1
|
Li S, Peng Y, Li M, Li X, Li H, Dabu X, Yang Y. Different active exogenous carbons improve the yield and quality of roses by shaping different bacterial communities. Front Microbiol 2025; 16:1558322. [PMID: 40226102 PMCID: PMC11985833 DOI: 10.3389/fmicb.2025.1558322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
The application of exogenous organic carbon represents a significant strategy for enhancing soil fertility and promoting sustainable agricultural development. This approach modifies the physicochemical properties of soil and influences microbial community structures, consequently improving crop yield and quality. Nevertheless, the mechanisms underlying microbial community responses to various forms of active exogenous organic carbon remain poorly understood and require further investigation. A 1-year follow-up experiment was conducted to examine the effects of different carbon sources on the yield and quality of cut roses, along with the characteristics of the soil bacterial community. The results indicated that applying organic fertiliser and biochar significantly enhanced the productivity of cut roses, demonstrating a sustained growth-promoting effect. Organic fertiliser provides more active, readily oxidisable organic carbon to the soil compared to biochar. In contrast, biochar supplies stable organic carbon, including inert organic carbon that is difficult to oxidise, firm organic carbon (FOC), and total inert organic carbon, which has a high degree of humification that significantly exceeds that of organic fertiliser. The application of biochar and organic fertiliser not only altered the abundance, diversity, and composition of the rhizosphere microbial community but also enriched beneficial microorganisms. Redundancy analysis results indicated that FOC, available phosphorus, and soil organic matter were the primary factors influencing the bacterial community. The results of this study demonstrated that exogenous organic carbon exerted positive and indirect effects on crop yield by influencing soil properties and bacterial communities. These findings provide novel evidence supporting the rational application of biochar and organic fertilisers as a means to promote agricultural sustainability in red soil regions.
Collapse
Affiliation(s)
- Shixiong Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuanyang Peng
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Manying Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xin Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Haoyang Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xilatu Dabu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yun Yang
- Yunnan Huayan Agricultural Science and Technology Co., Ltd., Kunming, China
| |
Collapse
|
2
|
Luo J, Liang S, Jin F. Gut microbiota and healthy longevity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2590-2602. [PMID: 39110402 DOI: 10.1007/s11427-023-2595-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 12/18/2024]
Abstract
Recent progress on the underlying biological mechanisms of healthy longevity has propelled the field from elucidating genetic modification of healthy longevity hallmarks to defining mechanisms of gut microbiota influencing it. Importantly, the role of gut microbiota in the healthy longevity of the host may provide unprecedented opportunities to decipher the plasticity of lifespan on a natural evolutionary scale and shed light on using microbiota-targeted strategies to promote healthy aging and combat age-related diseases. This review investigates how gut microbiota affects healthy longevity, focusing on the mechanisms through which gut microbiota modulates it. Specifically, we focused on the ability of gut microbiota to enhance the intestinal barrier integrity, provide protection from inflammaging, ameliorate nutrientsensing pathways, optimize mitochondrial function, and improve defense against age-related diseases, thus participating in enhancing longevity and healthspan.
Collapse
Affiliation(s)
- Jia Luo
- College of Psychology, Sichuan Normal University, Chengdu, 610066, China
| | - Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Mafra D, Borges NA, Baptista BG, Martins LF, Borland G, Shiels PG, Stenvinkel P. What Can the Gut Microbiota of Animals Teach Us about the Relationship between Nutrition and Burden of Lifestyle Diseases? Nutrients 2024; 16:1789. [PMID: 38892721 PMCID: PMC11174762 DOI: 10.3390/nu16111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
The gut microbiota performs several crucial roles in a holobiont with its host, including immune regulation, nutrient absorption, synthesis, and defense against external pathogens, significantly influencing host physiology. Disruption of the gut microbiota has been linked to various chronic conditions, including cardiovascular, kidney, liver, respiratory, and intestinal diseases. Studying how animals adapt their gut microbiota across their life course at different life stages and under the dynamics of extreme environmental conditions can provide valuable insights from the natural world into how the microbiota modulates host biology, with a view to translating these into treatments or preventative measures for human diseases. By modulating the gut microbiota, opportunities to address many complications associated with chronic diseases appear. Such a biomimetic approach holds promise for exploring new strategies in healthcare and disease management.
