1
|
Angara RK, Van Winkle PE, Gilk SD. Mechanisms of lipid homeostasis in the Coxiella Containing Vacuole. Biochem Soc Trans 2025; 53:59–68. [PMID: 39851196 DOI: 10.1042/bst20240899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025]
Abstract
Coxiella burnetii, the causative agent of human Q fever, is an obligate intracellular bacterial pathogen that replicates in a large, membrane-bound vacuole known as the Coxiella Containing Vacuole (CCV). The CCV is a unique, phagolysosome-derived vacuole with a sterol-rich membrane containing host and bacterial proteins. The CCV membrane itself serves as a barrier to protect the bacteria from the host's innate immune response, and the lipid and protein content directly influence both the CCV luminal environment and interactions between the CCV and host trafficking pathways. CCV membrane cholesterol is critical in regulating CCV pH, while CCV phosphatidylinositol phosphate species influence CCV fusion events and membrane dynamics. C. burnetii proteins directly target host lipid metabolism to regulate CCV membrane content and generate a source of lipids that support bacterial replication or influence the innate immune response. This review provides an overview of the diverse repertoire of lipids involved in CCV formation and maintenance, highlighting the pathogen-driven strategies to modify host lipid homeostasis.
Collapse
Affiliation(s)
- Rajendra K Angara
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A
| | - Peyton E Van Winkle
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A
| | - Stacey D Gilk
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A
| |
Collapse
|
2
|
Sit WY, Cheng ML, Chen TJ, Chen CJ, Chen BN, Huang DJ, Chen PL, Chen YC, Lo CJ, Wu DC, Hsieh WC, Chang CT, Chen RH, Wang WC. Helicobacter pylori PldA modulates TNFR1-mediated p38 signaling pathways to regulate macrophage responses for its survival. Gut Microbes 2024; 16:2409924. [PMID: 39369445 PMCID: PMC11457642 DOI: 10.1080/19490976.2024.2409924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/16/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Helicobacter pylori, a dominant member of the gastric microbiota was associated with various gastrointestinal diseases and presents a significant challenge due to increasing antibiotic resistance. This study identifies H. pylori's phospholipase A (PldA) as a critical factor in modulating host macrophage responses, facilitating H. pylori 's evasion of the immune system and persistence. PldA alters membrane lipids through reversible acylation and deacylation, affecting their structure and function. We found that PldA incorporates lysophosphatidylethanolamine into macrophage membranes, disrupting their bilayer structure and impairing TNFR1-mediated p38-MK2 signaling. This disruption results in reduced macrophage autophagy and elevated RIP1-dependent apoptosis, thereby enhancing H. pylori survival, a mechanism also observed in multidrug-resistant strains. Pharmacological inhibition of PldA significantly decreases H. pylori viability and increases macrophage survival. In vivo studies corroborate PldA's essential role in H. pylori persistence and immune cell recruitment. Our findings position PldA as a pivotal element in H. pylori pathogenesis through TNFR1-mediated membrane modulation, offering a promising therapeutic target to counteract bacterial resistance.
Collapse
Affiliation(s)
- Wei Yang Sit
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Tsan-Jan Chen
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chia-Jo Chen
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Bo-Nian Chen
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ding-Jun Huang
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Pei-Lien Chen
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yun-Ching Chen
- Institute of Biomedical Engineering, National Tsing-Hua University, Hsinchu, Taiwan, ROC
| | - Chi-Jen Lo
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
| | - Wan-Chen Hsieh
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chung-Ting Chang
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| |
Collapse
|
3
|
Kodori M, Amani J, Ahmadi A. Unveiling promising immunogenic targets in Coxiella burnetii through in silico analysis: paving the way for novel vaccine strategies. BMC Infect Dis 2023; 23:902. [PMID: 38129801 PMCID: PMC10740251 DOI: 10.1186/s12879-023-08904-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Coxiella burnetii, an intracellular pathogen, serves as the causative agent of zoonotic Q fever. This pathogen presents a significant threat due to its potential for airborne transmission, environmental persistence, and pathogenicity. The current whole-cell vaccine (WCV) utilized in Australia to combat Q fever exhibits notable limitations, including severe adverse reactions and limited regulatory approval for human use. This research employed the reverse vaccinology (RV) approach to uncover antigenic proteins and epitopes of C. burnetii, facilitating the development of more potent vaccine candidates. METHODS The potential immunogenic proteins derived from C. burnetii RSA493/Nine Mile phase I (NMI) were extracted through manual, automated RV, and virulence factor database (VFDB) methods. Web tools and bioinformatics were used to evaluate physiochemical attributes, subcellular localization, antigenicity, allergenicity, human homology, B-cell epitopes, MHC I and II binding