1
|
Salazar-Hamm PS, Homan FE, Good SA, Hathaway JJM, Clements AE, Haugh EG, Caesar LK. Subterranean marvels: microbial communities in caves and underground mines and their promise for natural product discovery. Nat Prod Rep 2025; 42:592-622. [PMID: 39950737 DOI: 10.1039/d4np00055b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Covering: 2014 to 2024Since the dawn of human history, caves have played an intimate role in our existence. From our earliest ancestors seeking shelter from the elements to more recent generations harnessing cave substances for medicinal purposes, caves have served as essential resources and havens. The last 40 years of geomicrobiology research has replaced the outdated perception of subterranean environments as lifeless and unchanging with the realization that vibrant microbial communities have adapted to thrive in extreme conditions over millions of years. The ability of subterranean microbial communities to withstand nutrient deprivation and darkness creates a unique reservoir of untapped biosynthetic potential. These communities offer exciting prospects for medicine (e.g., antimicrobial and antitumor therapies) and biotechnology (e.g., redox chemical properties and biomineralization). This article highlights the significance of caves and mines as reservoirs of microbial diversity, the potential impact of their bioactive compounds on the fields of healthcare and biotechnology, and the significant challenges that must be overcome to access and harness the biotechnological potential of subterranean microbial communities. Additionally, it emphasizes the conservation efforts needed to protect these delicate ecosystems, ensuring the preservation of both ancient traditions and tomorrow's medicines.
Collapse
Affiliation(s)
| | - Frances E Homan
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | - Shyleigh A Good
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | | | - Ashley E Clements
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | - Evelyn G Haugh
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | - Lindsay K Caesar
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| |
Collapse
|
2
|
Babalola OO, Adedayo AA, Akinola SA. Microbiome insights from a South African cultural and natural landmark cave using metagenomics next-generation sequencing. Microbiol Resour Announc 2025; 14:e0118324. [PMID: 39964161 PMCID: PMC11895429 DOI: 10.1128/mra.01183-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/10/2025] [Indexed: 03/12/2025] Open
Abstract
The microbiome study of Sterkfontein Cave (a natural and cultural cave) revealed fascinating insights into its metagenome study and functional annotation. The largely unexplored cave soil microbiota showcases intricate survival adaptations with promising potential for various human applications. Here, we report the microbial diversity and functions associated with Sterkfontein Cave soil.
Collapse
Affiliation(s)
- Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Afeez Adesina Adedayo
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Saheed Adekunle Akinola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| |
Collapse
|
3
|
Meka AF, Bekele GK, Abas MK, Gemeda MT. Exploring bioactive compound origins: Profiling gene cluster signatures related to biosynthesis in microbiomes of Sof Umer Cave, Ethiopia. PLoS One 2025; 20:e0315536. [PMID: 40048434 PMCID: PMC11884727 DOI: 10.1371/journal.pone.0315536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/26/2024] [Indexed: 03/09/2025] Open
Abstract
Sof Umer Cave is an unexplored extreme environment that hosts novel microbes and potential genetic resources. Microbiomes from caves have been genetically adapted to produce various bioactive metabolites, allowing them to survive and tolerate harsh conditions. However, the biosynthesis-related gene cluster signatures in the microbiomes of Sof Umer Cave have not been explored. Therefore, high-throughput shotgun sequencing was used to explore biosynthesis-related gene clusters (BGCs) in the microbiomes of Sof Umer Cave. The GeneAll DNA Soil Mini Kit was used to extract high-molecular-weight DNA from homogenized samples, and the purified DNA was sequenced using a NovaSeq PE150. According to the Micro-RN database, the most common microbial genera in Sof Umer Cave are Protobacteria, Actinobacteria, Verrucomicrobiota, and Cyanobacteria. The biosynthesis-related gene clusters were annotated and classified, and the BGCs were predicted using antiSMASH and NAPDOS1. A total of 460 putative regions of BGCs encoding a wide range of secondary metabolites were identified, including RiPP (47.82%), terpene (19.57%), NRPS (13.04%), hybrid (2.18%), and other newly annotated (10.87%) compounds. Additionally, the NAPDOS pipeline identified a calcium-dependent antibiotic gene cluster from Streptomyces coelicolor, an actinomycin gene cluster from Streptomyces chrysomallus, and a bleomycin gene cluster from Streptomyces verticillus. These findings highlight the untapped biosynthetic potential of the Sof Umer Cave microbiome, as well as its potential for the discovery of natural products.
Collapse
Affiliation(s)
- Abu Feyisa Meka
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Department of Biology, Bule Hora University, Bule Hora, Ethiopia
| | - Gessesse Kebede Bekele
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Centre of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Musin Kelel Abas
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Centre of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Mesfin Tafesse Gemeda
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Centre of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Bontemps Z, Abrouk D, Venier S, Vergne P, Michalet S, Comte G, Moënne-Loccoz Y, Hugoni M. Microbial diversity and secondary metabolism potential in relation to dark alterations in Paleolithic Lascaux Cave. NPJ Biofilms Microbiomes 2024; 10:121. [PMID: 39505900 PMCID: PMC11541736 DOI: 10.1038/s41522-024-00589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Tourism in Paleolithic caves can cause an imbalance in cave microbiota and lead to cave wall alterations, such as dark zones. However, the mechanisms driving dark zone formation remain unclear. Using shotgun metagenomics in Lascaux Cave's Apse and Passage across two years, we tested metabarcoding-derived functional hypotheses regarding microbial diversity and metabolic potential in dark zones vs unmarked surfaces nearby. Taxonomic and functional metagenomic profiles were consistent across years but divergent between cave locations. Aromatic compound degradation genes were prevalent inside and outside dark zones, as expected from past biocide usage. Dark zones exhibited enhanced pigment biosynthesis potential (melanin and carotenoids) and melanin was evidenced chemically, while unmarked surfaces showed genes for antimicrobials production, suggesting that antibiosis might restrict the development of pigmented microorganisms and dark zone extension. Thus, this work revealed key functional microbial traits associated with dark zone formation, which helps understand cave alteration processes under severe anthropization.
Collapse
Affiliation(s)
- Zélia Bontemps
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Danis Abrouk
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Sita Venier
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Pierre Vergne
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Serge Michalet
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Gilles Comte
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Mylène Hugoni
- Institut Universitaire de France (IUF), Paris, France.
- Université Claude Bernard Lyon 1, CNRS, INSA de Lyon, UMR Microbiologie Adaptation et Pathogénie, Villeurbanne, France.
| |
Collapse
|
5
|
Lauzon J, Caron D, Lazar CS. The Saint-Leonard Urban Glaciotectonic Cave Harbors Rich and Diverse Planktonic and Sedimentary Microbial Communities. Microorganisms 2024; 12:1791. [PMID: 39338466 PMCID: PMC11434022 DOI: 10.3390/microorganisms12091791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The terrestrial subsurface harbors unique microbial communities that play important biogeochemical roles and allow for studying a yet unknown fraction of the Earth's biodiversity. The Saint-Leonard cave in Montreal City (Canada) is of glaciotectonic origin. Its speleogenesis traces back to the withdrawal of the Laurentide Ice Sheet 13,000 years ago, during which the moving glacier dislocated the sedimentary rock layers. Our study is the first to investigate the microbial communities of the Saint-Leonard cave. By using amplicon sequencing, we analyzed the taxonomic diversity and composition of bacterial, archaeal and eukaryote communities living in the groundwater (0.1 µm- and 0.2 µm-filtered water), in the sediments and in surface soils. We identified a microbial biodiversity typical of cave ecosystems. Communities were mainly shaped by habitat type and harbored taxa associated with a wide variety of lifestyles and metabolic capacities. Although we found evidence of a geochemical connection between the above soils and the cave's galleries, our results suggest that the community assembly dynamics are driven by habitat selection rather than dispersal. Furthermore, we found that the cave's groundwater, in addition to being generally richer in microbial taxa than sediments, contained a considerable diversity of ultra-small bacteria and archaea.
Collapse
Affiliation(s)
- Jocelyn Lauzon
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| | | | - Cassandre Sara Lazar
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| |
Collapse
|
6
|
Bontemps Z, Paranjape K, Guy L. Host-bacteria interactions: ecological and evolutionary insights from ancient, professional endosymbionts. FEMS Microbiol Rev 2024; 48:fuae021. [PMID: 39081075 PMCID: PMC11338181 DOI: 10.1093/femsre/fuae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Interactions between eukaryotic hosts and their bacterial symbionts drive key ecological and evolutionary processes, from regulating ecosystems to the evolution of complex molecular machines and processes. Over time, endosymbionts generally evolve reduced genomes, and their relationship with their host tends to stabilize. However, host-bacteria relationships may be heavily influenced by environmental changes. Here, we review these effects on one of the most ancient and diverse endosymbiotic groups, formed by-among others-Legionellales, Francisellaceae, and Piscirickettsiaceae. This group is referred to as Deep-branching Intracellular Gammaproteobacteria (DIG), whose last common ancestor presumably emerged about 2 Ga ago. We show that DIGs are globally distributed, but generally at very low abundance, and are mainly identified in aquatic biomes. Most DIGs harbour a type IVB secretion system, critical for host-adaptation, but its structure and composition vary. Finally, we review the different types of microbial interactions that can occur in diverse environments, with direct or indirect effects on DIG populations. The increased use of omics technologies on environmental samples will allow a better understanding of host-bacterial interactions and help unravel the definition of DIGs as a group from an ecological, molecular, and evolutionary perspective.
