1
|
Yang P, Li J, Lv M, He P, Song G, Shan B, Yang X. Molecular Epidemiology and Horizontal Transfer Mechanism of optrA-Carrying Linezolid-Resistant Enterococcus faecalis. Pol J Microbiol 2024; 73:349-362. [PMID: 39268957 PMCID: PMC11395433 DOI: 10.33073/pjm-2024-031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/06/2024] [Indexed: 09/15/2024] Open
Abstract
The aim of this work was to provide a theoretical and scientific basis for the treatment, prevention, and control of clinical drug-resistant bacterial infections by studying the molecular epidemiology and horizontal transfer mechanism of optrA-carrying linezolid-resistant Enterococcus faecalis strains (LREfs) that were clinically isolated in a tertiary hospital in Kunming, China. Non-repetitive LREfs retained in a tertiary A hospital in Kunming, China. The strains were identified by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The transferability and horizontal transfer mechanism of optrA gene were analyzed using polymerase chain reaction (PCR), whole-genome sequencing (WGS), and conjugation experiments. A total of 39 LREfs strains were collected, and all of them were multi-drug resistant. There were 30 LREfs strains (76.9%) carrying the optrA gene, The cfr, poxtA genes and mutations in the 23S rRNA gene were not detected. The conjugation experiments showed that only three of 10 randomly selected optrA-carrying LREfs were successfully conjugated with JH2-2. Further analysis of one successfully conjugated strain revealed that the optrA gene, located in the donor bacterium, formed the IS1216E-erm(A)-optrA-fexA-IS1216E transferable fragment under the mediation of the mobile genetic element (MGE) IS1216E, which was then transferred to the recipient bacterium via horizontal plasmid transfer. Carrying the optrA gene is the primary resistance mechanism of LREfs strains. The optrA gene could carry the erm(A) and fexA genes to co-transfer among E. faecalis. MGEs such as insertion sequence IS1216E play an important role in the horizontal transfer of the optrA gene.
Collapse
Affiliation(s)
- Peini Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiang Li
- Department of Blood Transfusion, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Lv
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pingan He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guibo Song
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bin Shan
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xu Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Zaidi SEZ, Zaheer R, Zovoilis A, McAllister TA. Enterococci as a One Health indicator of antimicrobial resistance. Can J Microbiol 2024; 70:303-335. [PMID: 38696839 DOI: 10.1139/cjm-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The rapid increase of antimicrobial-resistant bacteria in humans and livestock is concerning. Antimicrobials are essential for the treatment of disease in modern day medicine, and their misuse in humans and food animals has contributed to an increase in the prevalence of antimicrobial-resistant bacteria. Globally, antimicrobial resistance is recognized as a One Health problem affecting humans, animals, and environment. Enterococcal species are Gram-positive bacteria that are widely distributed in nature. Their occurrence, prevalence, and persistence across the One Health continuum make them an ideal candidate to study antimicrobial resistance from a One Health perspective. The objective of this review was to summarize the role of enterococci as an indicator of antimicrobial resistance across One Health sectors. We also briefly address the prevalence of enterococci in human, animal, and environmental settings. In addition, a 16S RNA gene-based phylogenetic tree was constructed to visualize the evolutionary relationship among enterococcal species and whether they segregate based on host environment. We also review the genomic basis of antimicrobial resistance in enterococcal species across the One Health continuum.
Collapse
Affiliation(s)
- Sani-E-Zehra Zaidi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
3
|
Wang Q, Peng K, Liu Z, Li Y, Xiao X, Du XD, Li R, Wang Z. Genomic insights into linezolid-resistant Enterococci revealed its evolutionary diversity and poxtA copy number heterogeneity. Int J Antimicrob Agents 2023; 62:106929. [PMID: 37487950 DOI: 10.1016/j.ijantimicag.2023.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVES This study aimed to determine the molecular mechanisms of linezolid-resistant enterococci (LRE) in swine slaughterhouses in China and apply the "One Health" perspective to analyse the evolutionary dynamics of poxtA-positive E. faecium in clinical and non-clinical settings worldwide. METHODS The phenotypic and genomic characteristics of multiple LRE isolates were systematically investigated using antimicrobial susceptibility testing, transfer assays, evolutionary experiments, quantitative RT-PCR assays, whole-genome sequencing, and bioinformatics analyses. RESULTS Swine faeces served as a significant reservoir for LRE isolates, and optrA and poxtA were the primary contributors to linezolid resistance. Co-occurrence network analysis revealed a significant interconnection between optrA and several other ARGs. The poxtA copy number heterogeneity and polymorphism were initially observed in E. faecium parental and evolved isolates. The poxtA-carrying tandem repeat region exhibits high mobility and has undergone extensive duplication owing to linezolid pressure. The poxtA copy number varies from four copies on the plasmid of E. faecium IC25 to 11 copies on the plasmid and six copies on the chromosome in the evolved isolate IC25-50_poxtA. Furthermore, phylogenetic analysis of 185 poxtA-positive E. faecium strains worldwide found that one isolate from a French patient in 2018 shared only two SNPs with CC17 E. faecium isolates IC25 and IC7-2 from this study, highlighting the potential global transmission of CC17 poxtA-positive E. faecium between humans and animals. CONCLUSION This study identified amplification of poxtA as a response of E. faecium to linezolid pressure. Phylogenetic analysis shed light on the potential global transmission of hospital-associated CC17 poxtA-positive E. faecium in clinical and non-clinical settings.
Collapse
Affiliation(s)
- Qiaojun Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Ziyi Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Yan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Xia Xiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China.
