1
|
Omondi ZN, Caner A, Arserim SK. Trypanosomes and gut microbiota interactions in triatomine bugs and tsetse flies: A vectorial perspective. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:253-268. [PMID: 38651684 DOI: 10.1111/mve.12723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Triatomines (kissing bugs) and tsetse flies (genus: Glossina) are natural vectors of Trypanosoma cruzi and Trypanosoma brucei, respectively. T. cruzi is the causative agent of Chagas disease, endemic in Latin America, while T. brucei causes African sleeping sickness disease in sub-Saharan Africa. Both triatomines and tsetse flies are host to a diverse community of gut microbiota that co-exist with the parasites in the gut. Evidence has shown that the gut microbiota of both vectors plays a key role in parasite development and transmission. However, knowledge on the mechanism involved in parasite-microbiota interaction remains limited and scanty. Here, we attempt to analyse Trypanosoma spp. and gut microbiota interactions in tsetse flies and triatomines, with a focus on understanding the possible mechanisms involved by reviewing published articles on the subject. We report that interactions between Trypanosoma spp. and gut microbiota can be both direct and indirect. In direct interactions, the gut microbiota directly affects the parasite via the formation of biofilms and the production of anti-parasitic molecules, while on the other hand, Trypanosoma spp. produces antimicrobial proteins to regulate gut microbiota of the vector. In indirect interactions, the parasite and gut bacteria affect each other through host vector-activated processes such as immunity and metabolism. Although we are beginning to understand how gut microbiota interacts with the Trypanosoma parasites, there is still a need for further studies on functional role of gut microbiota in parasite development to maximize the use of symbiotic bacteria in vector and parasite control.
Collapse
Affiliation(s)
- Zeph Nelson Omondi
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Ayşe Caner
- Department of Parasitology, Faculty of Medicine, Ege University, Izmir, Turkey
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Izmir, Turkey
| | - Suha Kenan Arserim
- Vocational School of Health Sciences, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
2
|
El Yamlahi Y, Bel Mokhtar N, Maurady A, Britel MR, Batargias C, Mutembei DE, Nyingilili HS, Malulu DJ, Malele II, Asimakis E, Stathopoulou P, Tsiamis G. Characterization of the Bacterial Profile from Natural and Laboratory Glossina Populations. INSECTS 2023; 14:840. [PMID: 37999039 PMCID: PMC10671886 DOI: 10.3390/insects14110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Tsetse flies (Glossina spp.; Diptera: Glossinidae) are viviparous flies that feed on blood and are found exclusively in sub-Saharan Africa. They are the only cyclic vectors of African trypanosomes, responsible for human African trypanosomiasis (HAT) and animal African trypanosomiasis (AAT). In this study, we employed high throughput sequencing of the 16S rRNA gene to unravel the diversity of symbiotic bacteria in five wild and three laboratory populations of tsetse species (Glossina pallidipes, G. morsitans, G. swynnertoni, and G. austeni). The aim was to assess the dynamics of bacterial diversity both within each laboratory and wild population in relation to the developmental stage, insect age, gender, and location. Our results indicated that the bacterial communities associated with the four studied Glossina species were significantly influenced by their region of origin, with wild samples being more diverse compared to the laboratory samples. We also observed that the larval microbiota was significantly different than the adults. Furthermore, the sex and the species did not significantly influence the formation of the bacterial profile of the laboratory colonies once these populations were kept under the same rearing conditions. In addition, Wigglesworthia, Acinetobacter, and Sodalis were the most abundant bacterial genera in all the samples, while Wolbachia was significantly abundant in G. morsitans compared to the other studied species. The operational taxonomic unit (OTU) co-occurrence network for each location (VVBD insectary, Doma, Makao, and Msubugwe) indicated a high variability between G. pallidipes and the other species in terms of the number of mutual exclusion and copresence interactions. In particular, some bacterial genera, like Wigglesworthia and Sodalis, with high relative abundance, were also characterized by a high degree of interactions.