Collapse
Affiliation(s)
- Zélia Bontemps
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75237 Uppsala, Sweden
| | - Kiran Paranjape
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75237 Uppsala, Sweden
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
7
|
Turrini P, Chebbi A, Riggio FP, Visca P. The geomicrobiology of limestone, sulfuric acid speleogenetic, and volcanic caves: basic concepts and future perspectives. Front Microbiol 2024; 15:1370520. [PMID: 38572233 PMCID: PMC10987966 DOI: 10.3389/fmicb.2024.1370520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Caves are ubiquitous subterranean voids, accounting for a still largely unexplored surface of the Earth underground. Due to the absence of sunlight and physical segregation, caves are naturally colonized by microorganisms that have developed distinctive capabilities to thrive under extreme conditions of darkness and oligotrophy. Here, the microbiomes colonizing three frequently studied cave types, i.e., limestone, sulfuric acid speleogenetic (SAS), and lava tubes among volcanic caves, have comparatively been reviewed. Geological configurations, nutrient availability, and energy flows in caves are key ecological drivers shaping cave microbiomes through photic, twilight, transient, and deep cave zones. Chemoheterotrophic microbial communities, whose sustenance depends on nutrients supplied from outside, are prevalent in limestone and volcanic caves, while elevated inorganic chemical energy is available in SAS caves, enabling primary production through chemolithoautotrophy. The 16S rRNA-based metataxonomic profiles of cave microbiomes were retrieved from previous studies employing the Illumina platform for sequencing the prokaryotic V3-V4 hypervariable region to compare the microbial community structures from different cave systems and environmental samples. Limestone caves and lava tubes are colonized by largely overlapping bacterial phyla, with the prevalence of Pseudomonadota and Actinomycetota, whereas the co-dominance of Pseudomonadota and Campylobacterota members characterizes SAS caves. Most of the metataxonomic profiling data have so far been collected from the twilight and transient zones, while deep cave zones remain elusive, deserving further exploration. Integrative approaches for future geomicrobiology studies are suggested to gain comprehensive insights into the different cave types and zones. This review also poses novel research questions for unveiling the metabolic and genomic capabilities of cave microorganisms, paving the way for their potential biotechnological applications.
Collapse
Affiliation(s)
- Paolo Turrini
- Department of Science, Roma Tre University, Rome, Italy
| | - Alif Chebbi
- Department of Science, Roma Tre University, Rome, Italy
| | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
8
|
Gogoleva N, Chervyatsova O, Balkin A, Kuzmina L, Shagimardanova E, Kiseleva D, Gogolev Y. Microbial tapestry of the Shulgan-Tash cave (Southern Ural, Russia): influences of environmental factors on the taxonomic composition of the cave biofilms. ENVIRONMENTAL MICROBIOME 2023; 18:82. [PMID: 37990336 PMCID: PMC10662634 DOI: 10.1186/s40793-023-00538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Cave biotopes are characterized by stable low temperatures, high humidity, and scarcity of organic substrates. Despite the harsh oligotrophic conditions, they are often inhabited by rich microbial communities. Abundant fouling with a wide range of morphology and coloration of colonies covers the walls of the Shulgan-Tash cave in the Southern Urals. This cave is also famous for the unique Paleolithic painting discovered in the middle of the last century. We aimed to investigate the diversity, distribution, and potential impact of these biofilms on the cave's Paleolithic paintings, while exploring how environmental factors influence the microbial communities within the cave. RESULTS The cave's biofilm morphotypes were categorized into three types based on the ultrastructural similarities. Molecular taxonomic analysis identified two main clusters of microbial communities, with Actinobacteria dominating in most of them and a unique "CaveCurd" community with Gammaproteobacteria prevalent in the deepest cave sections. The species composition of these biofilms reflects changes in environmental conditions, such as substrate composition, temperature, humidity, ventilation, and CO2 content. Additionally, it was observed that cave biofilms contribute to biocorrosion on cave wall surfaces. CONCLUSIONS The Shulgan-Tash cave presents an intriguing example of a stable extreme ecosystem with diverse microbiota. However, the intense dissolution and deposition of carbonates caused by Actinobacteria pose a potential threat to the preservation of the cave's ancient rock paintings.
Collapse
Affiliation(s)
- Natalia Gogoleva
- Research Department for Limnology, Mondsee, Universität Innsbruck, Mondsee, 5310, Austria.
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420111, Russia.
| | | | - Alexander Balkin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420111, Russia
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, 460000, Russia
| | - Lyudmila Kuzmina
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, 450054, Russia
| | - Elena Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420111, Russia
- Loginov Moscow Clinical Scientific Center, Moscow, 111123, Russia
| | - Daria Kiseleva
- Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620016, Russia
- Institute of Fundamental Education, Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russia
| | - Yuri Gogolev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420111, Russia
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| |
Collapse
|
9
|
Theodorescu M, Bucur R, Bulzu PA, Faur L, Levei EA, Mirea IC, Cadar O, Ferreira RL, Souza-Silva M, Moldovan OT. Environmental Drivers of the Moonmilk Microbiome Diversity in Some Temperate and Tropical Caves. MICROBIAL ECOLOGY 2023; 86:2847-2857. [PMID: 37606696 DOI: 10.1007/s00248-023-02286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
Moonmilk is a cave deposit that was used for medical and cosmetic purposes and has lately raised interest for its antimicrobial potential. We studied five moonmilk samples from four caves with different microclimatic conditions, two temperate in north-western and northern Romania (Ferice, Fața Apei, and Izvorul Tăușoarelor caves) and one tropical in Minas Gerais, Brazil (Nestor Cave). The physicochemical and mineralogical analyses confirmed the presence of calcite and dolomite as the main phase in the moonmilk. A 16S rRNA gene-based metabarcoding approach showed the most abundant bacteria phyla Proteobacteria, GAL15, Actinobacteriota, and Acidobacteriota. The investigated caves differed in the dominant orders of bacteria, with the highest distance between the Romanian and Nestor Cave samples. Climate and, implicitly, the soil microbiome can be responsible for some differences we found between all the samples. However, other factors can be involved in shaping the moonmilk microbiome, as differences were found between samples in the same cave (Ferice). In our five moonmilk samples, 1 phylum, 70 orders (~ 36%), and 252 genera (~ 47%) were unclassified, which hints at the great potential of cave microorganisms for future uses.
Collapse
Affiliation(s)
- Mihail Theodorescu
- Cluj-Napoca Department, Emil Racovita Institute of Speleology, Clinicilor 5, 400006, Cluj-Napoca, Romania
| | - Ruxandra Bucur
- Cluj-Napoca Department, Emil Racovita Institute of Speleology, Clinicilor 5, 400006, Cluj-Napoca, Romania
- Romanian Institute of Science and Technology, Virgil Fulicea 3, 400022, Cluj-Napoca, Romania
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, 37005, České Budějovice, Czech Republic
| | - Luchiana Faur
- Romanian Institute of Science and Technology, Virgil Fulicea 3, 400022, Cluj-Napoca, Romania
- Emil Racovita Institute of Speleology, 13 Septembrie 13, 050711, Bucharest, Romania
| | - Erika Andrea Levei
- Research Institute for Analytical Instrumentation subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Donath 67, 400293, Cluj-Napoca, Romania
| | - Ionuț Cornel Mirea
- Romanian Institute of Science and Technology, Virgil Fulicea 3, 400022, Cluj-Napoca, Romania
- Emil Racovita Institute of Speleology, 13 Septembrie 13, 050711, Bucharest, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Donath 67, 400293, Cluj-Napoca, Romania
| | - Rodrigo Lopes Ferreira
- Centro de Estudos em Biologia Subterrânea, Setor de Biodiversidade Subterrânea, Departamento de Ecologia e Conservação, Universidade Federal de Lavras, Campus Universitário, Lavras, Minas Gerais, 37202-553, Brazil
| | - Marconi Souza-Silva
- Centro de Estudos em Biologia Subterrânea, Setor de Biodiversidade Subterrânea, Departamento de Ecologia e Conservação, Universidade Federal de Lavras, Campus Universitário, Lavras, Minas Gerais, 37202-553, Brazil
| | - Oana Teodora Moldovan
- Cluj-Napoca Department, Emil Racovita Institute of Speleology, Clinicilor 5, 400006, Cluj-Napoca, Romania.
- Romanian Institute of Science and Technology, Virgil Fulicea 3, 400022, Cluj-Napoca, Romania.
- Centro Nacional sobre la Evolucion Humana, Paseo Sierra de Atapuerca 3, 09002, Burgos, Spain.
| |
Collapse
|
10
|
Martin-Pozas T, Fernandez-Cortes A, Cuezva S, Cañaveras JC, Benavente D, Duarte E, Saiz-Jimenez C, Sanchez-Moral S. New insights into the structure, microbial diversity and ecology of yellow biofilms in a Paleolithic rock art cave (Pindal Cave, Asturias, Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165218. [PMID: 37419360 DOI: 10.1016/j.scitotenv.2023.165218] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
In the absence of sunlight, caves harbor a great diversity of microbial colonies to extensive biofilms with different sizes and colors visible to the naked eye. One of the most widespread and visible types of biofilm are those with yellow hues that can constitute a serious problem for the conservation of cultural heritage in many caves, such as Pindal Cave (Asturias, Spain). This cave, declared a World Heritage Site by UNESCO for its Paleolithic parietal art, shows a high degree of development of yellow biofilms that represents a real threat to the conservation of painted and engraved figures. This study aims to: 1) identify the microbial structures and the most characteristic taxa composing the yellow biofilms, 2) seek the linked microbiome reservoir primarily contributing to their growth; 3) seed light on the driving vectors that contribute to their formation and determine the subsequent proliferation and spatial distribution. To achieve this goal, we used amplicon-based massive sequencing, in combination with other techniques such as microscopy, in situ hybridization and environmental monitoring, to compare the microbial communities of yellow biofilms with those of drip waters, cave sediments and exterior soil. The results revealed microbial structures related to the phylum Actinomycetota and the most characteristic bacteria in yellow biofilms, represented by the genera wb1-P19, Crossiella, Nitrospira, and Arenimonas. Our findings suggest that sediments serve as potential reservoirs and colonization sites for these bacteria that can develop into biofilms under favorable environmental and substrate conditions, with a particular affinity for speleothems and rugged-surfaced rocks found in condensation-prone areas. This study presents an exhaustive study of microbial communities of yellow biofilms in a cave, which could be used as a procedure for the identification of similar biofilms in other caves and to design effective conservation strategies in caves with valuable cultural heritage.