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P. R. China.
| |
Collapse
|
4
|
Venkateswaran P, Vasudevan S, David H, Shaktivel A, Shanmugam K, Neelakantan P, Solomon AP. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol 2023; 13:1159798. [PMID: 37457962 PMCID: PMC10339816 DOI: 10.3389/fcimb.2023.1159798] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The human-bacterial association is long-known and well-established in terms of both augmentations of human health and attenuation. However, the growing incidents of nosocomial infections caused by the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) call for a much deeper understanding of these organisms. Adopting a holistic approach that includes the science of infection and the recent advancements in preventing and treating infections is imperative in designing novel intervention strategies against ESKAPE pathogens. In this regard, this review captures the ingenious strategies commissioned by these master players, which are teamed up against the defenses of the human team, that are equally, if not more, versatile and potent through an analogy. We have taken a basketball match as our analogy, dividing the human and bacterial species into two teams playing with the ball of health. Through this analogy, we make the concept of infectious biology more accessible.
Collapse
Affiliation(s)
- Parvathy Venkateswaran
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adityan Shaktivel
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthik Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
5
|
Baran A, Kwiatkowska A, Potocki L. Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race. Int J Mol Sci 2023; 24:ijms24065777. [PMID: 36982857 PMCID: PMC10056106 DOI: 10.3390/ijms24065777] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Despite the undisputed development of medicine, antibiotics still serve as first-choice drugs for patients with infectious disorders. The widespread use of antibiotics results from a wide spectrum of their actions encompassing mechanisms responsible for: the inhibition of bacterial cell wall biosynthesis, the disruption of cell membrane integrity, the suppression of nucleic acids and/or proteins synthesis, as well as disturbances of metabolic processes. However, the widespread availability of antibiotics, accompanied by their overprescription, acts as a double-edged sword, since the overuse and/or misuse of antibiotics leads to a growing number of multidrug-resistant microbes. This, in turn, has recently emerged as a global public health challenge facing both clinicians and their patients. In addition to intrinsic resistance, bacteria can acquire resistance to particular antimicrobial agents through the transfer of genetic material conferring resistance. Amongst the most common bacterial resistance strategies are: drug target site changes, increased cell wall permeability to antibiotics, antibiotic inactivation, and efflux pumps. A better understanding of the interplay between the mechanisms of antibiotic actions and bacterial defense strategies against particular antimicrobial agents is crucial for developing new drugs or drug combinations. Herein, we provide a brief overview of the current nanomedicine-based strategies that aim to improve the efficacy of antibiotics.
Collapse
Affiliation(s)
- Aleksandra Baran
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aleksandra Kwiatkowska
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszów, ul. Towarnickiego 3, 35-959 Rzeszów, Poland
| | - Leszek Potocki
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
6
|
Aung MS, Urushibara N, Kawaguchiya M, Ohashi N, Hirose M, Kudo K, Tsukamoto N, Ito M, Kobayashi N. Antimicrobial Resistance, Virulence Factors, and Genotypes of Enterococcus faecalis and Enterococcus faecium Clinical Isolates in Northern Japan: Identification of optrA in ST480 E. faecalis. Antibiotics (Basel) 2023; 12:antibiotics12010108. [PMID: 36671309 PMCID: PMC9855154 DOI: 10.3390/antibiotics12010108] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Enterococcus faecalis and E. faecium are the major pathogens causing community- and healthcare-associated infections, with an ability to acquire resistance to multiple antimicrobials. The present study was conducted to determine the prevalence of virulence factors, drug resistance and its genetic determinants, and clonal lineages of E. faecalis and E. faecium clinical isolates in northern Japan. A total of 480 (426 E. faecalis and 54 E. faecium) isolates collected over a four-month period were analyzed. Three virulence factors promoting bacterial colonization (asa1, efaA, and ace) were more prevalent among E. faecalis (46-59%) than E. faecium, while a similar prevalence of enterococcal surface protein gene (esp) was found in these species. Between E. faecalis and E. faecium, an evident difference was noted for resistance to erythromycin, gentamicin, and levofloxacin and its responsible resistance determinants. Oxazolidinone resistance gene optrA and phenicol exporter gene fexA were identified in an isolate of E. faecalis belonging to ST480 and revealed to be located on a cluster similar to those of isolates reported in other Asian countries. The E. faecalis isolates analyzed were differentiated into 12 STs, among which ST179 and ST16 of clonal complex (CC) 16 were the major lineage. Nearly all the E. faecium isolates were assigned into CC17, which consisted of 10 different sequence types (STs), including a dominant ST17 containing multidrug resistant isolates and ST78 with isolates harboring the hyaluronidase gene (hyl). The present study revealed the genetic profiles of E. faecalis and E. faecium clinical isolates, with the first identification of optrA in ST480 E. faecalis in Japan.
