effects on the gas emission and nutrients and energy metabolism of sheep.
Collapse
|