Collapse
Affiliation(s)
- Tamara Martin-Pozas
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | | | - Soledad Cuezva
- Department of Geology, Geography and Environment, University of Alcala, Campus Cientifico-Tecnologico, 28802 Alcala de Henares, Spain.
| | - Juan Carlos Cañaveras
- Department of Environmental and Earth Sciences, University of Alicante, Campus San Vicente del Raspeig, 03690 Alicante, Spain.
| | - David Benavente
- Department of Environmental and Earth Sciences, University of Alicante, Campus San Vicente del Raspeig, 03690 Alicante, Spain.
| | - Elsa Duarte
- Department of History, University of Oviedo, 33011 Oviedo, Spain.
| | - Cesareo Saiz-Jimenez
- Department of Agrochemistry, Environmental Microbiology and Soil and Water Protection, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Sergio Sanchez-Moral
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
11
|
Tsouggou N, Oikonomou A, Papadimitriou K, Skandamis PN. 16S and 18S rDNA Amplicon Sequencing Analysis of Aesthetically Problematic Microbial Mats on the Walls of the Petralona Cave: The Use of Essential Oils as a Cleaning Method. Microorganisms 2023; 11:2681. [PMID: 38004693 PMCID: PMC10673238 DOI: 10.3390/microorganisms11112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The presence of microbial communities on cave walls and speleothems is an issue that requires attention. Traditional cleaning methods using water, brushes, and steam can spread the infection and cause damage to the cave structures, while chemical agents can lead to the formation of toxic compounds and damage the cave walls. Essential oils (EOs) have shown promising results in disrupting the cell membrane of bacteria and affecting their membrane permeability. In this study, we identified the microorganisms forming unwanted microbial communities on the walls and speleothems of Petralona Cave using 16S and 18S rDNA amplicon sequencing approaches and evaluated the efficacy of EOs in reducing the ATP levels of these ecosystems. The samples exhibited a variety of both prokaryotic and eukaryotic microorganisms, including Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, the SAR supergroup, Opisthokonta, Excavata, Archaeplastida, and Amoebozoa. These phyla are often found in various habitats, including caves, and contribute to the ecological intricacy of cave ecosystems. In terms of the order and genus taxonomy, the identified biota showed abundances that varied significantly among the samples. Functional predictions were also conducted to estimate the differences in expressed genes among the samples. Oregano EO was found to reduce ATP levels by 87% and 46% for black and green spots, respectively. Consecutive spraying with cinnamon EO further reduced ATP levels, with reductions of 89% for black and 88% for green spots. The application of a mixture solution caused a significant reduction up to 96% in ATP levels of both areas. Our results indicate that EOs could be a promising solution for the treatment of microbial communities on cave walls and speleothems.
Collapse
Affiliation(s)
- Natalia Tsouggou
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| | - Alexandra Oikonomou
- Ephorate of Palaeoanthropology and Speleology, Hellenic Republic Ministry of Culture and Sports, Ardittou 34b, 11636 Athens, Greece;
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| |
Collapse
|
12
|
Nicolosi G, Gonzalez-Pimentel JL, Piano E, Isaia M, Miller AZ. First Insights into the Bacterial Diversity of Mount Etna Volcanic Caves. MICROBIAL ECOLOGY 2023; 86:1632-1645. [PMID: 36750476 PMCID: PMC10497698 DOI: 10.1007/s00248-023-02181-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
While microbial communities in limestone caves across the world are relatively understood, knowledge of the microbial composition in lava tubes is lagging behind. These caves are found in volcanic regions worldwide and are typically lined with multicolored microbial mats on their walls and ceilings. The Mount Etna (Sicily, S-Italy) represents one of the most active volcanos in the world. Due to its outstanding biodiversity and geological features, it was declared Natural Heritage of Humanity by the UNESCO in 2013. Despite the presence of more than 200 basaltic lava tubes, the microbial diversity of these hypogean systems has never been investigated so far. Here, we investigated bacterial communities in four lava tubes of Mount Etna volcano. Field emission scanning electron microscopy (FESEM) was carried out for the morphological characterization and detection of microbial features. We documented an abundant presence of microbial cells with different morphotypes including rod-shaped, filamentous, and coccoidal cells with surface appendages, resembling actinobacteria reported in other lava tubes across the world. Based on 16S rRNA gene analysis, the colored microbial mats collected were mostly composed of bacteria belonging to the phyla Actinomycetota, Pseudomonadota, Acidobacteriota, Chloroflexota, and Cyanobacteria. At the genus level, the analysis revealed a dominance of the genus Crossiella, which is actively involved in biomineralization processes, followed by Pseudomonas, Bacillus, Chujaibacter, and Sphingomonas. The presence of these taxa is associated with the carbon, nitrogen, and ammonia cycles, and some are possibly related to the anthropic disturbance of these caves. This study provides the first insight into the microbial diversity of the Etna volcano lava tubes, and expands on previous research on microbiology of volcanic caves across the world.
Collapse
Affiliation(s)
- Giuseppe Nicolosi
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Centro Speleologico Etneo, Catania, Italy
| | | | - Elena Piano
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Marco Isaia
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Ana Z Miller
- HERCULES Laboratory, University of Évora, Évora, Portugal.
- Instituto de Recursos Naturales Y Agrobiologia de Sevilla (IRNAS-CSIC), Seville, Spain.
| |
Collapse
|
13
|
Samanta B, Sharma S, Budhwar R. Metagenome Analysis of Speleothem Microbiome from Subterranean Cave Reveals Insight into Community Structure, Metabolic Potential, and BGCs Diversity. Curr Microbiol 2023; 80:317. [PMID: 37561193 DOI: 10.1007/s00284-023-03431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
The Borra caves, the second largest subterranean karst cave ecosystem in the Indian sub-continent, are located at the Ananthagiri hills of Araku Valley in the Alluri district of Andhra Pradesh, India. The present investigation applied a shotgun metagenomic approach to gain insights into the microbial community structure, metabolic potential, and biosynthetic gene cluster (BGC) diversity of the microbes colonizing the surface of the speleothems from the aphotic zone of Borra caves. The taxonomic analysis of the metagenome data illustrated that the speleothem-colonizing core microbial community was dominated mainly by Alpha-, Beta-, and Gamma-Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. The key energy metabolic pathways analysis provides strong evidence of chemolithoautotrophic and chemoheterotrophic modes of nutrition in the speleothem-colonizing microbial community. Metagenome data suggests that sulfur reducers and sulfur-disproportionating microbes might play a vital role in energy generation in this ecosystem. Our metagenome data also suggest that the dissimilatory nitrifiers and nitrifying denitrifiers might play an essential role in conserving nitrogen pools in the ecosystem. Furthermore, metagenome-wide BGCs mining retrieved 451 putative BGCs; NRPS was the most abundant (24%). Phylogenetic analysis of the C domain of NRPS showed that sequences were distributed across all six function categories of the known C domain, including several novel subclades. For example, a novel subclade had been recovered within the LCL domain clade as a sister subclade of immunosuppressant cyclosporin encoding C domain sequences. Our result suggested that subterranean cave microbiomes might be a potential reservoir of novel microbial metabolites.
Collapse
Affiliation(s)
- Brajogopal Samanta
- Department of Microbiology and FST, GITAM School of Science, GITAM (Deemed to Be University), Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India.
| | - Shivasmi Sharma
- Bionivid Technology Private Limited, Bengaluru, Karnataka, 560043, India
| | - Roli Budhwar
- Bionivid Technology Private Limited, Bengaluru, Karnataka, 560043, India
| |
Collapse
|
14
|
Tessler M, Cunningham SW, Ingala MR, Warring SD, Brugler MR. An Environmental DNA Primer for Microbial and Restoration Ecology. MICROBIAL ECOLOGY 2023; 85:796-808. [PMID: 36735064 DOI: 10.1007/s00248-022-02168-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/28/2022] [Indexed: 05/04/2023]
Abstract
Environmental DNA (eDNA) sequencing-DNA collected from the environment from living cells or shed DNA-was first developed for working with microbes and has greatly benefitted microbial ecologists for decades since. These tools have only become increasingly powerful with the advent of metabarcoding and metagenomics. Most new studies that examine diverse assemblages of bacteria, archaea, protists, fungi, and viruses lean heavily into eDNA using these newer technologies, as the necessary sequencing technology and bioinformatic tools have become increasingly affordable and user friendly. However, eDNA methods are rapidly evolving, and sometimes it can feel overwhelming to simply keep up with the basics. In this review, we provide a starting point for microbial ecologists who are new to DNA-based methods by detailing the eDNA methods that are most pertinent, including study design, sample collection and storage, selecting the right sequencing technology, lab protocols, equipment, and a few bioinformatic tools. Furthermore, we focus on how eDNA work can benefit restoration and what modifications are needed when working in this subfield.
Collapse
Affiliation(s)
- Michael Tessler
- Department of Biology, St. Francis College, Brooklyn, NY, USA.
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA.
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA.
| | - Seth W Cunningham
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Melissa R Ingala
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ, 07940, USA
| | | | - Mercer R Brugler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
- Department of Natural Sciences, University of South Carolina Beaufort, 801 Carteret Street, Beaufort, SC, 29902, USA
| |
Collapse
|
15
|
Jiang C, Sun X, Liu Y, Zhu S, Wu K, Li H, Shui W. Karst tiankeng shapes the differential composition and structure of bacterial and fungal communities in karst land. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32573-32584. [PMID: 36469271 DOI: 10.1007/s11356-022-24229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Karst tiankeng are important biodiversity conservation reservoirs. However, the unique habitats of karst tiankeng affect microbial community structure remained poorly understood. In this study, we collected soil samples from karst tiankeng (TK) and karst land (KL) and subjected to high-throughput sequencing. Based on the classification of the total, abundance, and rare taxa for bacteria and fungi, a multivariate statistical analysis was carried out. The results revealed that bacterial community Shannon diversity and Pielou's evenness were highest in TK. The rare taxa were ubiquitous in all soil samples, while the higher Shannon diversity of the abundant taxa of TK may be related to the habitat preferences of species and niche differentiation. The community composition of bacterial and fungal sub-communities exhibited significant dissimilarity between TK and KL. The redundancy analysis further demonstrated that abundant taxa were environmentally more constrained than rare taxa. The bacterial and fungal networks of KL were more complex than TK. The keystones of the network transforms may suggest their significant role in the ecological function of the karst tiankeng ecosystem. This study represents the first reports of the characteristics of bacterial and fungal communities in karst tiankeng.