Collapse
Affiliation(s)
- Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
- Correspondence: ; Tel.: +81-11-611-2111
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Nobuhide Ohashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Mina Hirose
- Division of Pediatric Dentistry, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu 061-0293, Japan
| | - Kenji Kudo
- Sapporo Mirai Laboratory, Co., Ltd., Sapporo 060-0003, Japan
| | | | - Masahiko Ito
- Sapporo Mirai Laboratory, Co., Ltd., Sapporo 060-0003, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| |
Collapse
|
7
|
Habib I, Ghazawi A, Lakshmi GB, Mohamed MYI, Li D, Khan M, Sahibzada S. Emergence and Genomic Characterization of the First Reported optrA-Carrying Linezolid-Resistant Enterococci Isolated from Retail Broiler Meat in the United Arab Emirates. Foods 2022. [PMCID: PMC9602063 DOI: 10.3390/foods11203190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The foodborne transfer of resistant genes from enterococci to humans and their tolerance to several commonly used antimicrobials are of growing concern worldwide. Linezolid is a last-line drug for managing complicated illnesses resulting from multidrug-resistant Gram-positive bacteria. The optrA gene has been reported in enterococci as one of the acquired linezolid resistance mechanisms. The present study uses whole-genome sequencing analysis to characterize the first reported isolates of linezolid-resistant E. faecium (n = 6) and E. faecalis (n = 10) harboring the optrA gene isolated from samples of supermarket broiler meat (n = 165) in the United Arab Emirates (UAE). The sequenced genomes were used to appraise the study isolates’ genetic relatedness, antimicrobial resistance determinants, and virulence traits. All 16 isolates carrying the optrA gene demonstrated multidrug-resistance profiles. Genome-based relatedness classified the isolates into five clusters that were independent of the isolate sources. The most frequently known genotype among the isolates was the sequence type ST476 among E. faecalis (50% (5/10)). The study isolates revealed five novel sequence types. Antimicrobial resistance genes (ranging from 5 to 13) were found among all isolates that conferred resistance against 6 to 11 different classes of antimicrobials. Sixteen different virulence genes were found distributed across the optrA-carrying E. faecalis isolates. The virulence genes in E. faecalis included genes encoding invasion, cell adhesion, sex pheromones, aggregation, toxins production, the formation of biofilms, immunity, antiphagocytic activity, proteases, and the production of cytolysin. This study presented the first description and in-depth genomic characterization of the optrA-gene-carrying linezolid-resistant enterococci from retail broiler meat in the UAE and the Middle East. Our results call for further monitoring of the emergence of linezolid resistance at the retail and farm levels. These findings elaborate on the importance of adopting a One Health surveillance approach involving enterococci as a prospective bacterial indicator for antimicrobial resistance spread at the human–food interface.
Collapse
Affiliation(s)
- Ihab Habib
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab of Emirates University, Al Ain 52571, United Arab Emirates
- Department of Environmental Health, High Institute of Public Health, Alexandria University, Alexandria 5424041, Egypt
- Correspondence: ; Tel.: +971-501-336-803
| | - Akela Ghazawi
- Department of Medical Microbiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 52571, United Arab Emirates
| | - Glindya Bhagya Lakshmi
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab of Emirates University, Al Ain 52571, United Arab Emirates
| | - Mohamed-Yousif Ibrahim Mohamed
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab of Emirates University, Al Ain 52571, United Arab Emirates
| | - Dan Li
- Department of Food Science and Technology, National University of Singapore, Singapore 119077, Singapore
| | - Mushtaq Khan
- Department of Medical Microbiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 52571, United Arab Emirates
| | - Shafi Sahibzada
- Antimicrobial Resistance and Infectious Diseases Laboratory, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
8
|
Brenciani A, Morroni G, Schwarz S, Giovanetti E. Oxazolidinones: mechanisms of resistance and mobile genetic elements involved. J Antimicrob Chemother 2022; 77:2596-2621. [PMID: 35989417 DOI: 10.1093/jac/dkac263] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The oxazolidinones (linezolid and tedizolid) are last-resort antimicrobial agents used for the treatment of severe infections in humans caused by MDR Gram-positive bacteria. They bind to the peptidyl transferase centre of the bacterial ribosome inhibiting protein synthesis. Even if the majority of Gram-positive bacteria remain susceptible to oxazolidinones, resistant isolates have been reported worldwide. Apart from mutations, affecting mostly the 23S rDNA genes and selected ribosomal proteins, acquisition of resistance genes (cfr and cfr-like, optrA and poxtA), often associated with mobile genetic elements [such as non-conjugative and conjugative plasmids, transposons, integrative and conjugative elements (ICEs), prophages and translocatable units], plays a critical role in oxazolidinone resistance. In this review, we briefly summarize the current knowledge on oxazolidinone resistance mechanisms and provide an overview on the diversity of the mobile genetic elements carrying oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gianluca Morroni
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
9
|
Hasan CM, Dutta D, Nguyen ANT. Revisiting Antibiotic Resistance: Mechanistic Foundations to Evolutionary Outlook. Antibiotics (Basel) 2021; 11:antibiotics11010040. [PMID: 35052917 PMCID: PMC8773413 DOI: 10.3390/antibiotics11010040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Antibiotics are the pivotal pillar of contemporary healthcare and have contributed towards its advancement over the decades. Antibiotic resistance emerged as a critical warning to public wellbeing because of unsuccessful management efforts. Resistance is a natural adaptive tool that offers selection pressure to bacteria, and hence cannot be stopped entirely but rather be slowed down. Antibiotic resistance mutations mostly diminish bacterial reproductive fitness in an environment without antibiotics; however, a fraction of resistant populations 'accidentally' emerge as the fittest and thrive in a specific environmental condition, thus favouring the origin of a successful resistant clone. Therefore, despite the time-to-time amendment of treatment regimens, antibiotic resistance has evolved relentlessly. According to the World Health Organization (WHO), we are rapidly approaching a 'post-antibiotic' era. The knowledge gap about antibiotic resistance and room for progress is evident and unified combating strategies to mitigate the inadvertent trends of resistance seem to be lacking. Hence, a comprehensive understanding of the genetic and evolutionary foundations of antibiotic resistance will be efficacious to implement policies to force-stop the emergence of resistant bacteria and treat already emerged ones. Prediction of possible evolutionary lineages of resistant bacteria could offer an unswerving impact in precision medicine. In this review, we will discuss the key molecular mechanisms of resistance development in clinical settings and their spontaneous evolution.