Collapse
Affiliation(s)
- Youssef El Yamlahi
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
- Faculty of Sciences and Technics of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - Naima Bel Mokhtar
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
- Faculty of Sciences and Technics of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco
| | - Mohammed R. Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece;
| | - Delphina E. Mutembei
- Vector & Vector Borne Diseases, Tanzania Veterinary Laboratory Agency (TVLA), Tanga P.O. Box 1026, Tanzania; (D.E.M.); (H.S.N.); (D.J.M.)
| | - Hamisi S. Nyingilili
- Vector & Vector Borne Diseases, Tanzania Veterinary Laboratory Agency (TVLA), Tanga P.O. Box 1026, Tanzania; (D.E.M.); (H.S.N.); (D.J.M.)
| | - Deusdedit J. Malulu
- Vector & Vector Borne Diseases, Tanzania Veterinary Laboratory Agency (TVLA), Tanga P.O. Box 1026, Tanzania; (D.E.M.); (H.S.N.); (D.J.M.)
| | - Imna I. Malele
- Directorate of Research and Technology Development, TVLA, Dar Es Salaam P.O. Box 9254, Tanzania;
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| |
Collapse
|
3
|
Ratcliffe NA, Furtado Pacheco JP, Dyson P, Castro HC, Gonzalez MS, Azambuja P, Mello CB. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit Vectors 2022; 15:112. [PMID: 35361286 PMCID: PMC8969276 DOI: 10.1186/s13071-021-05132-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly ingenious method currently under development in many important vector insects that could provide an additional powerful tool for use in integrated pest control programmes. The requirements and recent advances of the paratransgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modification, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environmental release of the genetically engineered organisms produced in paratransgenesis are considered.
Collapse
Affiliation(s)
- Norman A. Ratcliffe
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - João P. Furtado Pacheco
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Helena Carla Castro
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcelo S. Gonzalez
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Patricia Azambuja
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Cicero B. Mello
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| |
Collapse
|
4
|
Microbial Community Structure and Bacterial Lineages Associated with Sulfonamides Resistance in Anthropogenic Impacted Larut River. WATER 2022. [DOI: 10.3390/w14071018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Anthropogenic activities often contribute to antibiotic resistance in aquatic environments. Larut River Malaysia is polluted with both organic and inorganic pollutants from domestic and industrial wastewater that are probably treated inadequately. The river is characterized by high biochemical oxygen demand, chemical oxygen demand, total suspended solids, ammonia, and heavy metals. In our previous study, sulfonamides (SAs) and sulfonamide resistance genes (sul) were detected in the Larut River. Hence, in this study, we further examined the microbial community structure, diversity of sulfonamide-resistant bacteria (SARB), and their resistance genes. The study also aimed at identifying cultivable bacteria potential carriers of sul genes in the aquatic environment. Proteobacteria (22.4–66.0%), Firmicutes (0.8–41.6%), Bacteroidetes (2.0–29.4%), and Actinobacteria (5.5–27.9%) were the most dominant phyla in both the effluents and river waters. SARB isolated consisted only 4.7% of the total genera identified, with SAR Klebsiella as the most dominant (38.0–61.3%) followed by SAR Escherichia (0–22.2%) and Acinetobacter (3.2–16.0%). The majority of the SAR Klebsiella isolated from the effluents and middle downstream were positive for sul genes. Sul genes-negative SAR Escherichia and Acinetobacter were low (<20%). Canonical-correlation analysis (CCA) showed that SAs residues and inorganic nutrients exerted significant impacts on microbial community and total sul genes. Network analysis identified 11 SARB as potential sul genes bacterial carriers. These findings indicated that anthropogenic activities exerted impacts on the microbial community structure and SAs resistance in the Larut River.