Collapse
Affiliation(s)
- Cong Jiang
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Xiang Sun
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China
| | - Yuanmeng Liu
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China
| | - Sufeng Zhu
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100871, People's Republic of China
| | - Kexing Wu
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China
| | - Hui Li
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China
| | - Wei Shui
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China.
| |
Collapse
|
16
|
Cheng X, Xiang X, Yun Y, Wang W, Wang H, Bodelier PLE. Archaea and their interactions with bacteria in a karst ecosystem. Front Microbiol 2023; 14:1068595. [PMID: 36814573 PMCID: PMC9939782 DOI: 10.3389/fmicb.2023.1068595] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Karst ecosystems are widely distributed around the world, accounting for 15-20% of the global land area. However, knowledge on microbial ecology of these systems does not match with their global importance. To close this knowledge gap, we sampled three niches including weathered rock, sediment, and drip water inside the Heshang Cave and three types of soils overlying the cave (forest soil, farmland soil, and pristine karst soil). All these samples were subjected to high-throughput sequencing of V4-V5 region of 16S rRNA gene and analyzed with multivariate statistical analysis. Overall, archaeal communities were dominated by Thaumarchaeota, whereas Actinobacteria dominated bacterial communities. Thermoplasmata, Nitrosopumilaceae, Aenigmarchaeales, Crossiella, Acidothermus, and Solirubrobacter were the important predictor groups inside the Heshang Cave, which were correlated to NH4 + availability. In contrast, Candidatus Nitrososphaera, Candidatus Nitrocosmicus, Thaumarchaeota Group 1.1c, and Pseudonocardiaceae were the predictors outside the cave, whose distribution was correlated with pH, Ca2+, and NO2 -. Tighter network structures were found in archaeal communities than those of bacteria, whereas the topological properties of bacterial networks were more similar to those of total prokaryotic networks. Both chemolithoautotrophic archaea (Candidatus Methanoperedens and Nitrosopumilaceae) and bacteria (subgroup 7 of Acidobacteria and Rokubacteriales) were the dominant keystone taxa within the co-occurrence networks, potentially playing fundamental roles in obtaining energy under oligotrophic conditions and thus maintaining the stability of the cave ecosystem. To be noted, all the keystone taxa of karst ecosystems were related to nitrogen cycling, which needs further investigation, particularly the role of archaea. The predicted ecological functions in karst soils mainly related to carbohydrate metabolism, biotin metabolism, and synthesis of fatty acid. Our results offer new insights into archaeal ecology, their potential functions, and archaeal interactions with bacteria, which enhance our understanding about the microbial dark matter in the subsurface karst ecosystems.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Xing Xiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- College of Life Science, Shangrao Normal University, Shangrao, China
| | - Yuan Yun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Weiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Paul L. E. Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
17
|
Wei C, Sun D, Yuan W, Li L, Dai C, Chen Z, Zeng X, Wang S, Zhang Y, Jiang S, Wu Z, Liu D, Jiang L, Peng S. Metagenomics revealing molecular profiles of microbial community structure and metabolic capacity in Bamucuo lake, Tibet. ENVIRONMENTAL RESEARCH 2023; 217:114847. [PMID: 36402183 DOI: 10.1016/j.envres.2022.114847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Microorganisms play critical ecological roles in the global biogeochemical cycles. However, extensive information on the microbial communities in Qinghai-Tibet Plateau (QTP), which is the highest plateau in the world, is still lacking, particularly in high elevation locations above 4500 m. Here, we performed a survey of th e soil and water microbial communities in Bamucuo Lake, Tibet, by using shotgun metagenomic methods. In the soil and water samples, we reconstructed 75 almost complete metagenomic assembly genomes, and 74 of the metagenomic assembly genomes from the water sample represented novel species. Proteobacteria and Actinobacteria were found to be the dominant bacterial phyla, while Euryarchaeota was the dominant archaeal phylum. The largest virus, Pandoravirus salinus, was found in the soil microbial community. We concluded that the microorganisms in Bamucuo Lake are most likely to fix carbon mainly through the 3-hydroxypropionic bi-cycle pathway. This study, for the first time, characterized the microbial community composition and metabolic capacity in QTP high-elevation locations with 4555 m, confirming that QTP is a vast and valuable resource pool, in which many microorganisms can be used to develop new bioactive substances and new antibiotics to which pathogenic microorganisms have not yet developed resistance.
Collapse
Affiliation(s)
- Cai Wei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China
| | - Dan Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China
| | - Wenliang Yuan
- College of Mathematics and Information Engineering, Jiaxing University, Jiaxing, 314033, PR China
| | - Lei Li
- Engineering Research Center of AI & Robotics, Ministry of Education, Academy for Engineering & Technology, Fudan University, Shanghai, 200433, PR China
| | - Chaoxu Dai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China
| | - Zuozhou Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China
| | - Xiaomin Zeng
- Central South University Xiangya Public Health School, Changsha, 410078, PR China
| | - Shihang Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China
| | - Yuyang Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China
| | - Shouwen Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China
| | - Zhichao Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China
| | - Dong Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China.
| | - Linhua Jiang
- Engineering Research Center of AI & Robotics, Ministry of Education, Academy for Engineering & Technology, Fudan University, Shanghai, 200433, PR China.
| | - Sihua Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, PR China; National Pathogen Collection Center for Aquatic Animals, Ministry of Agriculture of China, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, PR China.
| |
Collapse
|
18
|
Zhu HZ, Jiang CY, Liu SJ. Microbial roles in cave biogeochemical cycling. Front Microbiol 2022; 13:950005. [PMID: 36246268 PMCID: PMC9554484 DOI: 10.3389/fmicb.2022.950005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Among fundamental research questions in subterranean biology, the role of subterranean microbiomes playing in key elements cycling is a top-priority one. Karst caves are widely distributed subsurface ecosystems, and cave microbes get more and more attention as they could drive cave evolution and biogeochemical cycling. Research have demonstrated the existence of diverse microbes and their participance in biogeochemical cycling of elements in cave environments. However, there are still gaps in how these microbes sustain in caves with limited nutrients and interact with cave environment. Cultivation of novel cave bacteria with certain functions is still a challenging assignment. This review summarized the role of microbes in cave evolution and mineral deposition, and intended to inspire further exploration of microbial performances on C/N/S biogeocycles.
Collapse
Affiliation(s)
- Hai-Zhen Zhu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
19
|
Allenby A, Cunningham MR, Hillebrand-Voiculescu A, Comte JC, Doherty R, Kumaresan D. Occurrence of methane-oxidizing bacteria and methanogenic archaea in earth’s cave systems—A metagenomic analysis. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.909865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Karst ecosystems represent up to 25% of the land surface and recent studies highlight their potential role as a sink for atmospheric methane. Despite this, there is limited knowledge of the diversity and distribution of methane-oxidizing bacteria (MOB) or methanogens in karst caves and the sub-surface environment in general. Here, we performed a survey of 14 shotgun metagenomes from cave ecosystems covering a broad set of environmental conditions, to compare the relative abundance and phylogenetic diversity of MOB and methanogens, targeting biomarker genes for methane monooxygenase (pmoA and mmoX) and methyl-coenzyme M reductase (mcrA). Taxonomic analysis of metagenomes showed 0.02–1.28% of classified reads were related to known MOB, of which Gammaproteobacterial MOB were the most abundant making up on average 70% of the surveyed caves’ MOB community. Potential for biogenic methane production in caves was also observed, with 0.008–0.39% of reads classified to methanogens and was dominated by sequences related to Methanosarcina. We have also generated a cave ecosystems protein database (CEPD) based on protein level assembly of cave metagenomes that can be used to profile genes of interest.
Collapse
|
20
|
Reboleira AS, Bodawatta KH, Ravn NMR, Lauritzen SE, Skoglund RØ, Poulsen M, Michelsen A, Jønsson KA. Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil. ENVIRONMENTAL MICROBIOME 2022; 17:41. [PMID: 35941623 PMCID: PMC9361705 DOI: 10.1186/s40793-022-00435-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Subarctic regions are particularly vulnerable to climate change, yet little is known about nutrient availability and biodiversity of their cave ecosystems. Such knowledge is crucial for predicting the vulnerability of these ecosystems to consequences of climate change. Thus, to improve our understanding of life in these habitats, we characterized environmental variables, as well as bacterial and invertebrate communities of six subarctic caves in Northern Norway. RESULTS Only a minuscule diversity of surface-adapted invertebrates were found in these caves. However, the bacterial communities in caves were compositionally different, more diverse and more complex than the nutrient-richer surface soil. Cave soil microbiomes were less variable between caves than between surface communities in the same area, suggesting that the stable cave environments with tougher conditions drive the uniform microbial communities. We also observed only a small proportion of cave bacterial genera originating from the surface, indicating unique cave-adapted microbial communities. Increased diversity within caves may stem from higher niche specialization and levels of interdependencies for nutrient cycling among bacterial taxa in these oligotrophic environments. CONCLUSIONS Taken together this suggest that environmental changes, e.g., faster melting of snow as a result of global warming that could alter nutrient influx, can have a detrimental impact on interactions and dependencies of these complex communities. This comparative exploration of cave and surface microbiomes also lays the foundation to further investigate the long-term environmental variables that shape the biodiversity of these vulnerable ecosystems.
Collapse
Affiliation(s)
- Ana Sofia Reboleira
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal.
