1
|
Guo L, Chen Y, He Z, Wang Z, Chen Q, Chen J, Oz F, Xu Z, Zeng M. Genomic and Transcriptomic Analysis of Mutant Bacillus subtilis with Enhanced Nattokinase Production via ARTP Mutagenesis. Foods 2025; 14:898. [PMID: 40077601 PMCID: PMC11899143 DOI: 10.3390/foods14050898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Nattokinase (NK), a serine protease with high thrombolytic activity, has significant potential for application in foods intended for special health benefits. However, the NK production in wild-type Bacillus subtilis natto is relatively low. In this study, a high-yielding NK and genetically stable mutant strain (B. subtilis JNC002.001, 300.0 ± 4.7 FU/mL) was obtained through atmospheric and room temperature plasma (ARTP) mutagenesis. It increased NK activity by 1.84 times compared to the initial strain SD2, demonstrating significant prospects for NK production and food fermentation applications. Additionally, the B. subtilis JNC002.001 exhibited notable alterations in growth characteristics, glucose consumption, and sporulation. This study further elucidated the mechanism of enhanced NK production at the molecular level. Genome resequencing revealed that the mutant genes in JNC002.001 included 10 single nucleotide polymorphisms (SNPs) and one insertion, among which the kinA and gltA genes were associated with sporulation and NK synthesis, respectively. In terms of the transcriptional level, the NK-coding gene aprN was up-regulated 9.4 times relative to the wild-type strain. Most of the genes related to central carbon metabolism and the Sec secretion pathway were up-regulated. In addition, the expression of regulatory factors associated with the transcription of the aprN gene and the sporulation process provided evidence for high NK expression and sporulation deficiency in JNC002.001. These results could provide insights into the mechanism of NK production and facilitate the construction of engineered strains with high NK yield.
Collapse
Affiliation(s)
- Liuyu Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.C.); (Z.H.); (Z.W.); (Q.C.); (J.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.C.); (Z.H.); (Z.W.); (Q.C.); (J.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.C.); (Z.H.); (Z.W.); (Q.C.); (J.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.C.); (Z.H.); (Z.W.); (Q.C.); (J.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.C.); (Z.H.); (Z.W.); (Q.C.); (J.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.C.); (Z.H.); (Z.W.); (Q.C.); (J.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey;
| | - Zhimin Xu
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.C.); (Z.H.); (Z.W.); (Q.C.); (J.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Zhao Z, Guo A, Zou D, Li Z, Wei X. Efficient production of spermidine from Bacillus amyloliquefaciens by enhancing synthesis pathway, blocking degradation pathway and increasing precursor supply. J Biotechnol 2025; 398:87-96. [PMID: 39647709 DOI: 10.1016/j.jbiotec.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/11/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Spermidine has broad application potential in food, medicine and other fields. In this study, a novel Bacillus amyloliquefaciens cell factory was constructed for production of spermidine from renewablebiomass resources. Firstly, the speB gene was found to be optimal for synthesis of spermidine, and the function of SpeB was explained by amino acid sequence analysis and molecular docking. By replacing the native promoter of the speEB operon with the P43, the synthesis of spermidine was significantly enhanced in B. amyloliquefaciens HSPM1-P43speEB. After knockout of the genes yobN and bltD associated with spermidine degradation, the spermidine titer of the strain HSPM2 was further improved to 115.96 mg/L, increased by 108 % compared to HSPM1-P43speEB. Subsequently, the titer of spermidine was further increased to 277.47 mg/L through enhancing the supply of the precursor methionine by overexpression of speD. Finally, the renewable biomass resources, xylose and feather meal were optimized to produce spermidine, and the maximum titer is up to 588.10 mg/L after optimization. In conclusion, an efficient spermidine producing B. amyloliquefaciens was constructed through combinatorial metabolic engineering strategies, and the sustainable production of spermidine was achieved using the biomass resources of xylose and feather meal.
Collapse
Affiliation(s)
- Ziyue Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ailing Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dian Zou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhou Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xuetuan Wei
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Tang X, Arsalan A, Zhang G, Yun J, Zhang C, Qi X. Coexpression of D-Allulose 3-Epimerase and L-Rhamnose Isomerase in Bacillus subtilis through a Dual Promoter Enables High-Level Biosynthesis of D-Allose from D-Fructose in One Pot. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2056-2067. [PMID: 39788911 DOI: 10.1021/acs.jafc.4c09787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
D-Allose, a rare sugar, has gained significant attention not only as a low-calorie sweetener but also for its anticancer, antitumor, anti-inflammatory, antioxidant, and other pharmaceutical properties. Despite its potential, achieving high-level biosynthesis of D-allose remains challenging due to inefficient biocatalysts, low conversion rates, and the high cost of substrates. Here, we explored the food-grade coexpression of Blautia produca D-allulose 3-epimerase (Bp-DAE) and Bacillus subtilis L-rhamnose isomerase (BsL-RI) within a single cell using B. subtilis WB800N as the host. Using this system, D-allose was synthesized via a simple, cost-effective, one-pot enzymatic process, employing whole cells as catalysts and D-fructose as the substrate. The system exhibited optimal activity at 65 °C, pH 8.5, with 1 mM Mn2+ and 20 g/L of whole-cell dry weight. Initial production reached 12.5 g/L D-allose with a 12.5% yield from 100 g/L D-fructose. Optimization of dual promoter combinations enhanced production, achieving 15.0, 29.1, and 43.2 g/L D-allose from 100, 200, and 300 g/L D-fructose, with yields of 15.00, 14.55, and 14.40%, respectively. This D-allose production biocatalyst offers a scalable and economically viable platform for the industrial production of rare sugar.
Collapse
Affiliation(s)
- Xinrui Tang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdullah Arsalan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Guoyan Zhang
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, Guangdong 510006, PR China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, Guangdong 510006, PR China
| | - Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, Guangdong 510006, PR China
| |
Collapse
|
4
|
Xiao R, Du C, Li H, Zhang M, Wu Y, Xing L, Bu K, Wang P. Heterologous expression and characterization of an unsaturated glucuronyl hydrolase from Alteromonas sp. A321. Int J Biol Macromol 2024; 282:137012. [PMID: 39486732 DOI: 10.1016/j.ijbiomac.2024.137012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Strong promoters and stable mRNAs are essential for the overproduction of heterologous proteins in Bacillus subtilis. To improve the strength of natural promoters and ensure robust protein output, promoter and genetic insulator engineering have been used. A series of plasmids containing single and dual promoters and genetic insulators to express alt3796 were engineered, which encoded an unsaturated glucuronyl hydrolase (UGL). As a first step, we screened the host and deleted the signal peptide (SPALT) of alt3796, successfully expressed secreted ALT3796 from B. subtilis WB800. Subsequently, to improve expression, we screened the dual promoter PHag-spoVG from a collection of 22 promoters, which yielded higher enzymatic activity. Finally, using a recombinant strain carrying a plasmid with the PHag-spoVG dual promoter and a genetic insulator, we obtained 40.9 U/mL of activity. Purified recombinant ALT3796 exhibited good stability and specifically degraded ulvan. In conclusion, a system for the heterologous expression of ALT3796 was constructed, and the obtained protein exhibited favorable properties, suggesting its potential for preparing novel ulvan oligosaccharides.