Collapse
Affiliation(s)
- Chowdhury M. Hasan
- School of Biological Sciences, University of Queensland, Brisbane 4072, Australia
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary & Ecological Sciences (IVES), University of Liverpool, Liverpool L7 3EA, UK;
- School of Biological Sciences, Monash University, Melbourne 3800, Australia;
- Correspondence:
| | - Debprasad Dutta
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary & Ecological Sciences (IVES), University of Liverpool, Liverpool L7 3EA, UK;
- Department of Human Genetics, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore 560029, India
| | - An N. T. Nguyen
- School of Biological Sciences, Monash University, Melbourne 3800, Australia;
| |
Collapse
|
10
|
Kim E, Shin SW, Kwak HS, Cha MH, Yang SM, Gwak YS, Woo GJ, Kim HY. Prevalence and Characteristics of Phenicol-Oxazolidinone Resistance Genes in Enterococcus Faecalis and Enterococcus Faecium Isolated from Food-Producing Animals and Meat in Korea. Int J Mol Sci 2021; 22:ijms222111335. [PMID: 34768762 PMCID: PMC8583520 DOI: 10.3390/ijms222111335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023] Open
Abstract
The use of phenicol antibiotics in animals has increased. In recent years, it has been reported that the transferable gene mediates phenicol-oxazolidinone resistance. This study analyzed the prevalence and characteristics of phenicol-oxazolidinone resistance genes in Enterococcus faecalis and Enterococcus faecium isolated from food-producing animals and meat in Korea in 2018. Furthermore, for the first time, we reported the genome sequence of E. faecalis strain, which possesses the phenicol-oxazolidinone resistance gene on both the chromosome and plasmid. Among the 327 isolates, optrA, poxtA, and fexA genes were found in 15 (4.6%), 8 (2.5%), and 17 isolates (5.2%), respectively. Twenty E. faecalis strains carrying resistance genes belonged to eight sequence types (STs), and transferability was found in 17 isolates. The genome sequences revealed that resistant genes were present in the chromosome or plasmid, or both. In strains EFS17 and EFS108, optrA was located downstream of the ermA and ant(9)-1 genes. The strains EFS36 and EFS108 harboring poxtA-encoding plasmid cocarried fexA and cfr(D). These islands also contained IS1216E or the transposon Tn554, enabling the horizontal transfer of the phenicol-oxazolidinone resistance with other antimicrobial-resistant genes. Our results suggest that it is necessary to promote the prudent use of antibiotics through continuous monitoring and reevaluation.
Collapse
Affiliation(s)
- Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (E.K.); (S.-W.S.); (H.-S.K.); (S.-M.Y.); (Y.-S.G.)
| | - So-Won Shin
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (E.K.); (S.-W.S.); (H.-S.K.); (S.-M.Y.); (Y.-S.G.)
| | - Hyo-Sun Kwak
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (E.K.); (S.-W.S.); (H.-S.K.); (S.-M.Y.); (Y.-S.G.)
| | - Min-Hyeok Cha
- Laboratory of Food Safety and Evaluation, Department of Biotechnology, Korea University Graduate School, Seoul 02841, Korea;
| | - Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (E.K.); (S.-W.S.); (H.-S.K.); (S.-M.Y.); (Y.-S.G.)
| | - Yoon-Soo Gwak
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (E.K.); (S.-W.S.); (H.-S.K.); (S.-M.Y.); (Y.-S.G.)
| | - Gun-Jo Woo
- Laboratory of Food Safety and Evaluation, Department of Biotechnology, Korea University Graduate School, Seoul 02841, Korea;
- Correspondence: (G.-J.W.); (H.-Y.K.); Tel.: +82-2-3290-3021 (G.-J.W.); +82-31-201-2123 (H.-Y.K.); Fax: +82-2-3290-3581 (G.-J.W.); +82-31-204-8116 (H.-Y.K.)
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (E.K.); (S.-W.S.); (H.-S.K.); (S.-M.Y.); (Y.-S.G.)
- Correspondence: (G.-J.W.); (H.-Y.K.); Tel.: +82-2-3290-3021 (G.-J.W.); +82-31-201-2123 (H.-Y.K.); Fax: +82-2-3290-3581 (G.-J.W.); +82-31-204-8116 (H.-Y.K.)
| |
Collapse
|
11
|
Peng S, Zheng H, Herrero-Fresno A, Olsen JE, Dalsgaard A, Ding Z. Co-occurrence of antimicrobial and metal resistance genes in pig feces and agricultural fields fertilized with slurry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148259. [PMID: 34147788 DOI: 10.1016/j.scitotenv.2021.148259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/14/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Antimicrobial resistance constitutes a global challenge to public health. The common addition of Zn, Cu and other metals to animal feed and the widespread presence of metal ions in livestock and their receiving environments may be a factor that facilitates the proliferation of antimicrobial resistance via co-selection of antimicrobial resistance genes (ARGs) and metal resistance genes (MRGs). However, the extent of co-selection is not yet fully understood. In this study, we used a metagenomic approach to profile ARGs, MRGs and mobile genetic elements (MGEs) known to constitute potential ARG and MRG vectors of transmission, and we determined the concentration of metal ions to assess the interrelationships between the occurrence of ARGs, MRGs and metal concentrations in samples from pig farms in China. Samples analyzed included fresh pig feces, soils fertilized with treated slurry, and sediments from aquatic environments, where effluent from treated slurry was discharged. Resistance genes to tetracycline and zinc were the most commonly observed ARGs and MRGs for all three types of samples. Significant correlations were observed between the abundance of ARGs and MRGs, and between ARGs/MRGs and MGEs, and between metal and ARGs/MGEs as documented by Pearson's correlation analysis (r > 0.9, P < 0.001). Further network analysis revealed significant co-occurrence between specific ARGs and MRGs, between ARGs/MRGs and MGEs, and between specific metals (Zn, Cr, and Mn) and ARGs and MGEs. Collectively, our findings demonstrate a high level of co-occurrence of antimicrobial and metal resistance genes in slurry from pig farms and their surrounding environments. The results suggest that metals added to pig feed might facilitate co-selection of ARGs and MGEs in the pig production environments, thereby resulting in a bigger pool of mobile ARGs.