ratios, functional class scores, adhesion probabilities, protein-protein interactions, and molecular docking. RESULTS Out of the 1850 proteins encoded by RSA493/NMI, a subset of 178 demonstrated the potential for surface or membrane localization. Following a series of analytical iterations, 14 putative immunogenic proteins emerged. This collection included nine proteins (57.1%) intricately involved in cell wall/membrane/envelope biogenesis processes (CBU_0197 (Q83EW1), CBU_0311 (Q83EK8), CBU_0489 (Q83E43), CBU_0939 (Q83D08), CBU_1190 (P39917), CBU_1829 (Q83AQ2), CBU_1412 (Q83BU0), CBU_1414 (Q83BT8), and CBU_1600 (Q83BB2)). The CBU_1627 (Q83B86 ) (7.1%) implicated in intracellular trafficking, secretion, and vesicular transport, and CBU_0092 (Q83F57) (7.1%) contributing to cell division. Additionally, three proteins (21.4%) displayed uncharacterized functions (CBU_0736 (Q83DJ4), CBU_1095 (Q83CL9), and CBU_2079 (Q83A32)). The congruent results obtained from molecular docking and immune response stimulation lend support to the inclusion of all 14 putative proteins as potential vaccine candidates. Notably, seven proteins with well-defined functions stand out among these candidates. CONCLUSIONS The outcomes of this study introduce promising proteins and epitopes for the forthcoming formulation of subunit vaccines against Q fever, with a primary emphasis on cellular processes and the virulence factors of C. burnetii.
Collapse
Affiliation(s)
- Mansoor Kodori
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Non Communicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Fisher DJ, Beare PA. Recent advances in genetic systems in obligate intracellular human-pathogenic bacteria. Front Cell Infect Microbiol 2023; 13:1202245. [PMID: 37404720 PMCID: PMC10315504 DOI: 10.3389/fcimb.2023.1202245] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 07/06/2023] Open
Abstract
The ability to genetically manipulate a pathogen is fundamental to discovering factors governing host-pathogen interactions at the molecular level and is critical for devising treatment and prevention strategies. While the genetic "toolbox" for many important bacterial pathogens is extensive, approaches for modifying obligate intracellular bacterial pathogens were classically limited due in part to the uniqueness of their obligatory lifestyles. Many researchers have confronted these challenges over the past two and a half decades leading to the development of multiple approaches to construct plasmid-bearing recombinant strains and chromosomal gene inactivation and deletion mutants, along with gene-silencing methods enabling the study of essential genes. This review will highlight seminal genetic achievements and recent developments (past 5 years) for Anaplasma spp., Rickettsia spp., Chlamydia spp., and Coxiella burnetii including progress being made for the still intractable Orientia tsutsugamushi. Alongside commentary of the strengths and weaknesses of the various approaches, future research directions will be discussed to include methods for C. burnetii that should have utility in the other obligate intracellular bacteria. Collectively, the future appears bright for unraveling the molecular pathogenic mechanisms of these significant pathogens.
Collapse
Affiliation(s)
- Derek J. Fisher
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
| | - Paul A. Beare
- Rocky Mountain Laboratory, National Institute of Health, Hamilton, MT, United States
| |
Collapse
|
5
|
The inside scoop: Comparative genomics of two intranuclear bacteria, "Candidatus Berkiella cookevillensis" and "Candidatus Berkiella aquae". PLoS One 2022; 17:e0278206. [PMID: 36584052 PMCID: PMC9803151 DOI: 10.1371/journal.pone.0278206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/12/2022] [Indexed: 12/31/2022] Open
Abstract
"Candidatus Berkiella cookevillensis" (strain CC99) and "Candidatus Berkiella aquae" (strain HT99), belonging to the Coxiellaceae family, are gram-negative bacteria isolated from amoebae in biofilms present in human-constructed water systems. Both bacteria are obligately intracellular, requiring host cells for growth and replication. The intracellular bacteria-containing vacuoles of both bacteria closely associate with or enter the nuclei of their host cells. In this study, we analyzed the genome sequences of CC99 and HT99 to better understand their biology and intracellular lifestyles. The CC99 genome has a size of 2.9Mb (37.9% GC) and contains 2,651 protein-encoding genes (PEGs) while the HT99 genome has a size of 3.6Mb (39.4% GC) and contains 3,238 PEGs. Both bacteria encode high proportions of hypothetical proteins (CC99: 46.5%; HT99: 51.3%). The central metabolic pathways of both bacteria appear largely intact. Genes for enzymes involved in the glycolytic pathway, the non-oxidative branch of the phosphate pathway, the tricarboxylic acid pathway, and the respiratory chain were present. Both bacteria, however, are missing genes for the synthesis of several amino acids, suggesting reliance on their host for amino acids and intermediates. Genes for type I and type IV (dot/icm) secretion systems as well as type IV pili were identified in both bacteria. Moreover, both bacteria contain genes encoding large numbers of putative effector proteins, including several with eukaryotic-like domains such as, ankyrin repeats, tetratricopeptide repeats, and leucine-rich repeats, characteristic of other intracellular bacteria.