Collapse
Affiliation(s)
- Rui Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Chunying Du
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Huawei Li
- School of Nursing, Qingdao University, Qingdao 266011, China
| | - Man Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yinglu Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Laigui Xing
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Kaixuan Bu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
5
|
Boro N, Alexandrino Fernandes P, Mukherjee AK. Computational analysis to comprehend the structure-function properties of fibrinolytic enzymes from Bacillus spp for their efficient integration into industrial applications. Heliyon 2024; 10:e33895. [PMID: 39055840 PMCID: PMC11269858 DOI: 10.1016/j.heliyon.2024.e33895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Background The fibrinolytic enzymes from Bacillus sp. are proposed as therapeutics in preventing thrombosis. Computational-based analyses of these enzymes' amino acid composition, basic physiological properties, presence of functional domain and motifs, and secondary and tertiary structure analyses can lead to developing a specific enzyme with improved catalytic activity and other properties that may increase their therapeutic potential. Methods The nucleotide sequences of fibrinolytic enzymes produced by the genus Bacillus and its corresponding protein sequences were retrieved from the NCBI database and aligned using the PRALINE programme. The varied physiochemical parameters and structural and functional analysis of the enzyme sequences were carried out with the ExPASy-ProtParam tool, MEME server, SOPMA, PDBsum tool, CYS-REC tool, SWISS-MODEL, SAVES servers, TMHMM program, GlobPlot, and peptide cutter software. The assessed in-silico data were compared with the published experimental results for validation. Results The alignment of sixty fibrinolytic serine protease enzymes (molecular mass 12-86 kDa) sequences showed 49 enzymes possess a conserved domain with a catalytic triad of Asp196, His242, and Ser569. The predicted instability and aliphatic indexes were 1.94-37.77, and 68.9-93.41, respectively, indicating high thermostability. The random coil means value suggested the predominance of this secondary structure in these proteases. A set of 50 amino acid residues representing motif 3 signifies the Peptidase S8/S53 domain that was invariably observed in 56 sequences. Additionally, 28 sequences have transmembrane helices, with two having the most disordered areas, and they pose 25 enzyme cleavage sites. A comparative analysis of the experimental work with the results of in-silico study put forward the characteristics of the enzyme sequences JF739176.1 and MF677779.1 to be considered when creating a potential mutant enzyme as these sequences are stable at high pH with thermostability and to exhibit αβ-fibrinogenase activity in both experimental and in-silico studies.
Collapse
Affiliation(s)
- Nitisha Boro
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade De Ciências, Universidade do Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Ashis K. Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
- Microbial Biotechnology and Protein Research Laboratory, Division of Life Sciences, Institute of Advanced Studies in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| |
Collapse
|
6
|
Sheng Y, Zhang S, Li X, Wang S, Liu T, Wang C, Yan L. Phenotypic and genomic insights into mutant with high nattokinase-producing activity induced by carbon ion beam irradiation of Bacillus subtilis. Int J Biol Macromol 2024; 271:132398. [PMID: 38754670 DOI: 10.1016/j.ijbiomac.2024.132398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Nattokinase (NK) is found in fermented foods and has high fibrinolytic activity, which makes it promising for biological applications. In this study, a mutant strain (Bacillus subtilis ZT-S1, 5529.56 ± 183.59 U/mL) with high NK-producing activity was obtained using 12C6+ heavy ion beam mutagenesis for the first time. The surface morphology of B. subtilis is also altered by changes in functional groups caused by heavy ion beams. Furthermore, B. subtilis ZT-S1 required more carbon and nitrogen sources and reached stabilization phase later. Comparative genome analysis revealed that most of the mutant implicated genes (oppA, appA, kinA, spoIIP) were related to spore formation. And the affected rpoA is related to the synthesis of the NK-coding gene aprE. In addition, the B. subtilis ZT-S1 obtained by mutagenesis had good genetic stability. This study further explores the factors affecting NK activity and provides a promising microbial resource for NK production in commercial applications.
Collapse
Affiliation(s)
- Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Xintong Li
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Shicheng Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Tao Liu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lei Yan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
7
|
Cheng X, Zhao W, Liang G, Lu H, Fu Y, Li Y, Cui F. Construction of cytomegalovirus promoter-driven gene expression system in Laodelphax striatellus. INSECT SCIENCE 2024; 31:720-732. [PMID: 38339806 DOI: 10.1111/1744-7917.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
The small brown planthopper (SBPH, Laodelphax striatellus) is a significant rice pest, responsible for transmitting rice stripe virus (RSV) in a persistent and propagative manner. RSV is one of the most detrimental rice viruses, causing rice stripe disease, which results in considerable loss of rice grain yield. While RNA interference and gene knockout techniques have enabled gene downregulation in SBPH, no system currently exists for the overexpression of endogenous or exogenous genes. Consequently, the development of a protein expression system for SBPH is imperative to serve as a technical foundation for pest control and gene function investigations. This study aimed to construct an expression vector using the promoter of the constitutive-expressed tubulin gene of SBPH, and promoter of human cytomegalovirus (CMV). Fluorescence experiments demonstrated that both tubulin and CMV promoter could drive green fluorescent protein (GFP) expression in SBPH, and could also facilitate the expression of a nucleocapsid protein (NP) -GFP fusion protein containing viral NP with comparable efficiency. Through expression vector optimization, we have identified that the 3 tandem CMV promoters display a significantly higher promoter activity compared with both the 2 tandem CMV promoters and the single CMV promoter. In addition, the incorporation of Star polycation nanoparticles significantly enhanced the expression efficiency in SBPH. These results provide a promising technical platform for investigating gene functions in SBPH.
Collapse
Affiliation(s)
- Xiaohui Cheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guohua Liang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yumei Fu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiming Li
- School of Life Sciences, Hebei University, Baoding, Hebei, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Liu X, Lian M, Zhao M, Huang M. Advances in recombinant protease production: current state and perspectives. World J Microbiol Biotechnol 2024; 40:144. [PMID: 38532149 DOI: 10.1007/s11274-024-03957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Proteases, enzymes that catalyze the hydrolysis of peptide bonds in proteins, are important in the food industry, biotechnology, and medical fields. With increasing demand for proteases, there is a growing emphasis on enhancing their expression and production through microbial systems. However, proteases' native hosts often fall short in high-level expression and compatibility with downstream applications. As a result, the recombinant production of proteases has become a significant focus, offering a solution to these challenges. This review presents an overview of the current state of protease production in prokaryotic and eukaryotic expression systems, highlighting key findings and trends. In prokaryotic systems, the Bacillus spp. is the predominant host for proteinase expression. Yeasts are commonly used in eukaryotic systems. Recent advancements in protease engineering over the past five years, including rational design and directed evolution, are also highlighted. By exploring the progress in both expression systems and engineering techniques, this review provides a detailed understanding of the current landscape of recombinant protease research and its prospects for future advancements.