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark.
| | - Kasun H Bodawatta
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark
| | - Nynne M R Ravn
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark
| | - Stein-Erik Lauritzen
- Department of Earth Science, University of Bergen, Allegt. 41, 5007, Bergen, Norway
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, 0316, Oslo, Norway
| | | | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark
| | - Anders Michelsen
- Section for Terrestrial Ecology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark
| | - Knud Andreas Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark
| |
Collapse
|
21
|
The Rare Actinobacterium Crossiella sp. Is a Potential Source of New Bioactive Compounds with Activity against Bacteria and Fungi. Microorganisms 2022; 10:microorganisms10081575. [PMID: 36013993 PMCID: PMC9415966 DOI: 10.3390/microorganisms10081575] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance has become a global problem in recent decades. A gradual reduction in drug discoveries has led to the current antimicrobial resistance crisis. Caves and other subsurface environments are underexplored thus far, and they represent indispensable ecological niches that could offer new molecules of interest to medicine and biotechnology. We explored Spanish show caves to test the bioactivity of the bacteria dwelling in the walls and ceilings, as well as airborne bacteria. We reported the isolation of two strains of the genus Crossiella, likely representing a new species, isolated from Altamira Cave, Spain. In vitro and in silico analyses showed the inhibition of pathogenic Gram-positive and Gram-negative bacteria, and fungi, as well as the taxonomical distance of both strains from their closest relative, Crossiella cryophila. The presence of an exclusive combination of gene clusters involved in the synthesis of lanthipeptides, lasso peptides, nonribosomal peptides and polyketides indicates that species of this genus could represent a source of new compounds. Overall, there is promising evidence for antimicrobial discovery in subterranean environments, which increases the possibility of identifying new bioactive molecules.
Collapse
|
22
|
Cahoon AB, VanGundy RD. Alveolates (dinoflagellates, ciliates and apicomplexans) and Rhizarians are the most common microbial eukaryotes in temperate Appalachian karst caves. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:538-548. [PMID: 35388620 PMCID: PMC9542216 DOI: 10.1111/1758-2229.13060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The purpose of this study was to survey the eukaryotic microbiome of two karst caves in the Valley and Ridge physiographic region of the Appalachian Mountains. Caves are known to harbour eukaryotic microbes but their very low densities and small cell size make them difficult to collect and identify. Microeukaryotes were surveyed using two methodologies, filtering water and submerging glass microscope slides mounted in periphytometers in cave pools. The periphyton sampling yielded 13.5 times more unique amplicon sequence variants (ASVs) than filtered water. The most abundant protist supergroup was Alveolata with large proportions of the ASVs belonging to dinoflagellate, ciliate and apicomplexan clades. The next most abundant were Rhizarians followed by Stramenopiles (diatoms and chrysophytes) and Ameobozoans. Very few of the ASVs, 1.5%, matched curated protist sequences with greater than 99% identity and only 2.5% could be identified from surface plankton samples collected in the same region. The overall composition of the eukaryotic microbiome appears to be a combination of bacterial grazers and parasitic species that could possibly survive underground as well as cells, cysts and spores probably transported from the surface.
Collapse
Affiliation(s)
- A. Bruce Cahoon
- Department of Natural SciencesThe University of Virginia's College at WiseWiseVA24293USA
| | - Robert D. VanGundy
- Department of Natural SciencesThe University of Virginia's College at WiseWiseVA24293USA
| |
Collapse
|
23
|
Bontemps Z, Alonso L, Pommier T, Hugoni M, Moënne-Loccoz Y. Microbial ecology of tourist Paleolithic caves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151492. [PMID: 34793801 DOI: 10.1016/j.scitotenv.2021.151492] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms colonize caves extensively, and in caves open for tourism they may cause alterations on wall surfaces. This is a major concern in caves displaying Paleolithic art, which is usually fragile and may be irremediably damaged by microbial alterations. Therefore, many caves were closed for preservation purposes, e.g. Lascaux (France), Altamira (Spain), while others were never opened to the public to avoid microbial contamination, e.g. Chauvet Cave (France), etc. The recent development of high-throughput sequencing technologies allowed several descriptions of cave microbial diversity and prompted the writing of this review, which focuses on the cave microbiome for the three domains of life (Bacteria, Archaea, microeukaryotes), the impact of tourism-related anthropization on microorganisms in Paleolithic caves, and the development of microbial alterations on the walls of these caves. This review shows that the microbial phyla prevalent in pristine caves are similar to those evidenced in water, soil, plant and metazoan microbiomes, but specificities at lower taxonomic levels remain to be clarified. Most of the data relates to Bacteria and Fungi, while other microeukaryotes and Archaea are poorly documented. Tourism may cause shifts in the microbiota of Paleolithic caves, but larger-scale investigation are required as these shifts may differ from one cave to the next. Finally, different types of alterations can occur in caves, especially in Paleolithic caves. Many microorganisms potentially involved have been identified, but diversity analyses of these alterations have not always included a comparison with neighboring unaltered zones as controls, making such associations uncertain. It is expected that omics technologies will also allow a better understanding of the functional diversities of the cave microbiome. This will be needed to decipher microbiome dynamics in response to touristic frequentation, to guide cave management, and to identify the most appropriate reclamation approaches to mitigate microbial alterations in tourist Paleolithic caves.
Collapse
Affiliation(s)
- Zélia Bontemps
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Lise Alonso
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Thomas Pommier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Mylène Hugoni
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France.
| |
Collapse
|
24
|
Ai J, Guo J, Li Y, Zhong X, Lv Y, Li J, Yang A. The diversity of microbes and prediction of their functions in karst caves under the influence of human tourism activities-a case study of Zhijin Cave in Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25858-25868. [PMID: 34854002 DOI: 10.1007/s11356-021-17783-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms, sensitive to the surrounding environment changes, show how the cave environment can be impacted by human activities. Zhijin Cave, featured with the most well-developed karst landform in China, has been open to tourists for more than 30 years. This study explored the microbial diversity in a karst cave and the impacts of tourism activities on the microbial communities and the community structures of bacteria and archaea in three niches in Zhijin Cave, including the mixture of bacteria and cyanobacteria on the rock wall, the aquatic sediments, and the surface sediments, using 16S rRNA high-throughput sequencing technology. It was found that Actinobacteriota and Proteobacteria were the dominant bacteria in the cave and Crenarchaeota and Thermoplasmatota were the dominant archaea. The correlation between microorganisms and environmental variables in the cave showed that archaea were more affected by pH and ORP than bacteria and F-, Cl-, NO3-, and SO42- were all positively relevant to the distribution of most bacteria and archaea in the cave. PICRUSt's prediction of microbial functions also indicated that abundance of the bacteria's functions was higher than that of the archaea. The intention of this study was to improve the understanding, development, and protection of microbial resources in caves.
Collapse
Affiliation(s)
- Jia Ai
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 500025, China
| | - Jianeng Guo
- Management Office of Zhijin Cave Scenic Area, Bijie, 552100, Guizhou, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 500025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China.
| | - Xiong Zhong
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 500025, China
| | - Yang Lv
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 500025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 500025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China
| | - Aijiang Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 500025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China
| |
Collapse
|
25
|
Bendia AG, Callefo F, Araújo MN, Sanchez E, Teixeira VC, Vasconcelos A, Battilani G, Pellizari VH, Rodrigues F, Galante D. Metagenome-Assembled Genomes from Monte Cristo Cave (Diamantina, Brazil) Reveal Prokaryotic Lineages As Functional Models for Life on Mars. ASTROBIOLOGY 2022; 22:293-312. [PMID: 34694925 DOI: 10.1089/ast.2021.0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microbial communities have been explored in various terrestrial subsurface ecosystems, showing metabolic potentials that could generate noteworthy morphological and molecular biosignatures. Recent advancements in bioinformatic tools have allowed for descriptions of novel and yet-to-be cultivated microbial lineages in different ecosystems due to the genome reconstruction approach from metagenomic data. Using shotgun metagenomic data, we obtained metagenome-assembled genomes related to cultivated and yet-to-be cultivated prokaryotic lineages from a silica and iron-rich cave (Monte Cristo) in Minas Gerais State, Brazil. The Monte Cristo Cave has been shown to possess a high diversity of genes involved with different biogeochemical cycles, including reductive and oxidative pathways related to carbon, sulfur, nitrogen, and iron. Three genomes were selected for pangenomic analysis, assigned as Truepera sp., Ca. Methylomirabilis sp., and Ca. Koribacter sp. based on their lifestyles (radiation resistance, anaerobic methane oxidation, and potential iron oxidation). These bacteria exhibit genes involved with multiple DNA repair strategies, starvation, and stress response. Because these groups have few reference genomes deposited in databases, our study adds important genomic information about these lineages. The combination of techniques applied in this study allowed us to unveil the potential relationships between microbial genomes and their ecological processes with the cave mineralogy and highlight the lineages involved with anaerobic methane oxidation, iron oxidation, and radiation resistance as functional models for the search for extant life-forms outside our planet in silica- and iron-rich environments and potentially on Mars.
Collapse
Affiliation(s)
- Amanda G Bendia
- Biological Oceanography Department, Oceanographic Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Flavia Callefo
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Maicon N Araújo
- Fundamental Chemistry Department, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Evelyn Sanchez
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri, Diamantina, Brazil
| | - Verônica C Teixeira
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Alessandra Vasconcelos
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri, Diamantina, Brazil
| | - Gislaine Battilani
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri, Diamantina, Brazil
| | - Vivian H Pellizari
- Biological Oceanography Department, Oceanographic Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Fabio Rodrigues
- Fundamental Chemistry Department, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Douglas Galante
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
26
|
Predicted functional genes for the biodegradation of xenobiotics in groundwater and sediment at two contaminated naval sites. Appl Microbiol Biotechnol 2022; 106:835-853. [DOI: 10.1007/s00253-021-11756-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/23/2021] [Accepted: 12/27/2021] [Indexed: 11/02/2022]
|
27
|
Peña-Ocaña BA, Ovando-Ovando CI, Puente-Sánchez F, Tamames J, Servín-Garcidueñas LE, González-Toril E, Gutiérrez-Sarmiento W, Jasso-Chávez R, Ruíz-Valdiviezo VM. Metagenomic and metabolic analyses of poly-extreme microbiome from an active crater volcano lake. ENVIRONMENTAL RESEARCH 2022; 203:111862. [PMID: 34400165 DOI: 10.1016/j.envres.2021.111862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
El Chichón volcano is one of the most active volcanoes in Mexico. Previous studies have described its poly-extreme conditions and its bacterial composition, although the functional features of the complete microbiome have not been characterized yet. By using metabarcoding analysis, metagenomics, metabolomics and enzymology techniques, the microbiome of the crater lake was characterized in this study. New information is provided on the taxonomic and functional diversity of the representative Archaea phyla, Crenarchaeota and Euryarchaeota, as well as those that are representative of Bacteria, Thermotogales and Aquificae. With culture of microbial consortia and with the genetic information collected from the natural environment sampling, metabolic interactions were identified between prokaryotes, which can withstand multiple extreme conditions. The existence of a close relationship between the biogeochemical cycles of carbon and sulfur in an active volcano has been proposed, while the relationship in the energy metabolism of thermoacidophilic bacteria and archaea in this multi-extreme environment was biochemically revealed for the first time. These findings contribute towards understanding microbial metabolism under extreme conditions, and provide potential knowledge pertaining to "microbial dark matter", which can be applied to biotechnological processes and evolutionary studies.