Collapse
|
5
|
AboNahas HH, Darwish AMG, Abd EL-kareem HF, AboNahas YH, Mansour SA, Korra YH, Sayyed RZ, Abdel-Azeem AM, Saied EM. Trust Your Gut: The Human Gut Microbiome in Health and Disease. MICROBIOME-GUT-BRAIN AXIS 2022:53-96. [DOI: 10.1007/978-981-16-1626-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
The Isolation of Culturable Bacteria in Ixodes ricinus Ticks of a Belgian Peri-Urban Forest Uncovers Opportunistic Bacteria Potentially Important for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212134. [PMID: 34831890 PMCID: PMC8625411 DOI: 10.3390/ijerph182212134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
Most bacteria found in ticks are not pathogenic to humans but coexist as endosymbionts and may have effects on tick fitness and pathogen transmission. In this study, we cultured and isolated 78 bacteria from 954 Ixodes ricinus ticks collected in 7 sites of a Belgian peri-urban forest. Most isolated species were non-pathogenic environmental microorganisms, and were from the Firmicutes (69.23%), Actinobacteria (17.95%) and Proteobacteria (3.84%) phyla. One bacterium isolate was particularly noteworthy, Cedecea davisae, a rare opportunistic bacterium, naturally resistant to various antibiotics. It has never been isolated from ticks before and this isolated strain was resistant to ampicillin, cefoxitin and colistin. Although cultivable bacteria do not represent the complete tick microbiota, the sites presented variable bacterial compositions and diversities. This study is a first attempt to describe the culturable microbiota of ticks collected in Belgium. Further collections and analyses of ticks of different species, from various areas and using other bacterial identification methods would strengthen these results. However, they highlight the importance of ticks as potential sentinel for opportunistic bacteria of public health importance.
Collapse
|
7
|
Mbewe NJ, Sole CL, Pirk CWW, Masiga DK, Yusuf AA. Efficiencies of stationary sampling tools for the tsetse fly Glossina fuscipes fuscipes in western Kenya. Acta Trop 2021; 223:106092. [PMID: 34389328 DOI: 10.1016/j.actatropica.2021.106092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/01/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Monitoring the effectiveness of tsetse fly control interventions that aim to reduce transmission of African trypanosomiasis requires highly efficient sampling tools that can catch flies at low densities. The sticky small target (StS-target) has previously been shown to be more effective in sampling Glossina fuscipes fuscipes compared to the biconical trap. However, its efficiency in terms of the proportion of flies it catches out of those that visit it has not been reported. Furthermore, there are no reports on whether tsetse samples caught using the StS-target can be used for subsequent processes such as molecular tests. In this study, we evaluated the efficiency of the biconical trap and targets for sampling G. f. fuscipes. All targets were tiny (0.25 × 0.50 m) but varied in their capture system. We used targets with sticky surface (StS-targets) and those with an electrified surface (ES-targets). We also assessed the suitability of flies caught on the StS-target for molecular tests by amplifying DNA of bacterial communities. Randomized block design experiments were undertaken in Mbita area and Manga Island on Lake Victoria of western Kenya. Fly catches of each sampling tool were compared to those of the sampling tool flanked by electric (E) nets and analyzed using a negative binomial regression. The total catch for each sampling tool alone was divided by the total catch of the sampling tool flanked by two E-nets to obtain its efficiency expressed as a percentage. A proportion of flies caught on the StS-target was preserved for molecular tests. Overall, the efficiencies of the biconical trap, ES-target and StS-target were 7.7%, 13.3% and 27.0%, respectively. A higher proportion of females (69 to 79%) than males approached all the sampling tools, but the trap efficiency was greater for male G. f. fuscipes than females. Furthermore, sequencing the 16S rRNA gene from fly samples caught on the StS-target revealed the presence of Spiroplasma. Our results indicate that the SS-target is the most efficient trap to monitor G. f. fuscipes population during interventions, with the biconical trap being the least efficient, and samples collected from StS-targets are suitable for molecular studies.
Collapse
|
8
|
Characterization of bacterial communities associated with blood-fed and starved tropical bed bugs, Cimex hemipterus (F.) (Hemiptera): a high throughput metabarcoding analysis. Sci Rep 2021; 11:8465. [PMID: 33875727 PMCID: PMC8055992 DOI: 10.1038/s41598-021-87946-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
With the development of new metagenomic techniques, the microbial community structure of common bed bugs, Cimex lectularius, is well-studied, while information regarding the constituents of the bacterial communities associated with tropical bed bugs, Cimex hemipterus, is lacking. In this study, the bacteria communities in the blood-fed and starved tropical bed bugs were analysed and characterized by amplifying the v3-v4 hypervariable region of the 16S rRNA gene region, followed by MiSeq Illumina sequencing. Across all samples, Proteobacteria made up more than 99% of the microbial community. An alpha-proteobacterium Wolbachia and gamma-proteobacterium, including Dickeya chrysanthemi and Pseudomonas, were the dominant OTUs at the genus level. Although the dominant OTUs of bacterial communities of blood-fed and starved bed bugs were the same, bacterial genera present in lower numbers were varied. The bacteria load in starved bed bugs was also higher than blood-fed bed bugs.