Collapse
Affiliation(s)
- Shifu Peng
- Department of Environment and Health, Jiangsu Center for Disease Control and Prevention, Nanjing 210009, China; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Hao Zheng
- Department of Environment and Health, Jiangsu Center for Disease Control and Prevention, Nanjing 210009, China
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore.
| | - Zhen Ding
- Department of Environment and Health, Jiangsu Center for Disease Control and Prevention, Nanjing 210009, China.
| |
Collapse
|
12
|
Salah AN, Elleboudy NS, El-Housseiny GS, Yassien MA. Cloning and sequencing of lsaE efflux pump gene from MDR Enterococci and its role in erythromycin resistance. INFECTION GENETICS AND EVOLUTION 2021; 94:105010. [PMID: 34293480 DOI: 10.1016/j.meegid.2021.105010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/04/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023]
Abstract
Enterococci are opportunistic members of intestinal microbiota with notable ability to transmit antimicrobial resistance genes. Among the different resistance mechanisms, multidrug efflux is evolving as a huge problem in conferring multidrug resistance to bacterial cells because these pumps extrude a broad range of antimicrobials. Therefore, the aim of this work was to evaluate role of efflux pumps in the development of multi-drug resistance in Enterococci through studying the antimicrobial resistance profiles of Enterococci isolates, phenotypically and genotypically investigating the role of active efflux pumps in development of resistance, in addition to characterizing the most common efflux pump genes. The study involved the recovery of 149 Enterococci isolates from specimens of patients suffering infections in some hospitals in Egypt. Antimicrobial resistance profiles of isolates showed that only 1.3% of the isolates were resistant to each of linezolid, daptomycin, and fosfomycin. The highest resistance was to ampicillin (60.4%) while 47 of the isolates (31.54%) were found to be multidrug-resistant. Efflux pumps have shown to have a significant role in erythromycin resistance in 11 isolates (23.4% of MDR isolates) as indicated by an 8 or more fold decrease in minimum inhibitory concentration in the presence of the efflux pump inhibitor, carbonyl cyanide m- chlorophenylhydrazone (CCCP). End point PCR was used to detect efflux pump genes lsaE, msrC, and mefA in the 11 isolates at which efflux pumps were found to play a significant role in resistance. Nine out of the 11 isolates (81.8%) were found to carry lsaE gene. This gene was inserted into pUC21 vector and cloned into DH5α E. coli resulting in successful transformation and expression of erythromycin resistance in this host. Finally, sequencing of the lsaE gene was carried out. To the best of our knowledge, this is the first report on the cloning of lsaE gene from MDR Enterococcus isolates.
Collapse
Affiliation(s)
- Akram N Salah
- Experimental and Advanced Pharmaceutical Research Unit, Faculty of Pharmacy, Ain shams University, Organization of African Unity St. Abbassia, POB: 11566, Cairo, Egypt
| | - Nooran S Elleboudy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain shams University, Organization of African Unity St. Abbassia, POB: 11566, Cairo, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain shams University, Organization of African Unity St. Abbassia, POB: 11566, Cairo, Egypt.
| | - Mahmoud A Yassien
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain shams University, Organization of African Unity St. Abbassia, POB: 11566, Cairo, Egypt
| |
Collapse
|
13
|
Schwarz S, Zhang W, Du XD, Krüger H, Feßler AT, Ma S, Zhu Y, Wu C, Shen J, Wang Y. Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Clin Microbiol Rev 2021; 34:e0018820. [PMID: 34076490 PMCID: PMC8262807 DOI: 10.1128/cmr.00188-20] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Seven mobile oxazolidinone resistance genes, including cfr, cfr(B), cfr(C), cfr(D), cfr(E), optrA, and poxtA, have been identified to date. The cfr genes code for 23S rRNA methylases, which confer a multiresistance phenotype that includes resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A compounds. The optrA and poxtA genes code for ABC-F proteins that protect the bacterial ribosomes from the inhibitory effects of oxazolidinones. The optrA gene confers resistance to oxazolidinones and phenicols, while the poxtA gene confers elevated MICs or resistance to oxazolidinones, phenicols, and tetracycline. These oxazolidinone resistance genes are most frequently found on plasmids, but they are also located on transposons, integrative and conjugative elements (ICEs), genomic islands, and prophages. In these mobile genetic elements (MGEs), insertion sequences (IS) most often flanked the cfr, optrA, and poxtA genes and were able to generate translocatable units (TUs) that comprise the oxazolidinone resistance genes and occasionally also other genes. MGEs and TUs play an important role in the dissemination of oxazolidinone resistance genes across strain, species, and genus boundaries. Most frequently, these MGEs also harbor genes that mediate resistance not only to antimicrobial agents of other classes, but also to metals and biocides. Direct selection pressure by the use of antimicrobial agents to which the oxazolidinone resistance genes confer resistance, but also indirect selection pressure by the use of antimicrobial agents, metals, or biocides (the respective resistance genes against which are colocated on cfr-, optrA-, or poxtA-carrying MGEs) may play a role in the coselection and persistence of oxazolidinone resistance genes.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Henrike Krüger
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Shizhen Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Congming Wu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Antimicrobial Resistance and Virulence Factor Gene Profiles of Enterococcus spp. Isolated from Giant Panda Oral Cavities. J Vet Res 2021; 65:147-154. [PMID: 34250298 PMCID: PMC8256466 DOI: 10.2478/jvetres-2021-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/14/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction The objective of this study was to determine the prevalence and characteristics of antimicrobial-resistant Enterococcus faecalis and E. faecium isolated from the oral cavities of captive giant pandas in China. Material and Methods The virulence-associated determinant and antimicrobial resistance genes were detected and antimicrobial susceptibility tests were performed on 54 strains of each bacterium. Results All isolates showed 100% multidrug resistance. E. faecalis isolates showed a higher percentage of strains resistant to gentamicin (48.1%), vancomycin (55.6%), linezolid (100%), and streptomycin (33.3%) than E. faecium isolates. The resistance genes of Enterococcus spp. were present to highly varying extents according to antibiotic type, their presence breaking down for E. faecalis and E. faecium respectively as aac(6')/aph(2″) 5.56% and 5.56%; aph(3')-Ⅲ 0% and 14.81%; ant(6)-I 0% and 3.7%; ant(4')-Ia 0% and 64.81%; tetL 20.37% and 100%; vanA 92.59% and 46.3%; vanB 0% and 0%; cfr 0% and 90.74%; optrA 96.3% and 3.7%; blaZ 0% and 1.85%; blaTEM 0% and 0%; tetA 20.37% and 0%; tetC 24.07% and 100%; tetM 0% and 0%; ermA 12.96% and 100%; ermB 5.56% and 3.7%; and ermC 0% and 1.85%.Virulence-associated determinants were detected in this research, which typically include efaA, gelE, asa1, ace, cylA, esp and hyl; however, the latter three were not detected. High proportions of the isolates carried the efaA, gelE, asa1, and ace genes. Respectively for E. faecalis and E. faecium their detection was efaA 98.1% and 85.2%; gelE 98.1% and 87%; asa1 92.6% and 87%; and ace 87% and 85.2%. Conclusion This is the first study on the potential disease risk and antimicrobial-resistant characteristics of E. faecalis and E. faecium isolates in giant panda oral cavities. The results of this study show that the antimicrobial resistance rate of Enterococcus spp. isolated from the oral cavity of captive pandas is very high, and thus needs to be monitored.