Collapse
Affiliation(s)
- Betsy Anaid Peña-Ocaña
- Tecnologico Nacional de México / IT de Tuxtla Gutierrez, Tuxtla Gutiérrez, Chiapas, Mexico; Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | | - Fernando Puente-Sánchez
- Microbiome Analysis Laboratory, Systems Biology Department, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Department of Aquatic Sciences and Assessment, Swedish University for Agricultural Sciences (SLU), Lennart Hjelms väg 9, 756 51, Uppsala, Sweden
| | - Javier Tamames
- Microbiome Analysis Laboratory, Systems Biology Department, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | | | | | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico.
| | | |
Collapse
|
28
|
Ye D, Li X, Shen J, Xia X. Microbial metabolomics: From novel technologies to diversified applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Microbial Interactions Drive Distinct Taxonomic and Potential Metabolic Responses to Habitats in Karst Cave Ecosystem. Microbiol Spectr 2021; 9:e0115221. [PMID: 34494852 PMCID: PMC8557908 DOI: 10.1128/spectrum.01152-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The geological role of microorganisms has been widely studied in the karst cave ecosystem. However, microbial interactions and ecological functions in such a dark, humid, and oligotrophic habitat have received far less attention, which is crucial to understanding cave biogeochemistry. Herein, microorganisms from weathered rock and sediment along the Heshang Cave depth were analyzed by random matrix theory-based network and Tax4Fun functional prediction. The results showed that although the cave microbial communities have spatial heterogeneity, differential habitats drove the community structure and diversity. Actinobacteria were predominant in weathered rock, whereas Proteobacteria dominated the sediment. The sediment communities presented significantly higher alpha diversities due to the relatively abundant nutrition from the outside by the intermittent stream. Consistently, microbial interactions in sediment were more complex, as visualized by more nodes and links. The abundant taxa presented more positive correlations with other community members in both of the two networks, indicating that they relied on promotion effects to adapt to the extreme environment. The keystones in weathered rock were mainly involved in the biodegradation of organic compounds, whereas the keystone Nitrospira in sediment contributed to carbon/nitrogen fixation. Collectively, these findings suggest that microbial interactions may lead to distinct taxonomic and functional communities in weathered rock and sediment in the subsurface Heshang Cave. IMPORTANCE In general, the constant physicochemical conditions and limited nutrient sources over long periods in the subsurface support a stable ecosystem in karst cave. Previous studies on cave microbial ecology were mostly focused on community composition, diversity, and the relationship with local environmental factors. There are still many unknowns about the microbial interactions and functions in such a dark environment with little human interference. Two representative habitats, including weathered rock and sediment in Heshang Cave, were selected to give an integrated insight into microbial interactions and potential functions. The cooccurrence network, especially the subnetwork, was used to characterize the cave microbial interactions in detail. We demonstrated that abundant taxa primarily relied on promotion effects rather than inhibition effects to survive in Heshang Cave. Keystone species may play important metabolic roles in sustaining ecological functions. Our study provides improved understanding of microbial interaction patterns and community ecological functions in the karst cave ecosystem.
Collapse
|
30
|
Wasti IG, Khan FAA, Bernard H, Hassan NH, Fayle T, Sathiya Seelan JS. Fungal communities in bat guano, speleothem surfaces, and cavern water in Madai cave, Northern Borneo (Malaysia). Mycology 2021; 12:188-202. [PMID: 34552810 PMCID: PMC8451656 DOI: 10.1080/21501203.2021.1877204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The island of Borneo is a global biodiversity hotspot. However, its limestone caves are one of its least-studied ecosystems. We report for the first time the fungal species richness, diversity and abundance from Madai cave, situated in north-eastern Borneo. Environmental samples from inside the cave environment were collected (guano, speleothem, and cavern water) via opportunistic sampling. The dilution method was performed for isolation of fungi. Morphological characterisation and molecular analysis of the ITS region were utilised for the identification of isolates. Fifty-five pure cultures of fungi were attained, comprising 32 species from 15 genera, eight orders, and two divisions, Ascomycota and Basidiomycota. Ascomycetes dominated the fungal composition, accounting for 53 (96%) out of 55 total isolates. Penicillium spp. accounted for more than 47.1% of fungal abundance in all sample types. However, Aspergillus spp. had the highest occurrence rate, being isolated from all environmental samples except one. Purpureocillium lilacinum was isolated most frequently, appearing in five separate samples across all three substrates. Annulohypoxylon nitens, Ganoderma australe, Pyrrhoderma noxium, and Xylaria feejeensis were discovered and reported for the first time from the cave environment. This study provides additional data for further research on the mycoflora of Sabah’s various ecosystems, especially limestone caves.
Collapse
Affiliation(s)
- Ibrahem G Wasti
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.,Faculty of Natural Science and Sustainability, University College Sabah Foundation, Sabah, Malaysia
| | - Faisal Ali Anwarali Khan
- Department of Zoology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Sarawak, Malaysia
| | - Henry Bernard
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Noor Haliza Hassan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Tom Fayle
- Department of Biodiversity and Conservation Biology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
31
|
Evaluation of Plant Origin Essential Oils as Herbal Biocides for the Protection of Caves Belonging to Natural and Cultural Heritage Sites. Microorganisms 2021; 9:microorganisms9091836. [PMID: 34576731 PMCID: PMC8470480 DOI: 10.3390/microorganisms9091836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022] Open
Abstract
The present study concerns the serious issue of biodeterioration of the caves belonging to natural and cultural heritage sites due to the development of various microorganisms. Thus, a series of 18 essential oils (EOs) extracted from various Greek plants were evaluated in vitro (concentrations of 0.1, 0.2, 0.5, 1.0 and 5.0% v/v) against 35 bacterial and 31 fungi isolates (isolated from a Greek cave) and the antimicrobial activity was evident through the changes in optical density of microbial suspensions. In continuance, eight (8) representative bacterial and fungal isolates were further used to evaluate the minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values of the most effective EOs. According to the results, two EOs of Origanum vulgare were the most effective by inhibiting the growth of all the tested microorganisms at 0.1% (v/v), followed by that of Satureja thymbra which inhibited all bacterial isolates at 0.1% (v/v) and fungal isolates at 0.1, 0.2 and 0.5% (v/v) (depending on the isolate). The MIC ranged between 0.015–0.157 and 0.013–0.156 (v/v) for the bacterial and fungal isolates respectively, depending on the case. The current study demonstrated that conventional biocides may be replaced by herbal biocides with significant prospects for commercial exploitation.
Collapse
|
32
|
Koner S, Chen JS, Hsu BM, Tan CW, Fan CW, Chen TH, Hussain B, Nagarajan V. Assessment of Carbon Substrate Catabolism Pattern and Functional Metabolic Pathway for Microbiota of Limestone Caves. Microorganisms 2021; 9:microorganisms9081789. [PMID: 34442868 PMCID: PMC8398112 DOI: 10.3390/microorganisms9081789] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022] Open
Abstract
Carbon utilization of bacterial communities is a key factor of the biomineralization process in limestone-rich curst areas. An efficient carbon catabolism of the microbial community is associated with the availability of carbon sources in such an ecological niche. As cave environments promote oligotrophic (carbon source stress) situations, the present study investigated the variations of different carbon substrate utilization patterns of soil and rock microbial communities between outside and inside cave environments in limestone-rich crust topography by Biolog EcoPlate™ assay and categorized their taxonomical structure and predicted functional metabolic pathways based on 16S rRNA amplicon sequencing. Community level physiological profiling (CLPP) analysis by Biolog EcoPlate™ assay revealed that microbes from outside of the cave were metabolically active and had higher carbon source utilization rate than the microbial community inside the cave. 16S rRNA amplicon sequence analysis demonstrated, among eight predominant bacterial phylum Planctomycetes, Proteobacteria, Cyanobacteria, and Nitrospirae were predominantly associated with outside-cave samples, whereas Acidobacteria, Actinobacteria, Chloroflexi, and Gemmatimonadetes were associated with inside-cave samples. Functional prediction showed bacterial communities both inside and outside of the cave were functionally involved in the metabolism of carbohydrates, amino acids, lipids, xenobiotic compounds, energy metabolism, and environmental information processing. However, the amino acid and carbohydrate metabolic pathways were predominantly linked to the outside-cave samples, while xenobiotic compounds, lipids, other amino acids, and energy metabolism were associated with inside-cave samples. Overall, a positive correlation was observed between Biolog EcoPlate™ assay carbon utilization and the abundance of functional metabolic pathways in this study.
Collapse
Affiliation(s)
- Suprokash Koner
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (S.K.); (B.H.)
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (C.-W.F.); (V.N.)
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung 824, Taiwan;
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (C.-W.F.); (V.N.)