Collapse
|
9
|
Asimakis E, Stathopoulou P, Sapounas A, Khaeso K, Batargias C, Khan M, Tsiamis G. New Insights on the Zeugodacus cucurbitae (Coquillett) Bacteriome. Microorganisms 2021; 9:microorganisms9030659. [PMID: 33810199 PMCID: PMC8004655 DOI: 10.3390/microorganisms9030659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Various factors, including the insect host, diet, and surrounding ecosystem can shape the structure of the bacterial communities of insects. We have employed next generation, high-throughput sequencing of the 16S rRNA to characterize the bacteriome of wild Zeugodacus (Bactrocera) cucurbitae (Coquillett) flies from three regions of Bangladesh. The tested populations developed distinct bacterial communities with differences in bacterial composition, suggesting that geography has an impact on the fly bacteriome. The dominant bacteria belonged to the families Enterobacteriaceae, Dysgomonadaceae and Orbaceae, with the genera Dysgonomonas, Orbus and Citrobacter showing the highest relative abundance across populations. Network analysis indicated variable interactions between operational taxonomic units (OTUs), with cases of mutual exclusion and copresence. Certain bacterial genera with high relative abundance were also characterized by a high degree of interactions. Interestingly, genera with a low relative abundance like Shimwellia, Gilliamella, and Chishuiella were among those that showed abundant interactions, suggesting that they are also important components of the bacterial community. Such knowledge could help us identify ideal wild populations for domestication in the context of the sterile insect technique or similar biotechnological methods. Further characterization of this bacterial diversity with transcriptomic and metabolic approaches, could also reveal their specific role in Z. cucurbitae physiology.
Collapse
Affiliation(s)
- Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (E.A.); (P.S.); (K.K.)
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (E.A.); (P.S.); (K.K.)
| | - Apostolis Sapounas
- Laboratory of Applied Genetics and Fish Breeding, Department of Animal Production, Fisheries and Aquaculture, University of Patras, Nea Ktiria, 30200 Messolonghi, Greece; (A.S.); (C.B.)
| | - Kanjana Khaeso
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (E.A.); (P.S.); (K.K.)
| | - Costas Batargias
- Laboratory of Applied Genetics and Fish Breeding, Department of Animal Production, Fisheries and Aquaculture, University of Patras, Nea Ktiria, 30200 Messolonghi, Greece; (A.S.); (C.B.)
| | - Mahfuza Khan
- Institute of Food and Radiation Biology (IFRB), Atomic Energy Research Establishment (AERE), Ganak bari, Savar, Dhaka 1349, Bangladesh;
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (E.A.); (P.S.); (K.K.)
- Correspondence: ; Tel.: +30-264-107-4149
| |
Collapse
|
10
|
Culturable Bacterial Community on Leaves of Assam Tea ( Camellia sinensis var. assamica) in Thailand and Human Probiotic Potential of Isolated Bacillus spp. Microorganisms 2020; 8:microorganisms8101585. [PMID: 33066699 PMCID: PMC7602384 DOI: 10.3390/microorganisms8101585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/28/2022] Open
Abstract
Assam tea plants (Camellia sinensis var. assamica) or Miang are found in plantations and forests of Northern Thailand. Leaf fermentation has been performed for centuries, but little information is available about their associated microbial community. One hundred and fifty-seven bacterial isolates were isolated from 62 Assam tea leaf samples collected from 6 provinces of Northern Thailand and classified within the phyla of Firmicutes, Actinobacteria, and Proteobacteria. Phayao and Phrae provinces exhibited the highest and the lowest bacterial diversities, respectively. The bacterial community structural pattern demonstrated significant differences between the west and the east sides. Since some Bacillus spp. have been reported to be involved in fermented Miang, Bacillus spp. isolated in this study were chosen for further elucidation. Bacillus siamensis ML122-2 exhibited a growth inhibitory effect against Staphylococcus aureus ATCC 25923 and MRSA DMST 20625, and the highest survival ability in simulated gastric and intestinal fluids (32.3 and 99.7%, respectively), autoaggregation (93.2%), cell surface hydrophobicity (50.0%), and bacterial adherence with Vero cells (75.8% of the control Lactiplantibacillusplantarum FM03-1). This B. siamensis ML122-2 is a promising probiotic to be used in the food industry and seems to have potential antibacterial properties relevant for the treatment of antibiotic-resistant infections.