Collapse
|
15
|
Layer F, Weber RE, Fleige C, Strommenger B, Cuny C, Werner G. Excellent performance of CHROMagar TM LIN-R to selectively screen for linezolid-resistant enterococci and staphylococci. Diagn Microbiol Infect Dis 2020; 99:115301. [PMID: 33444893 DOI: 10.1016/j.diagmicrobio.2020.115301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
The increasing number of nosocomial pathogens with resistances against last resort antibiotics like linezolid leads to a pressing need for the reliable detection of these drug-resistant bacteria. National guidelines on infection prevention, e.g., in Germany, have already recommend screening for linezolid-resistant bacteria, although a corresponding screening agar medium has not been provided. In this study we analyzed the performance and reliability of a commercial, chromogenic linezolid screening agar. The medium was capable to predict more than a hundred linezolid-resistant isolates of E. faecium, E. faecalis, S. aureus, S. epidermidis, and S. hominis with excellent sensitivity and specificity. All isolates were collected at the National Reference Centre between 2010 and 2020.
Collapse
Affiliation(s)
- Franziska Layer
- Robert Koch Institute, Wernigerode Branch, Department of Infectious Diseases, Division Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Wernigerode, Germany
| | - Robert E Weber
- Robert Koch Institute, Wernigerode Branch, Department of Infectious Diseases, Division Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Wernigerode, Germany
| | - Carola Fleige
- Robert Koch Institute, Wernigerode Branch, Department of Infectious Diseases, Division Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Wernigerode, Germany
| | - Birgit Strommenger
- Robert Koch Institute, Wernigerode Branch, Department of Infectious Diseases, Division Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Wernigerode, Germany
| | - Christiane Cuny
- Robert Koch Institute, Wernigerode Branch, Department of Infectious Diseases, Division Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Wernigerode, Germany
| | - Guido Werner
- Robert Koch Institute, Wernigerode Branch, Department of Infectious Diseases, Division Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Wernigerode, Germany.
| |
Collapse
|
16
|
Fostier CR, Monlezun L, Ousalem F, Singh S, Hunt JF, Boël G. ABC-F translation factors: from antibiotic resistance to immune response. FEBS Lett 2020; 595:675-706. [PMID: 33135152 DOI: 10.1002/1873-3468.13984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Energy-dependent translational throttle A (EttA) from Escherichia coli is a paradigmatic ABC-F protein that controls the first step in polypeptide elongation on the ribosome according to the cellular energy status. Biochemical and structural studies have established that ABC-F proteins generally function as translation factors that modulate the conformation of the peptidyl transferase center upon binding to the ribosomal tRNA exit site. These factors, present in both prokaryotes and eukaryotes but not in archaea, use related molecular mechanisms to modulate protein synthesis for heterogenous purposes, ranging from antibiotic resistance and rescue of stalled ribosomes to modulation of the mammalian immune response. Here, we review the canonical studies characterizing the phylogeny, regulation, ribosome interactions, and mechanisms of action of the bacterial ABC-F proteins, and discuss the implications of these studies for the molecular function of eukaryotic ABC-F proteins, including the three human family members.
Collapse
Affiliation(s)
- Corentin R Fostier
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Laura Monlezun
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Farès Ousalem
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Shikha Singh
- Department of Biological Sciences, 702A Sherman Fairchild Center, Columbia University, New York, NY, USA
| | - John F Hunt
- Department of Biological Sciences, 702A Sherman Fairchild Center, Columbia University, New York, NY, USA
| | - Grégory Boël
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
17
|
Yoon S, Son SH, Kim YB, Seo KW, Lee YJ. Molecular characteristics of optrA-carrying Enterococcus faecalis from chicken meat in South Korea. Poult Sci 2020; 99:6990-6996. [PMID: 33248615 PMCID: PMC7704738 DOI: 10.1016/j.psj.2020.08.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to identify the genetic environment of optrA gene in linezolid (LZD)-resistant Enterococcus faecalis from chicken meat and to describe the probable mechanism of dissemination of the optrA gene through plasmid or chromosomal integration. Whole genome sequencing and analysis revealed that all 3 E. faecalis isolates confirmed as LZD- and chloramphenicol-resistant carried fexA adjacent to the optrA gene as well as a variety of resistance genes for macrolides, tetracyclines, and aminoglycosides, simultaneously. But, the other genes conferring LZD resistance, cfr and poxtA, were not detected in those strains. Two isolates harboring the optrA gene in their chromosomal DNA showed >99% similarity in arrangement to the transposon Tn6674 and the transposase genes, tnpA, tnpB, and tnpC and were located in the first open reading frame for transposase. One isolate harboring an optrA-carrying plasmid also showed >99% similarity with the previously reported pE439 plasmid but had 2 amino acid changes (Thr96Lys and Tyr160Asp) and a higher minimum inhibitory concentration against LZD of 16 mg/L than that of pE439 (8 mg/L). Mobile genetic elements such as transposons or plasmids flanking the optrA gene conduct a crucial role in the dissemination of antimicrobial resistance genes. Further investigations are required to identify the way by which optrA is integrated into chromosomal DNA and plasmids.