Collapse
Affiliation(s)
- Denise Mafra
- Graduate Program in Medical Sciences and Graduate Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói 24020-141, Brazil;
- Graduate Program in Biological Sciences—Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Natália A. Borges
- Graduate Program in Food, Nutrition, and Health, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro 21941-909, Brazil;
| | - Beatriz G. Baptista
- Graduate Program in Medical Sciences and Graduate Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói 24020-141, Brazil;
| | - Layla F. Martins
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo 05508-220, Brazil;
| | - Gillian Borland
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (G.B.); (P.G.S.)
| | - Paul G. Shiels
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (G.B.); (P.G.S.)
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 17165 Stockholm, Sweden;
| |
Collapse
|
4
|
Wlaschek M, Singh K, Maity P, Scharffetter-Kochanek K. The skin of the naked mole-rat and its resilience against aging and cancer. Mech Ageing Dev 2023; 216:111887. [PMID: 37993056 DOI: 10.1016/j.mad.2023.111887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The naked mole-rat (NMR) Heterocephalus glaber (from the Greek/latin words ἕτερος, heteros = divergent, κεφαλή, kephalē = head and glabra = hairless) was first described by Rüppell (Fig. 1) and belongs to the Hystricognath (from the Greek words ὕστριξ, hystrix = porcupine and γνάθος, gnathos = jaw) as a suborder of rodents. NMR are characterized by the highest longevity among rodents and reveal a profound cancer resistance. Details of its skin-specific protective and resistance mechanisms against aging and carcinogenesis have so far not been adequately characterized. Recently, our knowledge of NMR skin biology was complemented and expanded by published data using state-of-the art histological and molecular techniques. Here we review and integrate novel published data regarding skin morphology and histology of the aging NMR and the underlying mechanisms at the cellular and molecular level. We relate this data to the longevity of the NMR and its resistance to neoplastic transformation and discuss further open questions to understand its extraordinary longevity. In addition, we will address the exposome, defined as "the total of all non-genetic, endogenous and exogenous environmental influences" on the skin, respiratory tract, stomach, and intestine. Finally, we will discuss in perspective further intriguing possibilities arising from the interaction of skin with other organs.
Collapse
Affiliation(s)
- Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany.
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany.
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany.
| | | |
Collapse
|
5
|
Fitzpatrick CR, Toor I, Holmes MM. Colony but not social phenotype or status structures the gut bacteria of a eusocial mammal. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Lin J, Yang Q, Guo J, Li M, Hao Z, He J, Li J. Gut Microbiome Alterations and Hepatic Metabolic Flexibility in the Gansu Zokor, Eospalax cansus: Adaptation to Hypoxic Niches. Front Cardiovasc Med 2022; 9:814076. [PMID: 35402538 PMCID: PMC8984292 DOI: 10.3389/fcvm.2022.814076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The Gansu zokor (Eospalax cansus), a typical subterranean rodent endemic to the Chinese Loess Plateau, spends almost its whole life in its self-constructed underground burrows and has strong adaptability to ambient hypoxia. Energy adaptation is the key to supporting hypoxia tolerance, and recent studies have shown that the intestinal microbiota has an evident effect on energy metabolism. However, how the gut microbiome of Gansu zokor will change in response to hypoxia and the metabolic role played by the microbiome have not been reported. Thus, we exposed Gansu zokors to severe hypoxia of 6.5% of O2 (6 or 44 h) or moderate hypoxia of 10.5% of O2 (44 h or 4 weeks), and then analyzed 16S rRNA sequencing, metagenomic sequencing, metagenomic binning, liver carbohydrate metabolites, and the related molecular levels. Our results showed that the hypoxia altered the microbiota composition of Gansu zokor, and the relative contribution of Ileibacterium to carbohydrate metabolism became increased under hypoxia, such as glycolysis and fructose metabolism. Furthermore, Gansu zokor liver enhanced carbohydrate metabolism under the short-term (6 or 44 h) hypoxia but it was suppressed under the long-term (4 weeks) hypoxia. Interestingly, under all hypoxia conditions, Gansu zokor liver exhibited enhanced fructose-driven metabolism through increased expression of the GLUT5 fructose transporter, ketohexokinase (KHK), aldolase B (ALDOB), and aldolase C (ALDOC), as well as increased KHK enzymatic activity and fructose utilization. Overall, our results suggest that the altered gut microbiota mediates the carbohydrate metabolic pattern under hypoxia, possibly contributing to the hepatic metabolic flexibility in Gansu zokor, which leads to better adaptation to hypoxic environments.