Collapse
Affiliation(s)
- Xiufang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mulin Lian
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China.
| |
Collapse
|
9
|
Vojnovic S, Aleksic I, Ilic-Tomic T, Stevanovic M, Nikodinovic-Runic J. Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes. Appl Microbiol Biotechnol 2024; 108:185. [PMID: 38289383 PMCID: PMC10827964 DOI: 10.1007/s00253-023-12900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024]
Abstract
The application of enzymes is expanding across diverse industries due to their nontoxic and biodegradable characteristics. Another advantage is their cost-effectiveness, reflected in reduced processing time, water, and energy consumption. Although Gram-positive bacteria, Bacillus, and Streptomyces spp. are successfully used for production of industrially relevant enzymes, they still lag far behind Escherichia coli as hosts for recombinant protein production. Generally, proteins secreted by Bacillus and Streptomyces hosts are released into the culture medium; their native conformation is preserved and easier recovery process enabled. Given the resilience of both hosts in harsh environmental conditions and their spore-forming capability, a deeper understanding and broader use of Bacillus and Streptomyces as expression hosts could significantly enhance the robustness of industrial bioprocesses. This mini-review aims to compare two expression hosts, emphasizing their specific advantages in industrial surroundings such are chemical, detergent, textile, food, animal feed, leather, and paper industries. The homologous sources, heterologous hosts, and molecular tools used for the production of recombinant proteins in these hosts are discussed. The potential to use both hosts as biocatalysts is also evaluated. Undoubtedly, Bacillus and Streptomyces spp. as production hosts possess the potential to take on a more substantial role, providing superior (bio-based) process robustness and flexibility. KEY POINTS: • Bacillus and Streptomyces spp. as robust hosts for enzyme production. • Industrially relevant enzyme groups for production in alternative hosts highlighted. • Molecular biology techniques are enabling easier utilization of both hosts.
Collapse
Affiliation(s)
- Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| |
Collapse
|
10
|
Liu Y, Cheng H, Li H, Zhang Y, Wang M. A Programmable CRISPR/Cas9 Toolkit Improves Lycopene Production in Bacillus subtilis. Appl Environ Microbiol 2023; 89:e0023023. [PMID: 37272803 PMCID: PMC10305015 DOI: 10.1128/aem.00230-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Bacillus subtilis has been widely used and generally recognized as a safe host for the production of recombinant proteins, high-value chemicals, and pharmaceuticals. Thus, its metabolic engineering attracts significant attention. Nevertheless, the limited availability of selective markers makes this process difficult and time-consuming, especially in the case of multistep biosynthetic pathways. Here, we employ CRISPR/Cas9 technology to build an easy cloning toolkit that addresses commonly encountered obstacles in the metabolic engineering of B. subtilis, including the chromosomal integration locus, promoter, terminator, and guide RNA (gRNA) target. Six promoters were characterized, and the promoter strengths ranged from 0.9- to 23-fold that of the commonly used strong promoter P43. We characterized seven terminators in B. subtilis, and the termination efficiencies (TEs) of the seven terminators are all more than 90%. Six gRNA targets were designed upstream of the promoter and downstream of the terminator. Using a green fluorescent protein (GFP) reporter, we confirmed integration efficiency with the single-locus integration site is up to 100%. We demonstrated the applicability of this toolkit by optimizing the expression of a challenging but industrially important product, lycopene. By heterologous expression of the essential genes for lycopene synthesis on the B. subtilis genome, a total of 13 key genes involved in the lycopene biosynthetic pathway were manipulated. Moreover, our findings showed that the gene cluster ispG-idi-dxs-ispD could positively affect the production of lycopene, while the cluster dxr-ispE-ispF-ispH had a negative effect on lycopene production. Hence, our multilocus integration strategy can facilitate the pathway assembly for production of complex chemicals and pharmaceuticals in B. subtilis. IMPORTANCE We present a toolkit that allows for rapid cloning procedures and one-step subcloning to move from plasmid-based expression to stable chromosome integration and expression in a production strain in less than a week. The utility of the customized tool was demonstrated by integrating the MEP (2C-methyl-d-erythritol-4-phosphate) pathway, part of the pentose phosphate pathway (PPP), and the hetero-lycopene biosynthesis genes by stable expression in the genome. The tool could be useful to engineer B. subtilis strains through diverse recombination events and ultimately improve its potential and scope of industrial application as biological chassis.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Haijiao Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Haoni Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yingzhe Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
11
|
Sheng Y, Yang J, Wang C, Sun X, Yan L. Microbial nattokinase: from synthesis to potential application. Food Funct 2023; 14:2568-2585. [PMID: 36857725 DOI: 10.1039/d2fo03389e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Nattokinase (NK) is an alkaline serine protease with strong thrombolytic activity produced by Bacillus spp. or Pseudomonas spp. It is a potential therapeutic agent for thrombotic diseases because of its safety, economy, and lack of side effects. Herein, a comprehensive summary and analysis of the reports surrounding NK were presented, and the physical-chemical properties and producers of NK were first described. The process and mechanism of NK synthesis were summarized, but these are vague and not specific enough. Further results may be achieved if detection techniques such as multi-omics are used to explore the process of NK synthesis. The purification of NK has problems such as a complicated operation and low recovery rate, which were found when summarizing the techniques to improve the quality of finished products. If multiple simple and efficient precipitation methods and purification materials are combined to purify NK, it may be possible to solve the current challenges. Additionally, the application potential of NK in biomedicine was reviewed, but functional foods with NK are challenging for acceptance in daily life due to their unpleasant odor. Accordingly, multi-strain combination fermentation or food flavoring agents can improve the odor of fermented foods and increase people's acceptance of them. Finally, the possible future directions focused on NK studies were proposed and provided suggestions for subsequent researchers.
Collapse
Affiliation(s)
- Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Jiani Yang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Xindi Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lei Yan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| |
Collapse
|
12
|
Su C, Gong JS, Wu ZX, Liu YL, Li H, Shi JS, Xu ZH. Development of a Growth-Dependent System to Regulate Cell Growth and Keratinase Production in B. subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2421-2429. [PMID: 36629862 DOI: 10.1021/acs.jafc.2c07624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Keratinases specifically degrade insoluble keratin waste, thus contributing to environmental protection and sustainable biomass development. However, their industrial application is hindered by inefficient enzyme production and poor biomass generation. In this study, the heterologous expression of keratinase was found to have cytotoxicity and might block host cell growth due to its proteolytic property. To address this problem, an autoregulatory expression system based on quorum sensing was developed to synergistically regulate cell growth and keratinase production in Bacillus subtilis. The growth-dependent promoter PaprE was chosen and shown to be effective in delaying keratinase production while promoting host cell proliferation. Copy number screening and core region mutations further balanced the two states. Carbon supplement optimization indicated that addition of 2% glucose facilitated biomass accumulation during the early stage of fermentation. Cell density increased to 15.6 (OD600 nm) from 8 with keratinase activity raised to 4200 U·mL-1 from 1162 U·mL-1. Keratinase was then utilized in the bioconversion of feather waste to prepare soluble keratins, polypeptides, and amino acids. This study provides a powerful system for efficient production of keratinase and paves the way for keratin waste recycling.