Collapse
Affiliation(s)
- Sunghyun Yoon
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Se Hyun Son
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Yeong Bin Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwang Won Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
18
|
Abstract
Serious infections owing to vancomycin-resistant enterococci have historically proven to be difficult clinical cases, requiring combination therapy and management of treatment-related toxicity. Despite the introduction of new antibiotics with activity against vancomycin-resistant enterococci to the therapeutic armamentarium, significant challenges remain. An understanding of the factors driving the emergence of resistance in vancomycin-resistant enterococci, the dynamics of gastrointestinal colonization and microbiota-mediated colonization resistance, and the mechanisms of resistance to the currently available therapeutics will permit clinicians to be better prepared to tackle these challenging hospital-associated pathogens.
Collapse
Affiliation(s)
- William R Miller
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin St. MSB 2.112, Houston, TX 77030, USA; Center for Antimicrobial Resistance and Microbial Genomics (CARMiG)
| | - Barbara E Murray
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin St. MSB 2.112, Houston, TX 77030, USA; Center for Antimicrobial Resistance and Microbial Genomics (CARMiG); Department of Microbiology and Molecular Genetics, 6431 Fannin St. MSB 2.112, Houston, TX 77030, USA
| | - Louis B Rice
- Department of Internal Medicine, Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Cesar A Arias
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin St. MSB 2.112, Houston, TX 77030, USA; Center for Antimicrobial Resistance and Microbial Genomics (CARMiG); Department of Microbiology and Molecular Genetics, 6431 Fannin St. MSB 2.112, Houston, TX 77030, USA; University of Texas Health Science Center at Houston, School of Public Health, Houston, TX, USA; Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia.
| |
Collapse
|
19
|
Kerschner H, Rosel AC, Hartl R, Hyden P, Stoeger A, Ruppitsch W, Allerberger F, Apfalter P. Oxazolidinone Resistance Mediated by optrA in Clinical Enterococcus faecalis Isolates in Upper Austria: First Report and Characterization by Whole Genome Sequencing. Microb Drug Resist 2020; 27:685-690. [PMID: 33090061 DOI: 10.1089/mdr.2020.0098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genetic mechanisms associated with acquisition of linezolid (LZD) resistance are diverse, including point mutations in the V domain of the 23S rRNA and the 50S ribosomal proteins as well as cfr, optrA, and/or poxtA genes, which may be plasmid- or chromosomally encoded. The aim of this study was to investigate through Whole Genome Sequencing (WGS)-based typing the presence and location of genes and point mutations associated with LZD resistance in two Enterococcus faecalis isolates from Upper Austrian patients. The isolates were retrieved during screening by LZD disk diffusion test of a total of 911 clinical E. faecalis isolates in 2017. The two E. faecalis isolates had LZD minimum inhibitory concentrations of 8 and 32 mg/L and were optrA-positive (ST476 and ST585). Bioinformatic analysis revealed the presence of optrA located in the chromosome of both isolates. One isolate carried the optrA gene in the transposon 6674, previously reported as chromosomally encoded, and the second isolate in fragments originating from the integrative plasmid pEF10748. Additional mechanisms of LZD resistance on the 23S rRNA and the 50S ribosomal proteins were detected. None of the patients reported travels to geographical areas with high LZD resistance or previous LZD treatments. This is the first report of optrA carrying E. faecalis, including characterization by WGS from Austria. LZD resistance in a low-prevalence setting is of concern and should be further monitored.
Collapse
Affiliation(s)
- Heidrun Kerschner
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections (NRZ), Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Adriana Cabal Rosel
- AGES-Austrian Agency for Health and Food Safety, Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Rainer Hartl
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections (NRZ), Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Patrick Hyden
- CUBE, Division of Computational Systems Biology, University of Vienna, Vienna, Austria
| | - Anna Stoeger
- AGES-Austrian Agency for Health and Food Safety, Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Werner Ruppitsch
- AGES-Austrian Agency for Health and Food Safety, Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Franz Allerberger
- AGES-Austrian Agency for Health and Food Safety, Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Petra Apfalter
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections (NRZ), Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Linz, Austria
| |
Collapse
|
20
|
Drug Resistance Determinants in Clinical Isolates of Enterococcus faecalis in Bangladesh: Identification of Oxazolidinone Resistance Gene optrA in ST59 and ST902 Lineages. Microorganisms 2020; 8:microorganisms8081240. [PMID: 32824090 PMCID: PMC7463919 DOI: 10.3390/microorganisms8081240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Enterococcus faecalis is one of the major causes of urinary tract infection, showing acquired resistance to various classes of antimicrobials. The objective of this study was to determine the prevalence of drug resistance and its genetic determinants for E. faecalis clinical isolates in north-central Bangladesh. Among a total of 210 E. faecalis isolates, isolated from urine, the resistance rates to erythromycin, levofloxacin, and gentamicin (high level) were 85.2, 45.7, and 11.4%, respectively, while no isolates were resistant to ampicillin, vancomycin and teicoplanin. The most prevalent resistance gene was erm(B) (97%), and any of the four genes encoding aminoglycoside modifying enzyme (AME) were detected in 99 isolates (47%). The AME gene aac(6′)-Ie-aph(2”)-Ia was detected in 46 isolates (21.9%) and was diverse in terms of IS256-flanking patterns, which were associated with resistance level to gentamicin. Tetracycline resistance was ascribable to tet(M) (61%) and tet(L) (38%), and mutations in the quinolone resistance-determining region of both GyrA and ParC were identified in 44% of isolates. Five isolates (2.4%) exhibited non-susceptibility to linezolide (MIC, 4 μg/mL), and harbored the oxazolidinone resistance gene optrA, which was located in a novel genetic cluster containing the phenicol exporter gene fexA. The optrA-positive isolates belonged to ST59, ST902, and ST917 (CC59), while common lineages of other multiple drug-resistant isolates were ST6, ST28, CC16, and CC116. The present study first revealed the prevalence of drug resistance determinants of E. faecalis and their genetic profiles in Bangladesh.