- Center for Innovative on Aging Society (CIRAS), National Chung Cheng University, Chiayi City 621, Taiwan
- Correspondence: ; Tel.: +886-5272-0411 (ext. 66218)
| | - Chao-Wen Tan
- Division of Cardiology, Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 600, Taiwan;
| | - Cheng-Wei Fan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (C.-W.F.); (V.N.)
| | - Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 600, Taiwan;
| | - Bashir Hussain
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (S.K.); (B.H.)
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (C.-W.F.); (V.N.)
| | - Viji Nagarajan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (C.-W.F.); (V.N.)
| |
Collapse
|
33
|
Nir I, Barak H, Kramarsky-Winter E, Kushmaro A, de Los Ríos A. Microscopic and biomolecular complementary approaches to characterize bioweathering processes at petroglyph sites from the Negev Desert, Israel. Environ Microbiol 2021; 24:967-980. [PMID: 34110072 DOI: 10.1111/1462-2920.15635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022]
Abstract
Throughout the Negev Desert highlands, thousands of ancient petroglyphs sites are susceptible to deterioration processes that may result in the loss of this unique rock art. Therefore, the overarching goal of the current study was to characterize the composition, diversity and effects of microbial colonization of the rocks to find ways of protecting these unique treasures. The spatial organization of the microbial colonizers and their relationships with the lithic substrate were analysed using scanning electron microscopy. This approach revealed extensive epilithic and endolithic colonization and close microbial-mineral interactions. Shotgun sequencing analysis revealed various taxa from the archaea, bacteria and some eukaryotes. Metagenomic coding sequences (CDS) of these microbial lithobionts exhibited specific metabolic pathways involved in the rock elements' cycles and uptake processes. Thus, our results provide evidence for the potential participation of the microorganisms colonizing these rocks during different solubilization and mineralization processes. These damaging actions may contribute to the deterioration of this extraordinary rock art and thus threaten this valuable heritage. Shotgun metagenomic sequencing, in conjunction with the in situ scanning electron microscopy study, can thus be considered an effective strategy to understand the complexity of the weathering processes occurring at petroglyph sites and other cultural heritage assets.
Collapse
Affiliation(s)
- Irit Nir
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva, 8410501, Israel
| | - Hana Barak
- Unit of Environmental Engineering, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Esti Kramarsky-Winter
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva, 8410501, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva, 8410501, Israel.,The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Asunción de Los Ríos
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
34
|
Lampenflora in a Show Cave in the Great Basin Is Distinct from Communities on Naturally Lit Rock Surfaces in Nearby Wild Caves. Microorganisms 2021; 9:microorganisms9061188. [PMID: 34072861 PMCID: PMC8227912 DOI: 10.3390/microorganisms9061188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
In show caves, artificial lighting is intended to illuminate striking cave formations for visitors. However, artificial lighting also promotes the growth of novel and diverse biofilm communities, termed lampenflora, that obtain their energy from these artificial light sources. Lampenflora, which generally consist of cyanobacteria, algae, diatoms, and bryophytes, discolor formations and introduce novel ecological interactions in cave ecosystems. The source of lampenflora community members and patterns of diversity have generally been understudied mainly due to technological limitations. In this study, we investigate whether members of lampenflora communities in an iconic show cave—Lehman Caves—in Great Basin National Park (GRBA) in the western United States also occur in nearby unlit and rarely visited caves. Using a high-throughput environmental DNA metabarcoding approach targeting three loci—the ITS2 (fungi), a fragment of the 16S (bacteria), and a fragment of 23S (photosynthetic bacteria and eukaryotes)—we characterized diversity of lampenflora communities occurring near artificial light sources in Lehman Caves and rock surfaces near the entrances of seven nearby “wild” caves. Most caves supported diverse and distinct microbial-dominated communities, with little overlap in community members among caves. The lampenflora communities in the show cave were distinct, and generally less diverse, from those occurring in nearby unlit caves. Our results suggest an unidentified source for a significant proportion of lampenflora community members in Lehman Caves, with the majority of community members not found in nearby wild caves. Whether the unique members of the lampenflora communities in Lehman Caves are related to distinct abiotic conditions, increased human visitation, or other factors remains unknown. These results provide a valuable framework for future research exploring lampenflora community assemblies in show caves, in addition to a broad perspective into the range of microbial and lampenflora community members in GRBA. By more fully characterizing these communities, we can better monitor the establishment of lampenflora and design effective strategies for their management and removal.
Collapse
|
35
|
Gonzalez-Pimentel JL, Martin-Pozas T, Jurado V, Miller AZ, Caldeira AT, Fernandez-Lorenzo O, Sanchez-Moral S, Saiz-Jimenez C. Prokaryotic communities from a lava tube cave in La Palma Island (Spain) are involved in the biogeochemical cycle of major elements. PeerJ 2021; 9:e11386. [PMID: 34026356 PMCID: PMC8121065 DOI: 10.7717/peerj.11386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/10/2021] [Indexed: 11/21/2022] Open
Abstract
Lava caves differ from karstic caves in their genesis and mineral composition. Subsurface microbiology of lava tube caves in Canary Islands, a volcanic archipelago in the Atlantic Ocean, is largely unknown. We have focused the investigation in a representative lava tube cave, Fuente de la Canaria Cave, in La Palma Island, Spain, which presents different types of speleothems and colored microbial mats. Four samples collected in this cave were studied using DNA next-generation sequencing and field emission scanning electron microscopy for bacterial identification, functional profiling, and morphological characterization. The data showed an almost exclusive dominance of Bacteria over Archaea. The distribution in phyla revealed a majority abundance of Proteobacteria (37-89%), followed by Actinobacteria, Acidobacteria and Candidatus Rokubacteria. These four phyla comprised a total relative abundance of 72-96%. The main ecological functions in the microbial communities were chemoheterotrophy, methanotrophy, sulfur and nitrogen metabolisms, and CO2 fixation; although other ecological functions were outlined. Genome annotations of the especially representative taxon Ga0077536 (about 71% of abundance in moonmilk) predicted the presence of genes involved in CO2 fixation, formaldehyde consumption, sulfur and nitrogen metabolisms, and microbially-induced carbonate precipitation. The detection of several putative lineages associated with C, N, S, Fe and Mn indicates that Fuente de la Canaria Cave basalts are colonized by metabolically diverse prokaryotic communities involved in the biogeochemical cycling of major elements.
Collapse
Affiliation(s)
| | | | - Valme Jurado
- Environmental Microbiology, Instituto de Recursos Naturales y Agrobiologia, CSIC, Sevilla, Spain
| | | | | | | | | | - Cesareo Saiz-Jimenez
- Environmental Microbiology, Instituto de Recursos Naturales y Agrobiologia, CSIC, Sevilla, Spain
| |
Collapse
|
36
|
Park CJ, Caimi NA, Buecher DC, Valdez EW, Northup DE, Andam CP. Unexpected genomic, biosynthetic and species diversity of Streptomyces bacteria from bats in Arizona and New Mexico, USA. BMC Genomics 2021; 22:247. [PMID: 33827425 PMCID: PMC8028829 DOI: 10.1186/s12864-021-07546-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background Antibiotic-producing Streptomyces bacteria are ubiquitous in nature, yet most studies of its diversity have focused on free-living strains inhabiting diverse soil environments and those in symbiotic relationship with invertebrates. Results We studied the draft genomes of 73 Streptomyces isolates sampled from the skin (wing and tail membranes) and fur surfaces of bats collected in Arizona and New Mexico. We uncovered large genomic variation and biosynthetic potential, even among closely related strains. The isolates, which were initially identified as three distinct species based on sequence variation in the 16S rRNA locus, could be distinguished as 41 different species based on genome-wide average nucleotide identity. Of the 32 biosynthetic gene cluster (BGC) classes detected, non-ribosomal peptide synthetases, siderophores, and terpenes were present in all genomes. On average, Streptomyces genomes carried 14 distinct classes of BGCs (range = 9–20). Results also revealed large inter- and intra-species variation in gene content (single nucleotide polymorphisms, accessory genes and singletons) and BGCs, further contributing to the overall genetic diversity present in bat-associated Streptomyces. Finally, we show that genome-wide recombination has partly contributed to the large genomic variation among strains of the same species. Conclusions Our study provides an initial genomic assessment of bat-associated Streptomyces that will be critical to prioritizing those strains with the greatest ability to produce novel antibiotics. It also highlights the need to recognize within-species variation as an important factor in genetic manipulation studies, diversity estimates and drug discovery efforts in Streptomyces. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07546-w.
Collapse
Affiliation(s)
- Cooper J Park
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Nicole A Caimi
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | | - Ernest W Valdez
- Department of Biology, University of New Mexico, Albuquerque, NM, USA.,U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| | - Diana E Northup
- Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
37
|
Morse KV, Richardson DR, Brown TL, Vangundy RD, Cahoon AB. Longitudinal metabarcode analysis of karst bacterioplankton microbiomes provide evidence of epikarst to cave transport and community succession. PeerJ 2021; 9:e10757. [PMID: 33732542 PMCID: PMC7950216 DOI: 10.7717/peerj.10757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023] Open
Abstract
Caves are often assumed to be static environments separated from weather changes experienced on the surface. The high humidity and stability of these subterranean environments make them attractive to many different organisms including microbes such as bacteria and protists. Cave waters generally originate from the surface, may be filtered by overlying soils, can accumulate in interstitial epikarst zones underground, and emerge in caves as streams, pools and droplets on speleothems. Water movement is the primary architect of karst caves, and depending on the hydrologic connectivity between surface and subsurface, is the most likely medium for the introduction of microbes to caves. Recently published metabarcoding surveys of karst cave soils and speleothems have suggested that the vast majority of bacteria residing in these habitats do not occur on the surface, calling into question the role of microbial transport by surface waters. The purpose of this study was to use metabarcoding to monitor the aquatic prokaryotic microbiome of a cave for 1 year, conduct longitudinal analyses of the cave's aquatic bacterioplankton, and compare it to nearby surface water. Water samples were collected from two locations inside Panel Cave in Natural Tunnel State Park in Duffield, VA and two locations outside of the cave. Of the two cave locations, one was fed by groundwater and drip water and the other by infiltrating surface water. A total of 1,854 distinct prokaryotic ASVs were detected from cave samples and 245 (13.1%) were not found in surface samples. PCo analysis demonstrated a marginal delineation between two cave sample sites and between cave and surface microbiomes suggesting the aquatic bacterioplankton in a karst cave is much more similar to surface microbes than reported from speleothems and soils. Most surprisingly, there was a cave microbe population and diversity bloom in the fall months whereas biodiversity remained relatively steady on the surface. The cave microbiome was more similar to the surface before the bloom than during and afterwards. This event demonstrates that large influxes of bacteria and particulate organic matter can enter the cave from either the surface or interstitial zones and the divergence of the cave microbiome from the surface demonstrates movement of microbes from the epikarst zones into the cave.