Collapse
Affiliation(s)
- Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Ze-Xi Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yan-Ling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
13
|
Ferrando J, Filluelo O, Zeigler DR, Picart P. Barriers to simultaneous multilocus integration in Bacillus subtilis tumble down: development of a straightforward screening method for the colorimetric detection of one-step multiple gene insertion using the CRISPR-Cas9 system. Microb Cell Fact 2023; 22:21. [PMID: 36721198 PMCID: PMC9890709 DOI: 10.1186/s12934-023-02032-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Despite recent advances in genetic engineering tools for effectively regulating and manipulating genes, efficient simultaneous multigene insertion methods have not been established in Bacillus subtilis. To date, multilocus integration systems in B. subtilis, which is one of the main industrial enzyme producers and a GRAS (generally regarded as safe) microbial host, rely on iterative rounds of plasmid construction for sequential insertions of genes into the B. subtilis chromosome, which is tedious and time consuming. RESULTS In this study, we present development and proof-of-concept of a novel CRISPR-Cas9-based genome-editing strategy for the colorimetric detection of one-step multiple gene insertion in B. subtilis. First, up to three copies of the crtMN operon from Staphylococcus aureus, encoding a yellow pigment, were incorporated at three ectopic sites within the B. subtilis chromosome, rendering engineered strains able to form yellow colonies. Second, a single CRISPR-Cas9-based plasmid carrying a highly specific single guide RNA (sgRNA) targeting crtMN operon and a changeable editing template was constructed to facilitate simultaneous insertion of multiple gene-copies through homology-directed repair (HDR). Upon transformation of engineered strains with engineered plasmids, strains harboring up to three gene copies integrated into the chromosome formed white colonies because of the removal of the crtMN operon, clearly distinguishable from yellow colonies harboring undesired genetic modifications. As a result, construction of a plasmid-less, marker-free, high-expression stable producer B. subtilis strain can be completed in only seven days, demonstrating the potential that the implementation of this technology may bring for biotechnology purposes. CONCLUSIONS The novel technology expands the genome-editing toolset for B. subtilis and means a substantial improvement over current methodology, offering new application possibilities that we envision should significantly boost the development of B. subtilis as a chassis in the field of synthetic biology.
Collapse
Affiliation(s)
- Jordi Ferrando
- grid.5841.80000 0004 1937 0247Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Oriana Filluelo
- grid.5841.80000 0004 1937 0247Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| | | | - Pere Picart
- grid.5841.80000 0004 1937 0247Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| |
Collapse
|
14
|
Zhang W, Wei M, Sun X, Lu F, Guan L, Mao S, Qin HM. Fine-Tuning of Carbon Flux and Artificial Promoters in Bacillus subtilis Enables High-Level Biosynthesis of d-Allulose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13935-13944. [PMID: 36278912 DOI: 10.1021/acs.jafc.2c05585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
d-Allulose is an attractive rare sugar that can be used as a low-calorie sweetener with significant health benefits. To meet the increasing market demands, it is necessary to develop an efficient and extensive microbial fermentation platform for the synthesis of d-allulose. Here, we applied a comprehensive systematic engineering strategy in Bacillus subtilis WB600 by introducing d-allulose 3-epimerase (DAEase), combined with the deactivation of fruA, levDEFG, and gmuE, to balance the metabolic network for the efficient production of d-allulose. This resulting strain initially produced 3.24 g/L of d-allulose with a yield of 0.93 g of d-allulose/g d-fructose. We further screened and obtained a suitable dual promoter combination and performed fine-tuning of its spacer region. After 64 h of fed-batch fermentation, the optimized engineered B. subtilis produced d-allulose at titers of 74.2 g/L with a yield of 0.93 g/g and a conversion rate of 27.6%. This d-allulose production strain is a promising platform for the industrial production of rare sugar.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Meijing Wei
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Xiaoxuan Sun
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Lijun Guan
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| |
Collapse
|
15
|
Jamali N, Vahedi F, Soltani Fard E, Taheri-Anganeh M, Taghvimi S, Khatami SH, Ghasemi H, Movahedpour A. Nattokinase: Structure, applications and sources. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Yao M, Yang Y, Fan J, Ma C, Liu X, Wang Y, Wang B, Sun Z, McClements DJ, Zhang J, Liu L, Xia G, Zhang N, Sun Q. Production, purification, and functional properties of microbial fibrinolytic enzymes produced by microorganism obtained from soy-based fermented foods: developments and challenges. Crit Rev Food Sci Nutr 2022; 64:3725-3750. [PMID: 36315047 DOI: 10.1080/10408398.2022.2134980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
According to the World Health Organization, cardiovascular disease (CVD) has become a major cause of chronic illness around the globe. It has been reported that soy-based fermented food (SFF) is very effective in preventing thrombus (one of the most important contributing factors to CVD), which are mainly attributed to the bioactive substances, especially the fibrinolytic enzymes (FE) generated by microorganisms during the fermentation process of soybean food. This paper therefore mainly reviewed the microbial fibrinolytic enzymes (MFE) from SFF. We first discuss the use of microbial fermentation to produce FE, with an emphasis on the strains involved. The production, purification, physicochemical properties, structure-functional attributes, functional properties and possible application of MFE from SFF are then discussed. Finally, current limitations and future perspectives for the production, purification, and the practical application of MFE are discussed. MFE from SFF pose multiple health benefits, including thrombolysis, antihypertension, anti-inflammatory, anti-hyperlipidemia, anticancer, neuroprotective, antiviral and other activities. Therefore, they exhibit great potential for functional foods and nutraceutical applications, especially foods with CVDs prevention potential.