Collapse
|
6
|
Wachter S, Cockrell DC, Miller HE, Virtaneva K, Kanakabandi K, Darwitz B, Heinzen RA, Beare PA. The endogenous Coxiella burnetii plasmid encodes a functional toxin-antitoxin system. Mol Microbiol 2022; 118:744-764. [PMID: 36385554 PMCID: PMC10098735 DOI: 10.1111/mmi.15001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Coxiella burnetii is the causative agent of Q fever. All C. burnetii isolates encode either an autonomously replicating plasmid (QpH1, QpDG, QpRS, or QpDV) or QpRS-like chromosomally integrated plasmid sequences. The role of the ORFs present in these sequences is unknown. Here, the role of the ORFs encoded on QpH1 was investigated. Using a new C. burnetii shuttle vector (pB-TyrB-QpH1ori), we cured the C. burnetii Nine Mile Phase II strain of QpH1. The ΔQpH1 strain grew normally in axenic media but had a significant growth defect in Vero cells, indicating QpH1 was important for C. burnetii virulence. We developed an inducible CRISPR interference system to examine the role of individual QpH1 plasmid genes. CRISPRi of cbuA0027 resulted in significant growth defects in axenic media and THP-1 cells. The cbuA0028/cbuA0027 operon encodes CBUA0028 (ToxP) and CBUA0027 (AntitoxP), which are homologous to the HigB2 toxin and HigA2 antitoxin, respectively, from Vibrio cholerae. Consistent with toxin-antitoxin systems, overexpression of toxP resulted in a severe intracellular growth defect that was rescued by co-expression of antitoxP. ToxP inhibited protein translation. AntitoxP bound the toxP promoter (PtoxP) and ToxP, with the resulting complex binding also PtoxP. In summary, our data indicate that C. burnetii maintains an autonomously replicating plasmid because of a plasmid-based toxin-antitoxin system.
Collapse
Affiliation(s)
- Shaun Wachter
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.,Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
| | - Diane C Cockrell
- Vector-Pathogen-Host Interaction unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | - Kimmo Virtaneva
- Genomics Research Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kishore Kanakabandi
- Genomics Research Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Benjamin Darwitz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert A Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.,Genomics Research Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
7
|
Lu Q, Liu J, Yu Y, Liang HF, Zhang SQ, Li ZB, Chen JX, Xu QG, Li JC. ALB, HP, OAF and RBP4 as novel protein biomarkers for identifying cured patients with pulmonary tuberculosis by DIA. Clin Chim Acta 2022; 535:82-91. [PMID: 35964702 DOI: 10.1016/j.cca.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/09/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pulmonary tuberculosis (TB) is a serious infectious disease that lacks robust blood-based biomarkers to identify cured TB. Some discharged patients are not fully cured and may relapse or even develop multidrug-resistant TB. This study is committed to finding proteomic-based plasma biomarkers to support establishing laboratory standards for clinical TB cure. METHODS Data-independent acquisition (DIA) was used to obtain the plasma protein expression profiles of TB patients at different treatment stages compared with healthy controls. Multivariate statistical methods and bioinformatics were used to analyze the data. RESULTS Bioinformatic analysis suggests coagulation dysfunction and vitamin and lipid metabolism disturbances in TB. Albumin (ALB), haptoglobin (HP), out at first protein homolog (OAF), and retinol-binding protein 4 (RBP4) can be used to establish a diagnostic model for the efficacy evaluation of TB with an area under the curve of 0.963, which could effectively distinguish untreated TB patients from cured patients. CONCLUSIONS Our research demonstrated that ALB, HP, OAF and RBP4 can be potential biomarkers for evaluating the efficacy of TB. These findings may provide experimental data for establishing the laboratory indicators of clinical TB cure and providing clinicians with new targets for exploring the underlying mechanisms of TB pathogenesis.