Collapse
|
21
|
Freitas AR, Tedim AP, Novais C, Lanza VF, Peixe L. Comparative genomics of global optrA-carrying Enterococcus faecalis uncovers a common chromosomal hotspot for optrA acquisition within a diversity of core and accessory genomes. Microb Genom 2020; 6. [PMID: 32149599 PMCID: PMC7371108 DOI: 10.1099/mgen.0.000350] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Linezolid-resistant Enterococcus faecalis (LREfs) carrying optrA are increasingly reported globally from multiple sources, but we lack a comprehensive analysis of human and animal optrA-LREfs strains. To assess if optrA is dispersed in isolates with varied genetic backgrounds or with common genetic features, we investigated the phylogenetic structure, genetic content [antimicrobial resistance (AMR), virulence, prophages, plasmidome] and optrA-containing platforms of 27 publicly available optrA-positive E. faecalis genomes from different hosts in seven countries. At the genome-level analysis, an in-house database with 64 virulence genes was tested for the first time. Our analysis showed a diversity of clones and adaptive gene sequences related to a wide range of genera from Firmicutes. Phylogenies of core and accessory genomes were not congruent, and at least PAI-associated and prophage genes contribute to such differences. Epidemiologically unrelated clones (ST21, ST476-like and ST489) obtained from human clinical and animal hosts in different continents over eight years (2010–2017) could be phylogenetically related (3–126 SNPs difference). optrA was located on the chromosome within a Tn6674-like element (n=10) or on medium-size plasmids (30–60 kb; n=14) belonging to main plasmid families (RepA_N/Inc18/Rep_3). In most cases, the immediate gene vicinity of optrA was generally identical in chromosomal (Tn6674) or plasmid (impB-fexA-optrA) backbones. Tn6674 was always inserted into the same ∆radC integration site and embedded in a 32 kb chromosomal platform common to strains from different origins (patients, healthy humans, and animals) in Europe, Africa, and Asia during 2012–2017. This platform is conserved among hundreds of E. faecalis genomes and proposed as a chromosomal hotspot for optrA integration. The finding of optrA in strains sharing common adaptive features and genetic backgrounds across different hosts and countries suggests the occurrence of common and independent genetic events occurring in distant regions and might explain the easy de novo generation of optrA-positive strains. It also anticipates a dramatic increase of optrA carriage and spread with a serious impact on the efficacy of linezolid for the treatment of Gram-positive infections.
Collapse
Affiliation(s)
- Ana R Freitas
- UCIBIO/REQUIMTE. Departamento de Ciências Biológicas. Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto. Porto, Porto, Portugal
| | - Ana P Tedim
- Grupo de Investigación Biomédica en Sepsis - BioSepsis. Hospital Universitario Río Hortega, Instituto de Investigación Biomédica de Salamanca (IBSAL), Valladollid, Spain
| | - Carla Novais
- UCIBIO/REQUIMTE. Departamento de Ciências Biológicas. Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto. Porto, Porto, Portugal
| | - Val F Lanza
- Departamento de Bioinformática. Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Luísa Peixe
- UCIBIO/REQUIMTE. Departamento de Ciências Biológicas. Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto. Porto, Porto, Portugal
| |
Collapse
|
22
|
Surveillance of Enterococcus spp. reveals distinct species and antimicrobial resistance diversity across a One-Health continuum. Sci Rep 2020; 10:3937. [PMID: 32127598 PMCID: PMC7054549 DOI: 10.1038/s41598-020-61002-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/13/2020] [Indexed: 11/24/2022] Open
Abstract
For a One-Health investigation of antimicrobial resistance (AMR) in Enterococcus spp., isolates from humans and beef cattle along with abattoirs, manured fields, natural streams, and wastewater from both urban and cattle feedlot sources were collected over two years. Species identification of Enterococcus revealed distinct associations across the continuum. Of the 8430 isolates collected, Enterococcus faecium and Enterococcus faecalis were the main species in urban wastewater (90%) and clinical human isolates (99%); Enterococcus hirae predominated in cattle (92%) and feedlot catch-basins (60%), whereas natural streams harbored environmental Enterococcus spp. Whole-genome sequencing of E. faecalis (n = 366 isolates) and E. faecium (n = 342 isolates), revealed source clustering of isolates, indicative of distinct adaptation to their respective environments. Phenotypic resistance to tetracyclines and macrolides encoded by tet(M) and erm(B) respectively, was prevalent among Enterococcus spp. regardless of source. For E. faecium from cattle, resistance to β-lactams and quinolones was observed among 3% and 8% of isolates respectively, compared to 76% and 70% of human clinical isolates. Clinical vancomycin-resistant E. faecium exhibited high rates of multi-drug resistance, with resistance to all β-lactam, macrolides, and quinolones tested. Differences in the AMR profiles among isolates reflected antimicrobial use practices in each sector of the One-Health continuum.
Collapse
|