Collapse
Affiliation(s)
- Mingjing Yao
- School of Food Engineering, Harbin University of Commerce, Harbin, China
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yang Yang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Jing Fan
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chunmin Ma
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xiaofei Liu
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yan Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Bing Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Zhihui Sun
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | | | - Jiaxiang Zhang
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Liping Liu
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Guanghua Xia
- College of Food Science and Technology, Hainan University, Hainan, China
| | - Na Zhang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Quancai Sun
- Department of Food Science and Technology, National University of Singapore, Singapore
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
Development of a Glycerol-Inducible Expression System for High-Yield Heterologous Protein Production in Bacillus subtilis. Microbiol Spectr 2022; 10:e0132222. [PMID: 36036634 PMCID: PMC9604022 DOI: 10.1128/spectrum.01322-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The development of efficient, low-cost, and robust expression systems is important for the mass production of proteins and natural products in large amounts using cell factories. Glycerol is an ideal carbon source for large-scale fermentation due to its low cost and favorable maintenance of the fermentation process. Here, we used the antiterminator protein GlpP and its target promoter PglpD to construct a highly efficient glycerol-inducible expression system (GIES) in Bacillus subtilis. This system was able to express heterologous genes in an autoinducible manner based on the sequential utilization of glucose and glycerol under the regulation of carbon catabolite repression. In such a system, the concentration of glycerol regulated the strength of gene expression, and the concentration of glucose affected both the timing of induction and the strength of gene expression. By enhancing GlpP, the GIES was further strengthened for high-level intracellular expression of aspartase and secretory expression of nattokinase. High yields of nattokinase in a 5-L fermenter through batch and fed-batch fermentation demonstrated the potential to apply the GIES for large-scale enzyme production. Through the evolution of the -10 box of PglpD, mutants with gradient activities were obtained. In addition, hybrid glycerol-inducible promoters were successfully constructed by combining the constitutive promoters and the 5' untranslated region of PglpD. Collectively, this study developed a GIES to obtain high-value products from inexpensive glycerol. More importantly, the great potential of the pair of inherent terminator and antiterminator protein as a portable biological tool for various purposes in synthetic biology is proposed. IMPORTANCE In this study, a GIES was constructed in B. subtilis by employing the antiterminator protein GlpP and the GlpP-regulated promoter PglpD. Based on the sequential utilization of glucose and glycerol by B. subtilis, the GIES was able to express genes in an autoinducible manner. The amounts and ratio of glucose and glycerol can regulate the gene induction timing and expression strength. The GIES was further applied for high yields of nattokinase, and its robustness in production scale-up was confirmed in a 5-L fermenter. The high-level expression of heterologous proteins demonstrated the huge application potential of the GIES. Furthermore, mutants of PglpD with gradient activities and hybrid glycerol-inducible promoters were obtained through the evolution of the -10 box of PglpD and the combination of the constitutive promoters and the 5' untranslated region of PglpD, respectively. These results demonstrated the use of the antiterminator protein as a regulator for various purposes in synthetic biology.
Collapse
|
18
|
Xiao Z, Shen J, Li Y, Wang Z, Zhao Y, Chen Y, Zhao JY. High and Economical Nattokinase Production with Acetoin as a Useful Byproduct from Soybean Milk and Glucose. Probiotics Antimicrob Proteins 2022; 14:792-803. [PMID: 34387855 DOI: 10.1007/s12602-021-09831-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Nattokinase (NK) is a potent fibrinolytic enzyme with wide pharmaceutical and nutraceutical applications. Safe and high NK-yielding strains are urgently needed. In this study, the best strain NDF was isolated from one of the 11 natto samples and then identified as Bacillus subtilis. The effects of carbon and nitrogen sources on NK production were investigated, and glucose and soybean milk were finally selected as the optimal carbon and nitrogen sources, respectively. Acetoin, a valuable compound with versatile usages, was detected as the main byproduct of carbon overflow. In a 6-L fermenter, NK and acetoin reached their peak concentrations simultaneously (10,220 IU/mL and 25.9 g/L, respectively) at 25 h in a culture medium containing 180 g/L of soybean milk and 105 g/L of glucose. The NK product was verified by sequencing of the aprN gene and SDS-PAGE analysis. Only very limited kinds of proteins were found in the supernatant of the fermentation broth, and NK was one of the main bands. This study has developed an economical and high NK production method with acetoin as a useful byproduct.
Collapse
Affiliation(s)
- Zijun Xiao
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Jie Shen
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yang Li
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhuo Wang
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yanshuang Zhao
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yong Chen
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jing-Yi Zhao
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
19
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
20
|
Yuan L, Liangqi C, Xiyu T, Jinyao L. Biotechnology, Bioengineering and Applications of Bacillus Nattokinase. Biomolecules 2022; 12:biom12070980. [PMID: 35883536 PMCID: PMC9312984 DOI: 10.3390/biom12070980] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Thrombosis has threatened human health in past decades. Bacillus nattokinase is a potential low-cost thrombolytic drug without side-effects and has been introduced into the consumer market as a functional food or dietary supplement. This review firstly summarizes the biodiversity of sources and the fermentation process of nattokinase, and systematically elucidates the structure, catalytic mechanism and enzymatic properties of nattokinase. In view of the problems of low fermentation yield, insufficient activity and stability of nattokinase, this review discusses the heterologous expression of nattokinase in different microbial hosts and summarizes the protein and genetic engineering progress of nattokinase-producing strains. Finally, this review summarizes the clinical applications of nattokinase.
Collapse
Affiliation(s)
- Li Yuan
- Department of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Chen Liangqi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (C.L.); (T.X.)
| | - Tang Xiyu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (C.L.); (T.X.)
| | - Li Jinyao
- Department of Materia Medica, Xinjiang University, Urumqi 830017, China;
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (C.L.); (T.X.)
- Correspondence: ; Tel.: +86-130-0968-6488
| |
Collapse
|
21
|
Li H, Yao D, Pan Y, Chen X, Fang Z, Xiao Y. Enhanced extracellular raw starch-degrading α-amylase production in Bacillus subtilis by promoter engineering and translation initiation efficiency optimization. Microb Cell Fact 2022; 21:127. [PMID: 35761342 PMCID: PMC9235159 DOI: 10.1186/s12934-022-01855-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/16/2022] [Indexed: 11/29/2022] Open
Abstract
Background A raw starch-degrading α-amylase from Pontibacillus sp. ZY (AmyZ1), previously screened by our laboratory, showed a promising application potential for starch-processing industries. However, the AmyZ1 secretory production still under investigation, which seriously restricts its application in the starch-processing industry. On the other hand, Bacillus subtilis is widely used to achieve the extracellular expression of target proteins. Results AmyZ1 secretory production was achieved in B. subtilis and was enhanced by promoter engineering and translation initiation efficiency optimization. First, based on the different phase-dependent promoters, the dual-promoter PspoVG–PspoVG142 was constructed by combining dual-promoter engineering and promoter modification. The corresponding strain BZd34 showed an extracellular AmyZ1 activity of 1437.6 U/mL during shake flask cultivation, which was 3.11-fold higher than that of the original strain BZ1 (PgroE). Then, based on translation initiation efficiency optimization, the best strain BZd343 containing optimized 5'-proximal coding sequence (opt3) produced the highest extracellular α-amylase activity of 1691.1 U/mL, which was 3.65-fold higher than that of the strain BZ1. Finally, cultivation of BZd343 in 3-L fermenter exhibited an extracellular AmyZ1 activity of 14,012 U/mL at 48 h, with productivity of 291.9 U/mL·h. Conclusions This is the first report of recombinant expression of AmyZ1 in B. subtilis and the expression level of AmyZ1 represents the highest raw starch-degrading α-amylase level in B. subtilis to date. The high-level expression of AmyZ1 in this work provides a foundation for its industrial production. The strategies used in this study also provide a strategic reference for improving the secretory expression of other enzymes in B. subtilis. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01855-9.
Collapse
Affiliation(s)
- He Li
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China
| | - Dongbang Yao
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China
| | - Yan Pan
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China
| | - Xin Chen
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China. .,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China.