Collapse
Affiliation(s)
- Qiqi Lu
- The Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Jun Liu
- The Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Yi Yu
- The Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; The Central Laboratory, Yangjiang People's Hospital, Yangjiang 529500, China
| | - Hong-Feng Liang
- The Central Laboratory, Yangjiang People's Hospital, Yangjiang 529500, China
| | - Shan-Qiang Zhang
- The Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Zhi-Bin Li
- The Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; The Central Laboratory, Yangjiang People's Hospital, Yangjiang 529500, China; Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jia-Xi Chen
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 318050, China; Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiu-Gui Xu
- The Central Laboratory, Yangjiang People's Hospital, Yangjiang 529500, China
| | - Ji-Cheng Li
- The Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
- The Central Laboratory, Yangjiang People's Hospital, Yangjiang 529500, China
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
8
|
Unger N, Eiserloh S, Nowak F, Zuchantke S, Liebler-Tenorio E, Sobotta K, Schnee C, Berens C, Neugebauer U. Looking Inside Non-Destructively: Label-Free, Raman-Based Visualization of Intracellular Coxiella burnetii. Anal Chem 2022; 94:4988-4996. [PMID: 35302749 PMCID: PMC8974703 DOI: 10.1021/acs.analchem.1c04754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
The life cycle of intracellular pathogens is often complex and can include different morphoforms. Treatment of intracellular infections and unperturbed studying of the pathogen inside the host cell are frequently challenging. Here, we present a Raman-based, label-free, non-invasive, and non-destructive method to localize, visualize, and even quantify intracellular bacteria in 3D within intact host cells in a Coxiella burnetii infection model. C. burnetii is a zoonotic obligate intracellular pathogen that causes infections in ruminant livestock and humans with an acute disease known as Q fever. Using statistical data analysis, no isolation is necessary to gain detailed information on the intracellular pathogen's metabolic state. High-quality false color image stacks with diffraction-limited spatial resolution enable a 3D spatially resolved single host cell analysis that shows excellent agreement with results from transmission electron microscopy. Quantitative analysis at different time points post infection allows to follow the infection cycle with the transition from the large cell variant (LCV) to the small cell variant (SCV) at around day 6 and a gradual change in the lipid composition during vacuole maturation. Spectral characteristics of intracellular LCV and SCV reveal a higher lipid content of the metabolically active LCV.
Collapse
Affiliation(s)
- Nancy Unger
- Center
for Sepsis Control and Care, Jena University
Hospital, 07747 Jena, Germany
- Leibniz
Institute of Photonic Technology, 07745 Jena, Germany
| | - Simone Eiserloh
- Center
for Sepsis Control and Care, Jena University
Hospital, 07747 Jena, Germany
- Leibniz
Institute of Photonic Technology, 07745 Jena, Germany
| | - Frauke Nowak
- Institute
of Molecular Pathogenesis, Friedrich-Loeffler-Institut—Federal
Research Institute for Animal Health (FLI), 07743 Jena, Germany
| | - Sara Zuchantke
- Institute
of Molecular Pathogenesis, Friedrich-Loeffler-Institut—Federal
Research Institute for Animal Health (FLI), 07743 Jena, Germany
| | - Elisabeth Liebler-Tenorio
- Institute
of Molecular Pathogenesis, Friedrich-Loeffler-Institut—Federal
Research Institute for Animal Health (FLI), 07743 Jena, Germany
| | - Katharina Sobotta
- Institute
of Medical Microbiology, Jena University
Hospital, 07747 Jena, Germany
| | - Christiane Schnee
- Institute
of Molecular Pathogenesis, Friedrich-Loeffler-Institut—Federal
Research Institute for Animal Health (FLI), 07743 Jena, Germany
| | - Christian Berens
- Institute
of Molecular Pathogenesis, Friedrich-Loeffler-Institut—Federal
Research Institute for Animal Health (FLI), 07743 Jena, Germany
| | - Ute Neugebauer
- Center
for Sepsis Control and Care, Jena University
Hospital, 07747 Jena, Germany
- Leibniz
Institute of Photonic Technology, 07745 Jena, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
9
|