Collapse
|
11
|
Brown JJ, Rodríguez-Ruano SM, Poosakkannu A, Batani G, Schmidt JO, Roachell W, Zima J, Hypša V, Nováková E. Ontogeny, species identity, and environment dominate microbiome dynamics in wild populations of kissing bugs (Triatominae). MICROBIOME 2020; 8:146. [PMID: 33040738 PMCID: PMC7549230 DOI: 10.1186/s40168-020-00921-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/09/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Kissing bugs (Triatominae) are blood-feeding insects best known as the vectors of Trypanosoma cruzi, the causative agent of Chagas' disease. Considering the high epidemiological relevance of these vectors, their biology and bacterial symbiosis remains surprisingly understudied. While previous investigations revealed generally low individual complexity but high among-individual variability of the triatomine microbiomes, any consistent microbiome determinants have not yet been identified across multiple Triatominae species. METHODS To obtain a more comprehensive view of triatomine microbiomes, we investigated the host-microbiome relationship of five Triatoma species sampled from white-throated woodrat (Neotoma albigula) nests in multiple locations across the USA. We applied optimised 16S rRNA gene metabarcoding with a novel 18S rRNA gene blocking primer to a set of 170 T. cruzi-negative individuals across all six instars. RESULTS Triatomine gut microbiome composition is strongly influenced by three principal factors: ontogeny, species identity, and the environment. The microbiomes are characterised by significant loss in bacterial diversity throughout ontogenetic development. First instars possess the highest bacterial diversity while adult microbiomes are routinely dominated by a single taxon. Primarily, the bacterial genus Dietzia dominates late-stage nymphs and adults of T. rubida, T. protracta, and T. lecticularia but is not present in the phylogenetically more distant T. gerstaeckeri and T. sanguisuga. Species-specific microbiome composition, particularly pronounced in early instars, is further modulated by locality-specific effects. In addition, pathogenic bacteria of the genus Bartonella, acquired from the vertebrate hosts, are an abundant component of Triatoma microbiomes. CONCLUSION Our study is the first to demonstrate deterministic patterns in microbiome composition among all life stages and multiple Triatoma species. We hypothesise that triatomine microbiome assemblages are produced by species- and life stage-dependent uptake of environmental bacteria and multiple indirect transmission strategies that promote bacterial transfer between individuals. Altogether, our study highlights the complexity of Triatominae symbiosis with bacteria and warrant further investigation to understand microbiome function in these important vectors. Video abstract.
Collapse
Affiliation(s)
- Joel J. Brown
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | | | - Anbu Poosakkannu
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Giampiero Batani
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | - Walter Roachell
- US Army Public Health Command-Central, JBSA Fort Sam, Houston, TX USA
| | - Jan Zima
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Václav Hypša
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Eva Nováková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
12
|
Boaden E, Thomas L, Caroline S, Watkins H. Microbiological analysis of water and thickeners used for people with dysphagia. Br J Community Nurs 2020; 25:S16-S24. [PMID: 32936704 DOI: 10.12968/bjcn.2020.25.sup8.s16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
UNLABELLED Thickened fluids are a recognised intervention strategy in use for people with dysphagia. However, their bacterial profile has not previously been examined. AIMS To identify bacteria and changes in bacterial profiles in a range of water sources and thickener preparations over a 5-day period. METHODS Nine experiments were performed using a range of preparations (sterile, drinking, non-drinking tap water) and a thickening agent (sterile sachet and a used tin). FINDINGS No bacteria were grown on serial subcultures of sterile water, both with and without thickener. Drinking, tap and thickened water left at room temperature for 24 hours may become contaminated with environmental organisms. CONCLUSIONS The growth of bacteria in preparations of thickening agent appears to be dependent upon water quality, while the proliferation of bacteria is dependent upon the length of time the preparation is allowed to stand at room temperature.