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China. .,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
22
|
Recent Advances in Nattokinase-Enriched Fermented Soybean Foods: A Review. Foods 2022; 11:foods11131867. [PMID: 35804683 PMCID: PMC9265860 DOI: 10.3390/foods11131867] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
With the dramatic increase in mortality of cardiovascular diseases (CVDs) caused by thrombus, this has sparked an interest in seeking more effective thrombolytic drugs or dietary nutriments. The dietary consumption of natto, a traditional Bacillus-fermented food (BFF), can reduce the risk of CVDs. Nattokinase (NK), a natural, safe, efficient and cost-effective thrombolytic enzyme, is the most bioactive ingredient in natto. NK has progressively been considered to have potentially beneficial cardiovascular effects. Microbial synthesis is a cost-effective method of producing NK. Bacillus spp. are the main production strains. While microbial synthesis of NK has been thoroughly explored, NK yield, activity and stability are the critical restrictions. Multiple optimization strategies are an attempt to tackle the current problems to meet commercial demands. We focus on the recent advances in NK, including fermented soybean foods, production strains, optimization strategies, extraction and purification, activity maintenance, biological functions, and safety assessment of NK. In addition, this review systematically discussed the challenges and prospects of NK in actual application. Due to the continuous exploration and rapid progress of NK, NK is expected to be a natural future alternative to CVDs.
Collapse
|
23
|
Niu J, Yan R, Shen J, Zhu X, Meng F, Lu Z, Lu F. Cis-Element Engineering Promotes the Expression of Bacillus subtilis Type I L-Asparaginase and Its Application in Food. Int J Mol Sci 2022; 23:ijms23126588. [PMID: 35743032 PMCID: PMC9224341 DOI: 10.3390/ijms23126588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Type I L-asparaginase from Bacillus licheniformis Z-1 (BlAase) was efficiently produced and secreted in Bacillus subtilis RIK 1285, but its low yield made it unsuitable for industrial use. Thus, a combined method was used in this study to boost BlAase synthesis in B. subtilis. First, fifteen single strong promoters were chosen to replace the original promoter P43, with PyvyD achieving the greatest BlAase activity (436.28 U/mL). Second, dual-promoter systems were built using four promoters (PyvyD, P43, PaprE, and PspoVG) with relatively high BlAase expression levels to boost BlAase output, with the engine of promoter PaprE-PyvyD reaching 502.11 U/mL. The activity of BlAase was also increased (568.59 U/mL) by modifying key portions of the PaprE-PyvyD promoter. Third, when the ribosome binding site (RBS) sequence of promoter PyvyD was replaced, BlAase activity reached 790.1 U/mL, which was 2.27 times greater than the original promoter P43 strain. After 36 h of cultivation, the BlAase expression level in a 10 L fermenter reached 2163.09 U/mL, which was 6.2 times greater than the initial strain using promoter P43. Moreover, the application potential of BlAase on acrylamide migration in potato chips was evaluated. Results showed that 89.50% of acrylamide in fried potato chips could be removed when combined with blanching and BlAase treatment. These findings revealed that combining transcription and translation techniques are effective strategies to boost recombinant protein output, and BlAase can be a great candidate for controlling acrylamide in food processing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengxia Lu
- Correspondence: ; Tel.: +86-25-8439-5963
| |
Collapse
|
24
|
Chen W, Li L, Ye C, Zhao Z, Huang K, Zou D, Wei X. Efficient production of extracellular alkaline protease in Bacillus amyloliquefaciens by host strain construction. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Sharma A, Balda S, Capalash N, Sharma P. Engineering multifunctional enzymes for agro-biomass utilization. BIORESOURCE TECHNOLOGY 2022; 347:126706. [PMID: 35033642 DOI: 10.1016/j.biortech.2022.126706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulosic biomass is a plentiful renewable resource that can be converted into a wide range of high-value-added industrial products. However, the complexity of its structural integrity is one of the major constraints and requires combinations of different fibrolytic enzymes for the cost-effective, industrially and environmentally feasible transformation. An interesting approach is constructing multifunctional enzymes, either in a single polypeptide or by joining multiple domains with linkers and performing diverse reactions simultaneously, in a single host. The production of such chimera proteins multiplies the advantages of different enzymatic reactions in a single setup, in lesser time, at lower production cost and with desirable and improved catalytic activities. This review embodies the various domain-tailoring and extracellular secretion strategies, possible solutions to their challenges, and efforts to experimentally connect different catalytic activities in a single host, as well as their applications.
Collapse
Affiliation(s)
- Aarjoo Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjeev Balda
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
26
|
Construction of a Porcine Skeletal Muscle-Specific Promoter by Inducing the Seed Region of miR-208a. Mol Biotechnol 2021; 64:473-481. [PMID: 34822105 DOI: 10.1007/s12033-021-00428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Transgenic promoter systems are of great interest for their potential use in gene therapy or production due to their high activity, long term, and cell specificity. Here, in order to obtain promoters with high activity and expressed specifically in skeletal muscle, the MYOD1, MYF5, and MCK were selected as the candidate genes. The truncated promoters were amplified and their activity was verified through dual-luciferase reporter gene test. We used genetic engineering techniques to improve promoter activity by tandemly linking enhancers and promoters or two promoters. Furthermore, synthetic promoter was the most active when two eMCK enhancers and pMCK promoter were cascaded. To improve the tissue specificity of the promoter, the seed region of translational repressor miR-208a was inserted into the downstream of the promoter (pGL3-2eMCK-pMCK-T208-mCherry-EGFP). The results showed that the expression level of target genes decreased significantly (P < 0.05) in myocardium rather than in skeletal muscle. The results of in vivo transfection indicated that tandem transcriptional regulatory elements can increase promoter activity in mice. This work laid the foundation for future research on genetically modified pigs.
Collapse
|
27
|
Yang Y, Lan G, Tian X, He L, Li C, Zeng X, Wang X. Effect of Fermentation Parameters on Natto and Its Thrombolytic Property. Foods 2021; 10:foods10112547. [PMID: 34828828 PMCID: PMC8620952 DOI: 10.3390/foods10112547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023] Open
Abstract
Natto is a popular food because it contains a variety of active compounds, including nattokinase. Previously, we discovered that fermenting natto with the combination of Bacillus subtilis GUTU09 and Bifidobacterium animalis subsp. lactis BZ25 resulted in a dramatically better sensory and functional quality of natto. The current study further explored the effects of different fermentation parameters on the quality of natto fermented with Bacillus subtilis GUTU09 and Bifidobacterium BZ25, using Plackett–Burman design and response surface methodology. Fermentation temperature, time, and inoculation amount significantly affected the sensory and functional qualities of natto fermented with mixed bacteria. The optimal conditions were obtained as follows: soybean 50 g/250 mL, triangle container, 1% sucrose, Bacillus subtilis GUTU09 to Bifidobacterium BZ25 ratio of 1:1, inoculation 7%, fermentation temperature 35.5 °C, and fermentation time 24 h. Under these conditions, nattokinase activity, free amino nitrogen content, and sensory score were increased compared to those before optimization. They were 144.83 ± 2.66 FU/g, 7.02 ± 0.69 mg/Kg and 82.43 ± 5.40, respectively. The plate thrombolytic area and nattokinase activity both increased significantly as fermentation time was increased, indicating that the natto exhibited strong thrombolytic action. Hence, mixed-bacteria fermentation improves the taste, flavor, nattokinase activity, and thrombolysis of natto. This research set the groundwork for the ultimate manufacturing of natto with high nattokinase activity and free amino nitrogen content, as well as good sensory and thrombolytic properties.