Collapse
|
7
|
Chua KO, Fatima I, Lau YY, Hong KW, Yin WF, Mardaryev A, Chan KG, Chang CY. Bacterial microbiome of faecal samples of naked mole-rat collected from the toilet chamber. BMC Res Notes 2022; 15:107. [PMID: 35303951 PMCID: PMC8932300 DOI: 10.1186/s13104-022-06000-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023] Open
Abstract
Objective The naked mole rats (NMRs, Heterocephalus glaber) are subterranean rodents that belong to the family Bathyergidae. They gained the attention of the scientific community for their exceptionally long lifespan of up to 30 years and have become an animal model of biomedical research on neurodegenerative diseases, aging and cancer. NMRs dig and survive in a maze of underground tunnels and chambers and demarcate toilet chambers for defecation and urination. Due to their coprophagic behaviours, we believed that the toilet chamber might play a role in maintaining optimal health of the NMRs. A 16S rRNA gene amplicon sequencing was performed to characterize the bacterial microbiome of faecal samples collected from the toilet chamber of a laboratory NMR colony. Results Four faecal samples were collected at different time points from the same toilet chamber of a laboratory NMR colony for analysis. The 16S rRNA gene amplicon sequencing revealed that bacterial phyla Firmicutes and Bacteroidetes were the dominant taxa in the bacterial microbiome of NMRs. The relative abundance of the bacterial taxa shifted substantially between time points, indicating a dynamic microbiome in the toilet chamber. The data provided an insight to the faecal microbiome of NMRs in the toilet chamber. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-06000-8.
Collapse
Affiliation(s)
- Kah-Ooi Chua
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Iqra Fatima
- Centre for Skin Sciences, School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Yin Yin Lau
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University Kuala Lumpur, 56000, Kuala Lumpur, Malaysia
| | - Kar Wai Hong
- International Genome Centre, Jiangsu University, Zhenjiang, China.,Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Andrei Mardaryev
- Centre for Skin Sciences, School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Kok-Gan Chan
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University Kuala Lumpur, 56000, Kuala Lumpur, Malaysia. .,International Genome Centre, Jiangsu University, Zhenjiang, China. .,Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Chien-Yi Chang
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4BW, UK.
| |
Collapse
|
8
|
The Unusual Immune System of the Naked Mole-Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:315-327. [PMID: 34424522 DOI: 10.1007/978-3-030-65943-1_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The immune system plays a critical role in host defense to pathogens, tissue homeostasis, cancer development, and several aging-associated chronic inflammatory diseases. The naked mole-rat (Heterocephalus glaber) is a subterranean rodent with both extraordinary longevity and cancer-resistant phenotypes. Unlike the immune system of standard laboratory rodents, that of the naked mole-rat features a higher myeloid-to-lymphoid ratio, lacks natural killer cells, has higher pro-inflammatory cytokine production in macrophages, and exhibits a novel LPS-responsive neutrophil subset that highly expresses several antimicrobials. Given these unusual features, the potential involvement of the naked mole-rat's immune system in their longevity and cancer-resistance remains enigmatic. In this chapter, we summarize the current knowledge of the immune system in the naked mole-rat, including the immune cell repertoire, the primary and secondary lymphoid organs, and the inflammatory responses to the pathogenic stimulation such as bacterial toxins. We compare these findings to published studies of the other subterranean rodents and discuss how the environmental factors in which they have evolved may have influenced their immune function.