Collapse
Affiliation(s)
- Elizabeth Boaden
- Senior Research Fellow, the Faculty of Health and Wellbeing, University of Central Lancashire, Preston
| | - Lois Thomas
- Professor of Health Services Research, the Faculty of Health and Wellbeing, University of Central Lancashire, Preston
| | - Susan Caroline
- Professor of Oral Biology, Institute of Population Health Sciences and School of Dentistry, University of Liverpool
| | - Higham Watkins
- Professor of Stroke and Older People's Care, Faculty of Health and Wellbeing, University of Central Lancashire, Preston
| |
Collapse
|
13
|
Blood meal sources and bacterial microbiome diversity in wild-caught tsetse flies. Sci Rep 2020; 10:5005. [PMID: 32193415 PMCID: PMC7081217 DOI: 10.1038/s41598-020-61817-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/28/2020] [Indexed: 12/02/2022] Open
Abstract
Tsetse flies are the vectors of African trypanosomiasis affecting 36 sub-Saharan countries. Both wild and domestic animals play a crucial role in maintaining the disease-causing parasites (trypanosomes). Thus, the identification of animal reservoirs of trypanosomes is vital for the effective control of African trypanosomiasis. Additionally, the biotic and abiotic factors that drive gut microbiome diversity in tsetse flies are primarily unresolved, especially under natural, field conditions. In this study, we present a comprehensive DNA metabarcoding approach for individual tsetse fly analysis in the identification of mammalian blood meal sources and fly bacterial microbiome composition. We analyzed samples from two endemic foci, Kafue, Zambia collected in June 2017, and Hurungwe, Zimbabwe sampled in April 2014 (pilot study) and detected DNA of various mammals including humans, wild animals, domestic animals and small mammals (rat and bat). The bacterial diversity was relatively similar in flies with different mammalian species DNA, trypanosome infected and uninfected flies, and female and male flies. This study is the first report on bat DNA detection in wild tsetse flies. This study reveals that small mammals such as bats and rats are among the opportunistic blood meal sources for tsetse flies in the wild, and the implication on tsetse biology and ecology needs to be studied.
Collapse
|
14
|
Waltmann A, Willcox AC, Balasubramanian S, Borrini Mayori K, Mendoza Guerrero S, Salazar Sanchez RS, Roach J, Condori Pino C, Gilman RH, Bern C, Juliano JJ, Levy MZ, Meshnick SR, Bowman NM. Hindgut microbiota in laboratory-reared and wild Triatoma infestans. PLoS Negl Trop Dis 2019; 13:e0007383. [PMID: 31059501 PMCID: PMC6522061 DOI: 10.1371/journal.pntd.0007383] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/16/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
Triatomine vectors transmit Trypanosoma cruzi, the etiological agent of Chagas disease in humans. Transmission to humans typically occurs when contaminated triatomine feces come in contact with the bite site or mucosal membranes. In the Southern Cone of South America, where the highest burden of disease exists, Triatoma infestans is the principal vector for T. cruzi. Recent studies of other vector-borne illnesses have shown that arthropod microbiota influences the ability of infectious agents to colonize the insect vector and transmit to the human host. This has garnered attention as a potential control strategy against T. cruzi, as vector control is the main tool of Chagas disease prevention. Here we characterized the microbiota in T. infestans feces of both wild-caught and laboratory-reared insects and examined the relationship between microbial composition and T. cruzi infection using highly sensitive high-throughput sequencing technology to sequence the V3-V4 region of the 16S ribosomal RNA gene on the MiSeq Illumina platform. We collected 59 wild (9 with T. cruzi infection) and 10 lab-reared T. infestans (4 with T. cruzi infection) from the endemic area of Arequipa, Perú. Wild T. infestans had greater hindgut bacterial diversity than laboratory-reared bugs. Microbiota of lab insects comprised a subset of those identified in their wild counterparts, with 96 of the total 124 genera also observed in laboratory-reared insects. Among wild insects, variation in bacterial composition was observed, but time and location of collection and development stage did not explain this variation. T. cruzi infection in lab insects did not affect α- or β-diversity; however, we did find that the β-diversity of wild insects differed if they were infected with T. cruzi and identified 10 specific taxa that had significantly different relative abundances in infected vs. uninfected wild T. infestans (Bosea, Mesorhizobium, Dietzia, and Cupriavidus were underrepresented in infected bugs; Sporosarcina, an unclassified genus of