Collapse
Affiliation(s)
- Yun Yang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China; (Y.Y.); (G.L.); (X.T.); (C.L.); (X.Z.); (X.W.)
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Guangqun Lan
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China; (Y.Y.); (G.L.); (X.T.); (C.L.); (X.Z.); (X.W.)
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xueyi Tian
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China; (Y.Y.); (G.L.); (X.T.); (C.L.); (X.Z.); (X.W.)
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China; (Y.Y.); (G.L.); (X.T.); (C.L.); (X.Z.); (X.W.)
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel./Fax: +86-0851-88236702
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China; (Y.Y.); (G.L.); (X.T.); (C.L.); (X.Z.); (X.W.)
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China; (Y.Y.); (G.L.); (X.T.); (C.L.); (X.Z.); (X.W.)
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China; (Y.Y.); (G.L.); (X.T.); (C.L.); (X.Z.); (X.W.)
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
28
|
Yao Z, Meng Y, Le HG, Lee SJ, Jeon HS, Yoo JY, Kim JH. Increase of a Fibrinolytic Enzyme Production through Promoter Replacement of aprE3-5 from Bacillus subtilis CH3-5. J Microbiol Biotechnol 2021; 31:833-839. [PMID: 33958509 PMCID: PMC9705994 DOI: 10.4014/jmb.2103.03027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
Bacillus subtilis CH3-5 isolated from cheonggukjang secretes a 28 kDa protease with a strong fibrinolytic activity. Its gene, aprE3-5, was cloned and expressed in a heterologous host (Jeong et al., 2007). In this study, the promoter of aprE3-5 was replaced with other stronger promoters (Pcry3A, P10, PSG1, PsrfA) of Bacillus spp. using PCR. The constructed chimeric genes were cloned into pHY300PLK vector, and then introduced into B. subtilis WB600. The P10 promoter conferred the highest fibrinolytic activity, i.e., 1.7-fold higher than that conferred by the original promoter. Overproduction of the 28 kDa protease was confirmed using SDS-PAGE and fibrin zymography. RT-qPCR analysis showed that aprE3-5 expression was 2.0-fold higher with the P10 promoter than with the original promoter. Change of the initiation codon from GTG to ATG further increased the fibrinolytic activity. The highest aprE3-5 expression was observed when two copies of the P10 promoter were placed in tandem upstream of the ATG initiation codon. The construct with P10 promoter and ATG and the construct with two copies of P10 promoter in tandem and ATG exhibited 117% and 148% higher fibrinolytic activity, respectively, than that exhibited by the construct containing P10 promoter and GTG. These results confirmed that significant overproduction of a fibrinolytic enzyme can be achieved by suitable promoter modification, and this approach may have applications in the industrial production of AprE3-5 and related fibrinolytic enzymes.
Collapse
Affiliation(s)
- Zhuang Yao
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yu Meng
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Huong Giang Le
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Se Jin Lee
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hye Sung Jeon
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji Yeon Yoo
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong Hwan Kim
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea,Corresponding author Phone: +82- 55-772-1904 Fax: +82-55-772-1909 E-mail :
| |
Collapse
|
29
|
Long J, Zhang X, Gao Z, Yang Y, Tian X, Lu M, He L, Li C, Zeng X. Isolation of Bacillus spp. with High Fibrinolytic Activity and Performance Evaluation in Fermented Douchi. J Food Prot 2021; 84:717-727. [PMID: 33232445 DOI: 10.4315/jfp-20-307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/23/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Fibrinolytic enzymes are effective and highly safe in treating cardiovascular and cerebrovascular diseases. Therefore, screening fibrinolytic enzyme-producing microbial strains with excellent fermentation performance is of great value to industrial applications. The fibrin plate method was used in screening strains with high yields of fibrinolytic enzymes from different fermented food products, and the screened strains were preliminarily identified using molecular biology. Then, the strains were used for solid-state fermentation of soybeans. Moreover, the fermentation product douchi was subjected to fibrinolytic activity measurement, sensory evaluation, and biogenic amine content determination. The fermentation performance of each strain was comprehensively evaluated through principal component analysis. Finally, the target strain was identified based on strain morphology, physiological and biochemical characteristics, 16S rDNA sequence, and phylogenetic analysis results. A total of 15 Bacillus species with high fibrinolysin activity were selected. Their fibrinolytic enzyme-producing activity levels were higher than 5,500 IU/g. Through molecular biology analysis, we found 4 strains of Bacillus subtilis, 10 strains of Bacillus amyloliquefaciens, and 1 strain of Bacillus velezensis. The principal component analysis results showed that SN-14 had the best fermentation performance and reduced the accumulation of histamine and total amine, the fibrinolytic activity of fermented douchi reached 5,920.5 ± 107.7 IU/g, and the sensory score was 4.6 ± 0.3 (out of 5 points). Finally, the combined results of physiological and biochemical analyses showed SN-14 was Bacillus velezensis. The high-yield fibrinolytic and excellent fermentation performance strain Bacillus velezensis SN-14 has potential industrial application. HIGHLIGHTS
Collapse
Affiliation(s)
- Jia Long
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xin Zhang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China.,College of Artificial Intelligence and Electrical Engineering, GuiZhou Institute of Technology, Guiyang 550003, People's Republic of China
| | - Zexin Gao
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Yun Yang
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xueyi Tian
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Mingyuan Lu
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| |
Collapse
|
30
|
Cheng J, Tu W, Cao R, Gou X, Zhang Y, Wang D, Li Q. High-efficiency production of 5-aminovalerate in engineered Escherichia coli controlled by an anaerobically-induced nirB promoter. Biochem Biophys Res Commun 2021; 552:170-175. [PMID: 33751934 DOI: 10.1016/j.bbrc.2021.03.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 12/31/2022]
Abstract
Biobased production of 5-aminovalerate (5AVA) from biomass can support a sustainable and economic biorefinery process to produce bio-based nylon 5 for food packaging materials. Cost-competitive production of 5AVA from biomass is a key factor in the successful commercialization of nylon 5. Bioproduction of 5AVA is a promising candidate for the industrial process to the current petrochemical route. In this study, we developed an artificial 2-keto-6-aminocaproate-mediated pathway for cost-competitive and high efficiency production of 5AVA in engineered Escherichia coli. Firstly, the combination of native l-lysine α-oxidase (RaiP) from Scomber japonicas, α-ketoacid decarboxylase (KivD) from Lactococcus lactis and aldehyde dehydrogenase (PadA) from Escherichia coli could efficiently convert l-lysine into 5AVA. Moreover, the engineered strains ML03-PnirB-RKP, ML03-PPL-PR-RKP, ML03-PM1-93-RKP induced by anaerobic condition, temperature-induced, constitutive expression instead of expensive isopropyl β-D-thiogalactoside were constructed, respectively. The use of nirB promoter induced by anaerobic condition not only could attain a higher titer of 5AVA than PL-PR and M1-93 promoters, but omit cost of expensive exogenous inducers. After the replacement of industrial materials, 5AVA titer successfully reached 33.68 g/L in engineered strain ML03-PnirB-RKP via biotransformation. This biotransformation process conduces to the cosmically industrial 5AVA bioproduction.
