1
|
Bisht V, Das B, Navani NK. Bacteriocins sourced from traditional fermented foods for ensuring food safety: the microbial guards. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:4070-4084. [PMID: 39092901 DOI: 10.1002/jsfa.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/15/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Concerns about food safety have consistently driven the exploration of potent antimicrobials with probiotic origins. Identification of probiotic-derived bacteriocins as robust alternatives to antibiotics has gained traction following the COVID-19 pandemic. Additionally, the global market is witnessing an increasing preference for minimally processed food products free from chemical additives. Another contributing factor to the search for potent antimicrobials is the escalating number of infections caused by antibiotic-resistant bacteria and the need to mitigate the significant damage inflicted on the commensal human microbiota by broad-spectrum antibiotics. As an alternative bio-preservation strategy, there is substantial enthusiasm for the use of bacteriocins or starter cultures producing bacteriocins in preserving a variety of food items. This review specifically focuses on bacteriocins originating from lactic acid bacteria associated with fermented foods and explores their technological applications as nanobiotics. The food-grade antibiotic alternatives, whether utilized independently or in combination with other antimicrobials and administered directly or encapsulated, are anticipated to possess qualities of safety, stability and non-toxicity suitable for application in the food sector. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vishakha Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Biki Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| |
Collapse
|
2
|
Qiao X, Sun X, Wang S, Zhai C, Tang W, Tang T, Zhang J, He Z. Characterization of Flexusin A, a Novel Circular Bacteriocin Produced by Marine Bacterium Bacillus flexus R29-2. Mar Drugs 2025; 23:95. [PMID: 40137281 PMCID: PMC11943950 DOI: 10.3390/md23030095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Circular bacteriocins are potent antimicrobials against pathogenic Gram-positives. In searching for marine bacteriocins, an antibacterial peptide (flexusin A) was purified from the fermentation broth of marine bacterium Bacillus flexus R29-2. Genome sequencing and gene annotation revealed the chromosome contained an unknown circular bacteriocin gene cluster. Approaches including shot-gun proteomics analysis, AntiSMASH and BAGEL4 predication as well as the comprehensive sequence alignment, were then conducted, respectively, to verify the correlation of flexusin A with the gene-encoded precursor peptide. The results confirmed that flexusin A was the mature circular bacteriocin of the predicated precursor peptide with six amino acids as leader peptide. Flexusin A was 6098.4 Da in size, with a net charge of +3 and PI of 9.60. It shared the typical saposin-like fold spatial conformation features as commonly found in other circular bacteriocins. Flexusin A was pH, thermal, and protease tolerant. It exhibited a narrow antimicrobial spectrum against Gram-positives, and it can strongly inhibit Staphylococcus aureus by causing cell destruction via membrane destabilization. Taken together, a novel circular bacteriocin flexusin A was identified in this work. The characterization of flexusin A has extended circular bacteriocins family to 26 members. This is also the first report on bacteriocin production by B. flexus.
Collapse
Affiliation(s)
- Xiaoni Qiao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (X.S.); (S.W.); (W.T.); (T.T.); (J.Z.)
- Qingdao Bioantai Biotechnology Co., Ltd., Qingdao 266000, China
| | - Xiaowen Sun
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (X.S.); (S.W.); (W.T.); (T.T.); (J.Z.)
- Qingdao Bioantai Biotechnology Co., Ltd., Qingdao 266000, China
| | - Shuting Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (X.S.); (S.W.); (W.T.); (T.T.); (J.Z.)
- Qingdao Bioantai Biotechnology Co., Ltd., Qingdao 266000, China
| | - Chen Zhai
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Wei Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (X.S.); (S.W.); (W.T.); (T.T.); (J.Z.)
- Qingdao Bioantai Biotechnology Co., Ltd., Qingdao 266000, China
- Marine Microbial Engineering Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Tao Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (X.S.); (S.W.); (W.T.); (T.T.); (J.Z.)
- Qingdao Bioantai Biotechnology Co., Ltd., Qingdao 266000, China
- Marine Microbial Engineering Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Jun Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (X.S.); (S.W.); (W.T.); (T.T.); (J.Z.)
| | - Zengguo He
- Qingdao Bioantai Biotechnology Co., Ltd., Qingdao 266000, China
- Marine Microbial Engineering Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| |
Collapse
|
3
|
Bisht V, Das B, Hussain A, Kumar V, Navani NK. Understanding of probiotic origin antimicrobial peptides: a sustainable approach ensuring food safety. NPJ Sci Food 2024; 8:67. [PMID: 39300165 DOI: 10.1038/s41538-024-00304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
The practice of preserving and adding value to food dates back to over 10,000 BCE, when unintentional microbial-driven chemical reactions imparted flavor and extended the shelf life of fermented foods. The process evolved, and with the urbanization of society, significant shifts in dietary habits emerged, accompanied by sporadic food poisoning incidents. The repercussions of the COVID-19 pandemic have intensified the search for antibiotic alternatives owing to the rise in antibiotic-resistant pathogens, emphasizing the exploration of probiotic-origin antimicrobial peptides to alleviate human microbiome collateral damage. Often termed 'molecular knives', these peptides outstand as potent antimicrobials due to their compatibility with innate microflora, amenability to bioengineering, target specificity, versatility and rapidity in molecular level mode of action. This review centres on bacteriocins sourced from lactic acid bacteria found in ethnic fermented foods, accentuating their desirable attributes, technological applications as nanobiotics and potential future applications in the modern context of ensuring food safety.