Porphyromonadaceae, Nestenrenkonia, Alkalibacterium, Peptoniphilus, Marinilactibacillus were overrepresented in infected bugs). Our findings suggest that T. cruzi infection is associated with the microbiota of T. infestans and that inferring the microbiota of wild T. infestans may not be possible through sampling of T. infestans reared in the insectary. Chagas disease in humans is caused by the parasite Trypanosoma cruzi and it is endemic to the Americas. Poor populations are most at risk. The parasite infects an estimated six million people of 21 endemic countries in the Americas, with 30,000 new infections yearly. The main mode of transmission is vector-borne by triatomine bugs, which tend to live in close association with humans. The main Chagas disease vector in the Southern Cone of South America, where the highest burden of disease exists, is Triatoma infestans. As blood-sucking insects, triatomines become infected when they bite a T. cruzi-positive human and once infected they transmit the parasites in their feces. Controlling the vector populations is the main strategy of Chagas disease transmission reduction efforts. Microbiota-mediated methods to control this vector-borne disease are now being explored to determine whether microbes typically found in the vectors’ gut have a detrimental effect on T. cruzi and how they may be used to modify the vector and curb the ability for T. cruzi to be transmitted to humans. To advance this new field, we first must gain better knowledge of the gut microbiota of triatomines. Our study is the first to use sensitive high-throughput methods to study the gut microbes of T. infestans, using both laboratory-reared and wild insects. We have found that the microbial composition of T. infestans in the laboratory does not reflect the complete collection of gut microbes of wild T. infestans and inferring the gut microbiota profile of wild insects through studying lab insects alone may not be possible. We also found evidence that in wild insects T. cruzi affects the composition of the gut microbiota and identified some bacterial taxa which may be important in modulating the T.infestans-T.cruzi relationship.
Collapse
Affiliation(s)
- Andreea Waltmann
- Institute for Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Alexandra C. Willcox
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sujata Balasubramanian
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katty Borrini Mayori
- Zoonotic Disease Research Laboratory, Unidad de Una Salud, Universidad Peruana Cayetano Heredia, Arequipa, Perú
| | - Sandra Mendoza Guerrero
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Renzo S. Salazar Sanchez
- Zoonotic Disease Research Laboratory, Unidad de Una Salud, Universidad Peruana Cayetano Heredia, Arequipa, Perú
| | - Jeffrey Roach
- Microbiome Core Facility, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Carlos Condori Pino
- Zoonotic Disease Research Laboratory, Unidad de Una Salud, Universidad Peruana Cayetano Heredia, Arequipa, Perú
| | - Robert H. Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Caryn Bern
- Department of Epidemiology and Biostatistics, School of Medicine, University of California-San Francisco, San Francisco, California, United States of America
| | - Jonathan J. Juliano
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael Z. Levy
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Steven R. Meshnick
- Institute for Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Natalie M. Bowman
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
15
|
Tsagmo Ngoune JM, Reveillaud J, Sempere G, Njiokou F, Melachio TT, Abate L, Tchioffo MT, Geiger A. The composition and abundance of bacterial communities residing in the gut of Glossina palpalis palpalis captured in two sites of southern Cameroon. Parasit Vectors 2019; 12:151. [PMID: 30940213 PMCID: PMC6444424 DOI: 10.1186/s13071-019-3402-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/20/2019] [Indexed: 01/10/2023] Open
Abstract
Background A number of reports have demonstrated the role of insect bacterial flora on their host’s physiology and metabolism. The tsetse host and vector of trypanosomes responsible for human sleeping sickness (human African trypanosomiasis, HAT) and nagana in animals (African animal trypanosomiasis, AAT) carry bacteria that influence its diet and immune processes. However, the mechanisms involved in these processes remain poorly documented. This underscores the need for increased research into the bacterial flora composition and structure of tsetse flies. The aim of this study was to identify the diversity and relative abundance of bacterial genera in Glossina palpalis palpalis flies collected in two trypanosomiasis foci in Cameroon. Methods Samples of G. p. palpalis which