Collapse
Affiliation(s)
- Jie Cheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China.
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Ruiqi Cao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Xinghua Gou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Yin Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China
| | - Dan Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, PR China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China.
| |
Collapse
|
31
|
Tekin A, Uzuner U, Sezen K. Homology modeling and heterologous expression of highly alkaline subtilisin-like serine protease from Bacillus halodurans C-125. Biotechnol Lett 2020; 43:479-494. [PMID: 33047274 DOI: 10.1007/s10529-020-03025-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/06/2020] [Indexed: 01/22/2023]
Abstract
Here we report heterologous expression, enzymatic characterization and structure homology modeling of a subtilisin-like alkaline serine protease (ASP) from Bacillus halodurans C-125. Encoding gene was successfully obtained by PCR and cloned into pMA0911 shuttle vector under the control of strong HpaII promoter and expressed extracellularly. ASP enzyme was successfully expressed in B. subtilis WB800 cell line lacking eight extracellular proteases and produced extracellularly in the culture medium. Km, Vmax and specific activity parameters of the recombinantly produced ASP were identified as 0.2899 mg/ml, 76.12 U/ml and 9500 U/mg, respectively. The purified enzyme revealed remarkable proteolytic activity at highly alkaline conditions with a pH optimum 12.0 and notable thermostability with temperature optimum at 60 °C. Furthermore, substrate-free enzyme revealed remarkable pH stability at pH 12.0 and maintained 93% of its initial activity when incubated at 37 °C for 24 h and 60% of its initial activity upon incubation at 60 °C for 1 h. Theoretically calculated molecular mass of ASP protein was confirmed through SDS-PAGE and western blot analysis (Mw: 28.3 kDa). The secondary and tertiary structures of ASP protein were also identified through homology modeling and further examined in detail. ASP harbors a typical S8/S53 peptidase domain comprising 17 β-sheets and 9 α-helixes within its secondary structure. The structure dynamics analysis of modeled 3D structure further revealed that transient inactivating propeptide chain is the most dynamic region of ASP enzyme with 8.52 Å2 β-Factor value. Additional residue-dependent fluctuation plot analysis also confirmed the elevated structure dynamics patterning of ASP N-terminus which could be the potential prerequisite for the autonomous propeptide removal of alkaline serine peptidases. Yet the functional domain of ASP becomes quite stable after autonomous exclusion of its propeptide. Although the sequence homology between ASP and commercial detergent additive B. lentus protease (PDB ID:1GCI) was moderate (65.4% sequence similarity), their overlaid 3D structures revealed much higher similarity (98.14%) within 0.80 Å RMSD. In conclusions, with remarkable pH stability, notable thermostability and particularly high specific activity at extreme alkaline conditions, the unveiled ASP protein stands out as a novel protease candidate for various industrial sectors such as textile, detergent, leather, feed, waste, pharmaceutical and others.
Collapse
Affiliation(s)
- Aşkın Tekin
- Department of Medical Services and Techniques, Şebinkarahisar Social Sciences Vocational School, 28400, Şebinkarahisar, Giresun, Turkey
| | - Ugur Uzuner
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Kazım Sezen
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
32
|
Wei H, Zhang R, Wang L, Li D, Hang F, Liu J. Expression of d-psicose-3-epimerase from Clostridium bolteae and Dorea sp. and whole-cell production of d-psicose in Bacillus subtilis. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01548-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract
Purpose
d-psicose-3-epimerase (DPEase) catalyses the isomerisation of d-fructose to d-psicose, a rare sugar in nature with unique nutritional and biological functions. An effective industrial-scale method is needed for d-psicose production. Herein, the expression of a neutral and a slightly acidic pH DPEase in Bacillus subtilis was evaluated.
Methods
Two DPEase genes from Clostridium bolteae and Dorea sp. were separately expressed in B. subtilis via plasmid pSTOP1622, and an extra P43 promoter was employed to the expression cassette. The fermentation conditions of the engineered B. subtilis strains were also optimised, to facilitate both cell growth and enzyme production.
Result
The introduction of P43 promoter to the two DPEase genes increased enzyme production by about 20%. Optimisation of fermentation conditions increased DPEase production to 21.90 U/g at 55 °C and 24.01 U/g at 70 °C in B. subtilis expressing C. bolteae or Dorea sp. DPEase, equating to a 94.67% and 369.94% increase, respectively, relative to controls.
Conclusion
Enhanced DPEase production was achieved in B. subtilis expressing C. bolteae or Dorea sp. DPEase genes.
Collapse
|
33
|
Han L, Chen Q, Lin Q, Cheng J, Zhou L, Liu Z, Guo J, Zhang L, Cui W, Zhou Z. Realization of Robust and Precise Regulation of Gene Expression by Multiple Sigma Recognizable Artificial Promoters. Front Bioeng Biotechnol 2020; 8:92. [PMID: 32140461 PMCID: PMC7042180 DOI: 10.3389/fbioe.2020.00092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/31/2020] [Indexed: 01/28/2023] Open
Abstract
Precise regulation of gene expression is fundamental for tailor-made gene circuit design in synthetic biology. Current strategies for this type of development are mainly based on directed evolution beginning with a native promoter template. The performances of engineered promoters are usually limited by the growth phase because only one promoter is recognized by one type of sigma factor (σ). Here, we constructed multiple-σ recognizable artificial hybrid promoters (AHPs) composed of tandems of dual and triple natural minimal promoters (NMPs). These NMPs, which use σA, σH and σW, had stable functions in different growth phases. The functions of these NMPs resulted from an effect called transcription compensation, in which AHPs sequentially use one type of σ in the corresponding growth phase. The strength of the AHPs was influenced by the combinatorial order of each NMP and the length of the spacers between the NMPs. More importantly, the output of the precise regulation was achieved by equipping AHPs with synthetic ribosome binding sites and by redesigning them for induced systems. This strategy might offer promising applications to rationally design robust synthetic promoters in diverse chassis to spur the construction of more complex gene circuits, which will further the development of synthetic biology.
Collapse
Affiliation(s)
- Laichuang Han
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qiaoqing Chen
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qiao Lin
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jintao Cheng
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Li Zhou
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Junling Guo
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Linpei Zhang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|