Collapse
Affiliation(s)
- Vishakha Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Biki Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Ajmal Hussain
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Vinod Kumar
- Visiting faculty, Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India.
| |
Collapse
|
4
|
Miceli de Farias F, O'Connor PM, Buttimer C, Kamilari E, Soria MC, Johnson CN, Deliephan A, Hill D, Fursenko O, Wiese J, Draper LA, Stanton C, Hill C, Ross RP. Raffinocyclicin is a novel plasmid-encoded circular bacteriocin produced by Lactococcus raffinolactis with broad-spectrum activity against many gram-positive food pathogens. Appl Environ Microbiol 2024; 90:e0080924. [PMID: 39189737 PMCID: PMC11409674 DOI: 10.1128/aem.00809-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/27/2024] [Indexed: 08/28/2024] Open
Abstract
This study describes the discovery and characterization of raffinocyclicin, a novel plasmid-encoded circular bacteriocin, produced by the raw milk isolate Lactococcus raffinolactis APC 3967. This bacteriocin has a molecular mass of 6,092 Da and contains 61 amino acids with a three-amino acid leader peptide. It shows the highest identity to the circular bacteriocins bacicyclicin XIN-1 (42.62%), aureocyclicin 4185 (42.62%), and garvicin ML (41.53%). A broad inhibitory spectrum includes strains from Staphylococcus, Enterococcus, Streptococcus, Micrococcus, Lactobacillus, Leuconostoc, and Listeria, in addition to a pronounced inhibitory effect against Lactococcus and Clostridium. It displays low sensitivity to trypsin, most likely as a result of its circular nature. The raffinocyclicin gene cluster is composed of 10 genes: 6 core genes, genes encoding an accessory three-component ABC transporter (rafCDE), and a putative transcriptional regulator related to the MutR family. A lack of inhibitory activity in the cell-free supernatant combined with the pronounced activity of cell extracts suggests that the majority of raffinocyclicin is associated with the cell rather than being released to the extracellular environment. This is the first report of a bacteriocin produced by the L. raffinolactis species.IMPORTANCEThe present study aimed to characterize raffinocyclicin, a novel circular bacteriocin produced by the lactic acid bacteria Lactococcus raffinolactis APC 3967. Bacteriocins are generally cationic and hydrophobic peptides with antimicrobial activity, which present diverse biotechnological properties of interest for the food industry. Raffinocyclicin inhibits a wide range of bacteria, including foodborne pathogens, and is stable against different treatments which suggest its potential as a natural biopreservative. Whole-genome sequencing and the genetic analysis of the raffinocyclicin gene cluster showed that it is encoded by plasmid that could be used in the future to transfer the ability to produce the bacteriocin to other lactic acid bacteria for industrial applications. These results together highlight the potential of this novel antimicrobial as a biopreservative to be used by the food industry.
Collapse
Affiliation(s)
| | | | - Colin Buttimer
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eleni Kamilari
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Crystal Nicole Johnson
- Department of Biochemistry and Microbiology, Oklahoma State University – Center for Health Sciences, Tulsa, Oklahoma, USA
| | | | - Daragh Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | - Oxana Fursenko
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | - Jonathan Wiese
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | | | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| |
Collapse
|
5
|
Arbulu S, Kjos M. Revisiting the Multifaceted Roles of Bacteriocins : The Multifaceted Roles of Bacteriocins. MICROBIAL ECOLOGY 2024; 87:41. [PMID: 38351266 PMCID: PMC10864542 DOI: 10.1007/s00248-024-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Bacteriocins are gene-encoded antimicrobial peptides produced by bacteria. These peptides are heterogeneous in terms of structure, antimicrobial activities, biosynthetic clusters, and regulatory mechanisms. Bacteriocins are widespread in nature and may contribute to microbial diversity due to their capacity to target specific bacteria. Primarily studied as food preservatives and therapeutic agents, their function in natural settings is however less known. This review emphasizes the ecological significance of bacteriocins as multifunctional peptides by exploring bacteriocin distribution, mobility, and their impact on bacterial population dynamics and biofilms.