Collapse
|
9
|
He WQ, Xiong YQ, Ge J, Chen YX, Chen XJ, Zhong XS, Ou ZJ, Gao YH, Cheng MJ, Mo Y, Wen YQ, Qiu M, Huo ST, Chen SW, Zheng XY, He H, Li YZ, You FF, Zhang MY, Chen Q. Composition of gut and oropharynx bacterial communities in Rattus norvegicus and Suncus murinus in China. BMC Vet Res 2020; 16:413. [PMID: 33129337 PMCID: PMC7603701 DOI: 10.1186/s12917-020-02619-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/13/2020] [Indexed: 02/08/2023] Open
Abstract
Background Rattus norvegicus and Suncus murinus are important reservoirs of zoonotic bacterial diseases. An understanding of the composition of gut and oropharynx bacteria in these animals is important for monitoring and preventing such diseases. We therefore examined gut and oropharynx bacterial composition in these animals in China. Results Proteobacteria, Firmicutes and Bacteroidetes were the most abundant phyla in faecal and throat swab samples of both animals. However, the composition of the bacterial community differed significantly between sample types and animal species. Firmicutes exhibited the highest relative abundance in throat swab samples of R. norvegicus, followed by Proteobacteria and Bacteroidetes. In throat swab specimens of S. murinus, Proteobacteria was the predominant phylum, followed by Firmicutes and Bacteroidetes. Firmicutes showed the highest relative abundance in faecal specimens of R. norvegicus, followed by Bacteroidetes and Proteobacteria. Firmicutes and Proteobacteria had almost equal abundance in faecal specimens of S. murinus, with Bacteroidetes accounting for only 3.07%. The family Streptococcaceae was most common in throat swab samples of R. norvegicus, while Prevotellaceae was most common in its faecal samples. Pseudomonadaceae was the predominant family in throat swab samples of S. murinus, while Enterobacteriaceae was most common in faecal samples. We annotated 33.28% sequences from faecal samples of S. murinus as potential human pathogenic bacteria, approximately 3.06-fold those in R. norvegicus. Potential pathogenic bacteria annotated in throat swab samples of S. murinus were 1.35-fold those in R. norvegicus. Conclusions Bacterial composition of throat swabs and faecal samples from R. norvegicus differed from those of S. murinus. Both species carried various pathogenic bacteria, therefore both should be closely monitored in the future, especially for S. murinus. Supplementary information Supplementary information accompanies this paper at 10.1186/s12917-020-02619-6.
Collapse
Affiliation(s)
- Wen-Qiao He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yi-Quan Xiong
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.,Chinese Evidence-based Medicine Center and CREAT Group, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Jing Ge
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.,Medical Office of Wuxi People's Hospital, Wu Xi, 214000, China
| | - Yan-Xia Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Xue-Jiao Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Xue-Shan Zhong
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Ze-Jin Ou
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yu-Han Gao
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Ming-Ji Cheng
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yun Mo
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yu-Qi Wen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Min Qiu
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Shu-Ting Huo
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Shao-Wei Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Xue-Yan Zheng
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Huan He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yong-Zhi Li
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Fang-Fei You
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Min-Yi Zhang
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Sibai M, Altuntaş E, Yıldırım B, Öztürk G, Yıldırım S, Demircan T. Microbiome and Longevity: High Abundance of Longevity-Linked Muribaculaceae in the Gut of the Long-Living Rodent Spalax leucodon. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:592-601. [PMID: 32907488 DOI: 10.1089/omi.2020.0116] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With a world population living longer as well as marked disparities in life expectancy, understanding the determinants of longevity is one of the priority research agendas in 21st century life sciences. To this end, the blind mole-rat (Spalax leucodon), a subterranean mammalian, has emerged as an exceptional model organism due to its astonishing features such as remarkable longevity, hypoxia and hypercapnia tolerance, and cancer resistance. The microbiome has been found to be a vital parameter for cellular physiology and it is safe to assume that it has an impact on life expectancy. Although the unique characteristics of Spalax make it an ideal experimental model for longevity research, there is limited knowledge of the bacterial composition of Spalax microbiome, which limits its in-depth utilization. In this study, using 16S rRNA amplicon sequencing, we report the gut and skin bacterial structure of Spalax for the first time. The diversity between fecal and skin samples was manifested in the distant clustering, as revealed by beta diversity analysis. Importantly, the longevity-linked Muribaculaceae bacterial family was found to be the dominating bacterial taxa in Spalax fecal samples. These new findings contribute toward further development of Spalax as a model for longevity research and potential linkages between microbiome composition and longevity.