were either negative or naturally trypanosome-positive were collected in two foci located in southern Cameroon (Campo and Bipindi). Using the V3V4 and V4 variable regions of the small subunit of the 16S ribosomal RNA gene, we analyzed the respective bacteriome of the flies’ midguts. Results We identified ten bacterial genera. In addition, we observed that the relative abundance of the obligate endosymbiont Wigglesworthia was highly prominent (around 99%), regardless of the analyzed region. The remaining genera represented approximately 1% of the bacterial flora, and were composed of Salmonella, Spiroplasma, Sphingomonas, Methylobacterium, Acidibacter, Tsukamurella, Serratia, Kluyvera and an unidentified bacterium. The genus Sodalis was present but with a very low abundance. Globally, no statistically significant difference was found between the bacterial compositions of flies from the two foci, and between positive and trypanosome-negative flies. However, Salmonella and Serratia were only described in trypanosome-negative flies, suggesting a potential role for these two bacteria in fly refractoriness to trypanosome infection. In addition, our study showed the V4 region of the small subunit of the 16S ribosomal RNA gene was more efficient than the V3V4 region at describing the totality of the bacterial diversity. Conclusions A very large diversity of bacteria was identified with the discovering of species reported to secrete anti-parasitic compounds or to modulate vector competence in other insects. For future studies, the analyses should be enlarged with larger sampling including foci from several countries. Electronic supplementary material The online version of this article (10.1186/s13071-019-3402-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean Marc Tsagmo Ngoune
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France.,Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Julie Reveillaud
- ASTRE, INRA, CIRAD, University of Montpellier, Montpellier, France
| | - Guilhem Sempere
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Trésor T Melachio
- Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Luc Abate
- UMR Maladies Infectieuses Et Vecteurs Écologie, Génétique, Évolution Et Contrôle, IRD 224-Centre National de la Recherche Scientifique, 5290-UM1-UM2, Montpellier, France
| | - Majoline T Tchioffo
- UMR Maladies Infectieuses Et Vecteurs Écologie, Génétique, Évolution Et Contrôle, IRD 224-Centre National de la Recherche Scientifique, 5290-UM1-UM2, Montpellier, France
| | - Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France. .,Center for Research on Filariasis and other Tropical Diseases (CRFilMT), P.O. Box 5797, Yaoundé, Cameroon. .,Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
16
|
Kariithi HM, Meki IK, Schneider DI, De Vooght L, Khamis FM, Geiger A, Demirbaş-Uzel G, Vlak JM, iNCE IA, Kelm S, Njiokou F, Wamwiri FN, Malele II, Weiss BL, Abd-Alla AMM. Enhancing vector refractoriness to trypanosome infection: achievements, challenges and perspectives. BMC Microbiol 2018; 18:179. [PMID: 30470182 PMCID: PMC6251094 DOI: 10.1186/s12866-018-1280-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural & Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Rd, Loresho, Nairobi, Kenya
| | - Irene K Meki
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
- Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB The Netherlands
| | - Daniela I Schneider
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510 USA
| | - Linda De Vooght
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, 00100, Nairobi, Kenya
| | - Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Guler Demirbaş-Uzel
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB The Netherlands
| | - ikbal Agah iNCE
- Institute of Chemical, Environmental & Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Sorge Kelm
- Department of Medical Microbiology, Acıbadem Mehmet Ali Aydınlar University, School of Medicine, 34752, Ataşehir, Istanbul, Turkey
| | - Flobert Njiokou
- Centre for Biomolecular Interactions Bremen, Faculty for Biology & Chemistry, Universität Bremen, Bibliothekstraße 1, 28359 Bremen, Germany
| | - Florence N Wamwiri
- Laboratory of Parasitology and Ecology, Faculty of Sciences, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, BP 812 Cameroon
| | - Imna I Malele
- Trypanosomiasis Research Centre, Kenya Agricultural & Livestock Research Organization, P.O. Box 362-00902, Kikuyu, Kenya
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510 USA
| | - Adly M M Abd-Alla
- Molecular Department, Vector and Vector Borne Diseases Institute, Tanzania Veterinary Laboratory Agency, Majani Mapana, Off Korogwe Road, Box, 1026 Tanga, Tanzania
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| |
Collapse
|