Collapse
|
38
|
Lukoseviciute L, Lebedeva J, Kuisiene N. Diversity of Polyketide Synthases and Nonribosomal Peptide Synthetases Revealed Through Metagenomic Analysis of a Deep Oligotrophic Cave. MICROBIAL ECOLOGY 2021; 81:110-121. [PMID: 32638044 DOI: 10.1007/s00248-020-01554-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Caves are considered to be extreme and challenging environments. It is believed that the ability of microorganisms to produce secondary metabolites enhances their survivability and adaptiveness in the energy-starved cave environment. Unfortunately, information on the genetic potential for the production of secondary metabolites, such as polyketides and nonribosomal peptides, is limited. In the present study, we aimed to identify and characterize genes responsible for the production of secondary metabolites in the microbial community of one of the deepest caves in the world, Krubera-Voronja Cave (43.4184 N 40.3083 E, Western Caucasus). The analysed sample materials included sediments, drinkable water from underground camps, soil and clay from the cave walls, speleothems and coloured spots from the cave walls. The type II polyketide synthases (PKSs) ketosynthases α and β and the adenylation domains of nonribosomal peptide synthetases (NRPSs) were investigated using a metagenomic approach. Taxonomic diversity analysis showed that most PKS sequences could be attributed to Actinobacteria followed by unclassified bacteria and Acidobacteria, while the NRPS sequences were more taxonomically diverse and could be assigned to Proteobacteria, Actinobacteria, Cyanobacteria, Firmicutes, Chloroflexi, etc. Only three putative metabolites could be predicted: an angucycline group polyketide, a massetolide A-like cyclic lipopeptide and a surfactin-like lipopeptide. The absolute majority of PKS and NRPS sequences showed low similarity with the sequences of the reference biosynthetic pathways, suggesting that these sequences could be involved in the production of novel secondary metabolites.
Collapse
Affiliation(s)
- Laima Lukoseviciute
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jolanta Lebedeva
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Nomeda Kuisiene
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
39
|
Turrini P, Tescari M, Visaggio D, Pirolo M, Lugli GA, Ventura M, Frangipani E, Visca P. The microbial community of a biofilm lining the wall of a pristine cave in Western New Guinea. Microbiol Res 2020; 241:126584. [DOI: 10.1016/j.micres.2020.126584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023]
|
40
|
Verma D, Satyanarayana T. Xylanolytic Extremozymes Retrieved From Environmental Metagenomes: Characteristics, Genetic Engineering, and Applications. Front Microbiol 2020; 11:551109. [PMID: 33042057 PMCID: PMC7527525 DOI: 10.3389/fmicb.2020.551109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/21/2020] [Indexed: 01/29/2023] Open
Abstract
Xylanolytic enzymes have extensive applications in paper, food, and feed, pharmaceutical, and biofuel industries. These industries demand xylanases that are functional under extreme conditions, such as high temperature, acidic/alkaline pH, and others, which are prevailing in bioprocessing industries. Despite the availability of several xylan-hydrolyzing enzymes from cultured microbes, there is a huge gap between what is available and what industries require. DNA manipulations as well as protein-engineering techniques are also not quite satisfactory in generating xylan-hydrolyzing extremozymes. With a compound annual growth rate of 6.6% of xylan-hydrolyzing enzymes in the global market, there is a need for xylanolytic extremozymes. Therefore, metagenomic approaches have been employed to uncover hidden xylanolytic genes that were earlier inaccessible in culture-dependent approaches. Appreciable success has been achieved in retrieving several unusual xylanolytic enzymes with novel and desirable characteristics from different extreme environments using functional and sequence-based metagenomic approaches. Moreover, the Carbohydrate Active Enzymes database includes approximately 400 GH-10 and GH-11 unclassified xylanases. This review discusses sources, characteristics, and applications of xylanolytic enzymes obtained through metagenomic approaches and their amelioration by genetic engineering techniques.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Microbiology, Babasaheb Bhimrao Ambedkar (Central) University, Lucknow, India
| | - Tulasi Satyanarayana
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| |
Collapse
|
41
|
Newberry E, Bhandari R, Kemble J, Sikora E, Potnis N. Genome-resolved metagenomics to study co-occurrence patterns and intraspecific heterogeneity among plant pathogen metapopulations. Environ Microbiol 2020; 22:2693-2708. [PMID: 32207218 DOI: 10.1111/1462-2920.14989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 01/12/2023]
Abstract
Assessment of pathogen diversity in agricultural fields is essential for informing management decisions and the development of resistant plant varieties. However, many population genomic studies have relied on culture-based approaches that do not provide quantitative assessment of pathogen populations at the field-level or the associated host microbiome. Here, we applied whole-genome shotgun sequencing of microbial DNA extracted directly from the washings of pooled leaf samples, collected from individual tomato and pepper fields in Alabama that displayed the classical symptoms of bacterial spot disease caused by Xanthomonas spp. Our results revealed that while the occurrence of both X. perforans and X. euvesicatoria within fields was limited, evidence of co-occurrence of up to three distinct X. perforans genotypes was obtained in 7 of 10 tomato fields sampled. These population dynamics were accompanied by the corresponding type 3 secreted effector repertoires associated with the co-occurring X. perforans genotypes, indicating that metapopulation structure within fields should be considered when assessing the adaptive potential of X. perforans. Finally, analysis of microbial community composition revealed that co-occurrence of the bacterial spot pathogens Pseudomonas cichorii and Xanthomonas spp. is common in Alabama fields and provided evidence for the non-random association of several other human and plant opportunists.
Collapse
Affiliation(s)
- Eric Newberry
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Rishi Bhandari
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Joseph Kemble
- Department of Horticulture, Auburn University, Auburn, AL, USA
| | - Edward Sikora
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA.,Alabama Cooperative Extension System, Auburn, AL, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| |
Collapse
|
42
|
Jo J, Oh J, Park C. Microbial community analysis using high-throughput sequencing technology: a beginner's guide for microbiologists. J Microbiol 2020; 58:176-192. [PMID: 32108314 DOI: 10.1007/s12275-020-9525-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
Microbial communities present in diverse environments from deep seas to human body niches play significant roles in the complex ecosystem and human health. Characterizing their structural and functional diversities is indispensable, and many approaches, such as microscopic observation, DNA fingerprinting, and PCR-based marker gene analysis, have been successfully applied to identify microorganisms. Since the revolutionary improvement of DNA sequencing technologies, direct and high-throughput analysis of genomic DNA from a whole environmental community without prior cultivation has become the mainstream approach, overcoming the constraints of the classical approaches. Here, we first briefly review the history of environmental DNA analysis applications with a focus on profiling the taxonomic composition and functional potentials of microbial communities. To this end, we aim to introduce the shotgun metagenomic sequencing (SMS) approach, which is used for the untargeted ("shotgun") sequencing of all ("meta") microbial genomes ("genomic") present in a sample. SMS data analyses are performed in silico using various software programs; however, in silico analysis is typically regarded as a burden on wet-lab experimental microbiologists. Therefore, in this review, we present microbiologists who are unfamiliar with in silico analyses with a basic and practical SMS data analysis protocol. This protocol covers all the bioinformatics processes of the SMS analysis in terms of data preprocessing, taxonomic profiling, functional annotation, and visualization.
Collapse
Affiliation(s)
- Jihoon Jo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jooseong Oh
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
43
|
Zeng B, Zhang S, Xu H, Kong F, Yu X, Wang P, Yang M, Li D, Zhang M, Ni Q, Li Y, Fan X, Yang D, Ning R, Zhao J, Li Y. Gut microbiota of Tibetans and Tibetan pigs varies between high and low altitude environments. Microbiol Res 2020; 235:126447. [PMID: 32114362 DOI: 10.1016/j.micres.2020.126447] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/13/2020] [Accepted: 02/22/2020] [Indexed: 12/17/2022]
Abstract
This study set out to investigate the relationship between gut microbiota composition and host adaptation to high altitude conditions. Fecal samples from both high and low altitude humans and pigs were studied using multi-omics methods. 16S ribosomal meta-analysis results showed significant differences in bacterial diversity and composition between high and low altitude members of the same species, as well as between different species. Acinetobacter, Pseudomonas, and Sphingobacterium were the three most abundant bacterial genera found in high altitude fecal samples of both humans and pigs. The alpha diversities of microbiota from Chinese people were found to be relatively lower than those of people in other countries. We found significant convergent trends in microbial metagenome compositions between Tibetans and Tibetan pigs living at high altitudes, and significant differences between these and their low-altitude counterparts. Metabolic pathways related to energy metabolism, amino-acid metabolism, and carbohydrate metabolism were consistently enriched at high altitudes, in both Tibetans and Tibetan pigs. Propanoic acid and octadecanoic acid were significantly elevated in high-altitude Tibetan pigs, and genes related to these two metabolites were also up-regulated. Thus, this study revealed that unique gut bacteriomes and their functions may be closely related to environmental host adaptation in high altitude conditions, such as those in the Tibetan plateau.
Collapse
Affiliation(s)
- Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.
| | - Siyuan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Xianqiong Yu
- Animal Husbandry and Technology Bureau of Daocheng County, Daocheng, Ganzi Tibetan Autonomous Prefecture, China
| | - Ping Wang
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, China
| | - Mingyao Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingwang Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qingyong Ni
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaolan Fan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Deying Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ruihong Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Ying Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|