Collapse
Affiliation(s)
- Mustafa Sibai
- Graduate School of Natural and Applied Sciences, Mugla Sitki Kocman University, Mugla, Turkey
| | - Ebru Altuntaş
- Graduate School of Natural and Applied Sciences, Mugla Sitki Kocman University, Mugla, Turkey
| | - Berna Yıldırım
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey.,Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Süleyman Yıldırım
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Microbiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Turan Demircan
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
11
|
Shepard A, Kissil JL. The use of non-traditional models in the study of cancer resistance-the case of the naked mole rat. Oncogene 2020; 39:5083-5097. [PMID: 32535616 DOI: 10.1038/s41388-020-1355-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
Abstract
Non-traditional model organisms are typically defined as any model the deviates from the typical laboratory animals, such as mouse, rat, and worm. These models are becoming increasingly important in human disease research, such as cancer, as they often display unusual biological features. Naked mole rats (NMRs) are currently one of the most popular non-traditional model, particularly in the longevity and cancer research fields. NMRs display an exceptionally long lifespan (~30 years), yet have been observed to display a low incidence of cancer, making them excellent candidates for understanding endogenous cancer resistance mechanisms. Over the past decade, many potential resistance mechanisms have been characterized. These include unique biological mechanisms involved in genome stability, protein stability, oxidative metabolism, and other cellular mechanisms such as cell cycle regulation and senescence. This review aims to summarize the many identified cancer resistance mechanisms to understand some of the main hypotheses that have thus far been generated. Many of these proposed mechanisms remain to be fully characterized or confirmed in vivo, giving the field a direction to grow and further understand the complex biology displayed by the NMR.
Collapse
Affiliation(s)
- Alyssa Shepard
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Joseph L Kissil
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
12
|
Viltard M, Durand S, Pérez-Lanzón M, Aprahamian F, Lefevre D, Leroy C, Madeo F, Kroemer G, Friedlander G. The metabolomic signature of extreme longevity: naked mole rats versus mice. Aging (Albany NY) 2019; 11:4783-4800. [PMID: 31346149 PMCID: PMC6682510 DOI: 10.18632/aging.102116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 04/11/2023]
Abstract
The naked mole-rat (Heterocephalus glaber) is characterized by a more than tenfold higher life expectancy compared to another rodent species of the same size, namely, the laboratory mouse (Mus musculus). We used mass spectrometric metabolomics to analyze circulating plasma metabolites in both species at different ages. Interspecies differences were much more pronounced than age-associated alterations in the metabolome. Such interspecies divergences affected multiple metabolic pathways involving amino, bile and fatty acids as well as monosaccharides and nucleotides. The most intriguing metabolites were those that had previously been linked to pro-health and antiaging effects in mice and that were significantly increased in the long-lived rodent compared to its short-lived counterpart. This pattern applies to α-tocopherol (also known as vitamin E) and polyamines (in particular cadaverine, N8-acetylspermidine and N1,N8-diacetylspermidine), all of which were more abundant in naked mole-rats than in mice. Moreover, the age-associated decline in spermidine and N1-acetylspermidine levels observed in mice did not occur, or is even reversed (in the case of N1-acetylspermidine) in naked mole-rats. In short, the present metabolomics analysis provides a series of testable hypotheses to explain the exceptional longevity of naked mole-rats.
Collapse
Affiliation(s)
- Mélanie Viltard
- Fondation pour la Recherche en Physiologie, Brussels, Belgium
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Maria Pérez-Lanzón
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Fanny Aprahamian
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Deborah Lefevre
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Christine Leroy
- INSERM UMR_S1151 CNRS UMR8253 Institut Necker-Enfants Malades (INEM), Paris, France
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Gérard Friedlander
- INSERM UMR_S1151 CNRS UMR8253 Institut Necker-Enfants Malades (INEM), Paris, France
- Service de Physiologie et Explorations Fonctionnelles, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université de Paris - Paris Descartes, Faculté de Médecine, Paris, France
| |
Collapse
|