Neurotransmitter System-Targeting Drugs Antagonize Growth of the Q Fever Agent, Coxiella burnetii, in Human Cells. mSphere 2021; 6:e0044221. [PMID: 34232075 PMCID: PMC8386451 DOI: 10.1128/msphere.00442-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Coxiella burnetii is a highly infectious, intracellular, Gram-negative bacterial pathogen that causes human Q fever, an acute flu-like illness that can progress to chronic endocarditis. C. burnetii is transmitted to humans via aerosols and has long been considered a potential biological warfare agent. Although antibiotics, such as doxycycline, effectively treat acute Q fever, a recently identified antibiotic-resistant strain demonstrates the ability of C. burnetii to resist traditional antimicrobials, and chronic disease is extremely difficult to treat with current options. These findings highlight the need for new Q fever therapeutics, and repurposed drugs that target eukaryotic functions to prevent bacterial replication are of increasing interest in infectious disease. To identify this class of anti-C. burnetii therapeutics, we screened a library of 727 FDA-approved or late-stage clinical trial compounds using a human macrophage-like cell model of infection. Eighty-eight compounds inhibited bacterial replication, including known antibiotics, antipsychotic or antidepressant treatments, antihistamines, and several additional compounds used to treat a variety of conditions. The majority of identified anti-C. burnetii compounds target host neurotransmitter system components. Serotoninergic, dopaminergic, and adrenergic components are among the most highly represented targets and potentially regulate macrophage activation, cytokine production, and autophagy. Overall, our screen identified multiple host-directed compounds that can be pursued for potential use as anti-C. burnetii drugs. IMPORTANCECoxiella burnetii causes the debilitating disease Q fever in humans. This infection is difficult to treat with current antibiotics and can progress to long-term, potentially fatal infection in immunocompromised individuals or when treatment is delayed. Here, we identified many new potential treatment options in the form of drugs that are either FDA approved or have been used in late-stage clinical trials and target human neurotransmitter systems. These compounds are poised for future characterization as nontraditional anti-C. burnetii therapies.
Collapse
|
10
|
Brenner AE, Muñoz-Leal S, Sachan M, Labruna MB, Raghavan R. Coxiella burnetii and Related Tick Endosymbionts Evolved from Pathogenic Ancestors. Genome Biol Evol 2021; 13:6278299. [PMID: 34009306 PMCID: PMC8290121 DOI: 10.1093/gbe/evab108] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Both symbiotic and pathogenic bacteria in the family Coxiellaceae cause morbidity and mortality in humans and animals. For instance, Coxiella-like endosymbionts (CLEs) improve the reproductive success of ticks—a major disease vector, while Coxiella burnetii causes human Q fever, and uncharacterized coxiellae infect both animals and humans. To better understand the evolution of pathogenesis and symbiosis in this group of intracellular bacteria, we sequenced the genome of a CLE present in the soft tick Ornithodoros amblus (CLEOA) and compared it to the genomes of other bacteria in the order Legionellales. Our analyses confirmed that CLEOA is more closely related to C. burnetii, the human pathogen, than to CLEs in hard ticks, and showed that most clades of CLEs contain both endosymbionts and pathogens, indicating that several CLE lineages have evolved independently from pathogenic Coxiella. We also determined that the last common ancestorof CLEOA and C. burnetii was equipped to infect macrophages and that even though horizontal gene transfer (HGT) contributed significantly to the evolution of C. burnetii, most acquisition events occurred primarily in ancestors predating the CLEOA–C. burnetii divergence. These discoveries clarify the evolution of C. burnetii, which previously was assumed to have emerged when an avirulent tick endosymbiont recently gained virulence factors via HGT. Finally, we identified several metabolic pathways, including heme biosynthesis, that are likely critical to the intracellular growth of the human pathogen but not the tick symbiont, and show that the use of heme analog is a promising approach to controlling C. burnetii infections.
Collapse
Affiliation(s)
- Amanda E Brenner
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA
| | - Sebastián Muñoz-Leal
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Ñuble, Chile
| | - Madhur Sachan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA
| | - Marcelo B Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA.,Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
11
|
β-Barrel proteins tether the outer membrane in many Gram-negative bacteria. Nat Microbiol 2020; 6:19-26. [PMID: 33139883 PMCID: PMC7755725 DOI: 10.1038/s41564-020-00798-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/16/2020] [Indexed: 12/20/2022]
Abstract
Gram-negative bacteria have a cell envelope that comprises an outer membrane (OM), a peptidoglycan (PG) layer and an inner membrane (IM)1. The OM and PG are load-bearing, selectively permeable structures that are stabilized by cooperative interactions between IM and OM proteins2,3. In E. coli, Braun’s lipoprotein (Lpp) forms the only covalent tether between the OM and PG and is crucial for cell envelope stability4 but most other Gram-negative bacteria lack Lpp so it has been assumed that alternative mechanisms of OM stabilization are present5. We use a glycoproteomic analysis of PG to show that β-barrel OM proteins are covalently attached to PG in several Gram-negative species, including Coxiella burnetii, Agrobacterium tumefaciens and Legionella pneumophila. In C. burnetii, we found that four different types of covalent attachments occur between OM proteins and PG, with tethering of the β-barrel OM protein BbpA becoming most abundant in stationary phase and tethering of the lipoprotein LimB similar throughout the cell-cycle. Using a genetic approach, we demonstrate that the cell-cycle dependent tethering of BbpA is partly dependent on a developmentally regulated L,D transpeptidase (Ldt). We use our findings to propose a model of Gram-negative cell envelope stabilization that includes cell-cycle control and an expanded role for Ldts in covalently attaching surface proteins to PG.
Collapse
|
12
|
Allen PE, Martinez JJ. Modulation of Host Lipid Pathways by Pathogenic Intracellular Bacteria. Pathogens 2020; 9:pathogens9080614. [PMID: 32731350 PMCID: PMC7460438 DOI: 10.3390/pathogens9080614] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/17/2020] [Accepted: 07/25/2020] [Indexed: 12/22/2022] Open
Abstract
Lipids are a broad group of molecules required for cell maintenance and homeostasis. Various intracellular pathogens have developed mechanisms of modulating and sequestering host lipid processes for a large array of functions for both bacterial and host cell survival. Among the host cell lipid functions that intracellular bacteria exploit for infection are the modulation of host plasma membrane microdomains (lipid rafts) required for efficient bacterial entry; the recruitment of specific lipids for membrane integrity of intracellular vacuoles; and the utilization of host lipid droplets for the regulation of immune responses and for energy production through fatty acid β-oxidation and oxidative phosphorylation. The majority of published studies on the utilization of these host lipid pathways during infection have focused on intracellular bacterial pathogens that reside within a vacuole during infection and, thus, have vastly different requirements for host lipid metabolites when compared to those intracellular pathogens that are released into the host cytosol upon infection. Here we summarize the mechanisms by which intracellular bacteria sequester host lipid species and compare the modulation of host lipid pathways and metabolites during host cell infection by intracellular pathogens residing in either a vacuole or within the cytosol of infected mammalian cells. This review will also highlight common and unique host pathways necessary for intracellular bacterial growth that could potentially be targeted for therapeutic intervention.
Collapse
|
13
|
Lipid Droplets: A Significant but Understudied Contributor of Host⁻Bacterial Interactions. Cells 2019; 8:cells8040354. [PMID: 30991653 PMCID: PMC6523240 DOI: 10.3390/cells8040354] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
Lipid droplets (LDs) are cytosolic lipid storage organelles that are important for cellular lipid metabolism, energy homeostasis, cell signaling, and inflammation. Several bacterial, viral and protozoal pathogens exploit host LDs to promote infection, thus emphasizing the importance of LDs at the host–pathogen interface. In this review, we discuss the thus far reported relation between host LDs and bacterial pathogens including obligate and facultative intracellular bacteria, and extracellular bacteria. Although there is less evidence for a LD–extracellular bacterial interaction compared to interactions with intracellular bacteria, in this review, we attempt to compare the bacterial mechanisms that target LDs, the host signaling pathways involved and the utilization of LDs by these bacteria. Many intracellular bacteria employ unique mechanisms to target host LDs and potentially obtain nutrients and lipids for vacuolar biogenesis and/or immune evasion. However, extracellular bacteria utilize LDs to either promote host tissue damage or induce host death. We also identify several areas that require further investigation. Along with identifying LD interactions with bacteria besides the ones reported, the precise mechanisms of LD targeting and how LDs benefit pathogens should be explored for the bacteria discussed in the review. Elucidating LD–bacterial interactions promises critical insight into a novel host–pathogen interaction.
Collapse
|