Collapse
Affiliation(s)
- Sara Arbulu
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
6
|
Lafuente I, Sevillano E, Peña N, Cuartero A, Hernández PE, Cintas LM, Muñoz-Atienza E, Borrero J. Production of Pumilarin and a Novel Circular Bacteriocin, Altitudin A, by Bacillus altitudinis ECC22, a Soil-Derived Bacteriocin Producer. Int J Mol Sci 2024; 25:2020. [PMID: 38396696 PMCID: PMC10888436 DOI: 10.3390/ijms25042020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The rise of antimicrobial resistance poses a significant global health threat, necessitating urgent efforts to identify novel antimicrobial agents. In this study, we undertook a thorough screening of soil-derived bacterial isolates to identify candidates showing antimicrobial activity against Gram-positive bacteria. A highly active antagonistic isolate was initially identified as Bacillus altitudinis ECC22, being further subjected to whole genome sequencing. A bioinformatic analysis of the B. altitudinis ECC22 genome revealed the presence of two gene clusters responsible for synthesizing two circular bacteriocins: pumilarin and a novel circular bacteriocin named altitudin A, alongside a closticin 574-like bacteriocin (CLB) structural gene. The synthesis and antimicrobial activity of the bacteriocins, pumilarin and altitudin A, were evaluated and validated using an in vitro cell-free protein synthesis (IV-CFPS) protocol coupled to a split-intein-mediated ligation procedure, as well as through their in vivo production by recombinant E. coli cells. However, the IV-CFPS of CLB showed no antimicrobial activity against the bacterial indicators tested. The purification of the bacteriocins produced by B. altitudinis ECC22, and their evaluation by MALDI-TOF MS analysis and LC-MS/MS-derived targeted proteomics identification combined with massive peptide analysis, confirmed the production and circular conformation of pumilarin and altitudin A. Both bacteriocins exhibited a spectrum of activity primarily directed against other Bacillus spp. strains. Structural three-dimensional predictions revealed that pumilarin and altitudin A may adopt a circular conformation with five- and four-α-helices, respectively.
Collapse
Affiliation(s)
- Irene Lafuente
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| | - Ester Sevillano
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| | - Nuria Peña
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| | - Alicia Cuartero
- Centro de Educación Infantil, Primaria y Secundaria Obligatoria (CEIPSO) El Cantizal, Avenida Atenas s/n, 28232 Las Rozas, Madrid, Spain;
| | - Pablo E. Hernández
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| | - Luis M. Cintas
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| | - Estefanía Muñoz-Atienza
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| | - Juan Borrero
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| |
Collapse
|
7
|
Wang CK, Huang YH, Shabbir F, Pham HT, Lawrence N, Benfield AH, van der Donk W, Henriques ST, Turner MS, Craik DJ. The Circular Bacteriocin enterocin NKR-5-3B has an Improved Stability Profile over Nisin. Peptides 2023:171049. [PMID: 37390898 DOI: 10.1016/j.peptides.2023.171049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Bacteriocins are a large family of bacterial peptides that have antimicrobial activity and potential applications as clinical antibiotics or food preservatives. Circular bacteriocins are a unique class of these biomolecules distinguished by a seamless circular topology, and are widely assumed to be ultra-stable based on this constraining structural feature. However, without quantitative studies of their susceptibility to defined thermal, chemical, and enzymatic conditions, their stability characteristics remain poorly understood, limiting their translational development. Here, we produced the circular bacteriocin enterocin NKR-5-3B (Ent53B) in mg/L quantities using a heterologous Lactococcus expression system, and characterized its thermal stability by NMR, chemical stability by circular dichroism and analytical HPLC, and enzymatic stability by analytical HPLC. We demonstrate that Ent53B is ultra-stable, resistant to temperatures approaching boiling, acidic (pH 2.6) and alkaline (pH 9.0) conditions, the chaotropic agent 6M urea, and following incubation with a range of proteases (i.e., trypsin, chymotrypsin, pepsin, and papain), conditions under which most peptides and proteins degrade. Ent53B is stable across a broader range of pH conditions and proteases than nisin, the most widely used bacteriocin in food manufacturing. Antimicrobial assays showed that differences in stability correlated with differences in bactericidal activity. Overall, this study provides quantitative support for circular bacteriocins being an ultra-stable class of peptide molecules, suggesting easier handling and distribution options available to them in practical applications as antimicrobial agents.
Collapse
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science,.
| | - Yen-Hua Huang
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science
| | - Fatima Shabbir
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science
| | - Huong T Pham
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science
| | - Aurélie H Benfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Wilfred van der Donk
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sónia T Henriques
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Mark S Turner
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science
| |
Collapse
|
8
|
Ye M, Li X, Yang F, Zhou B. Beneficial bacteria as biocontrol agents for American foulbrood disease in honey bees (Apis mellifera). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:6. [PMID: 36947033 PMCID: PMC10032306 DOI: 10.1093/jisesa/iead013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 01/30/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
American foulbrood (AFB) is a cosmopolitan bacterial disease that affects honey bee (Apis mellifera) larvae and causes great economic losses in apiculture. Currently, no satisfactory methods are available for AFB treatment mainly due to the difficulties to eradicate the tenacious spores produced by the etiological agent of AFB, Paenibacillus larvae (Bacillales, Paenibacillaceae). This present review focused on the beneficial bacteria that displayed antagonistic activities against P. larvae and demonstrated potential in AFB control. Emphases were placed on commensal bacteria (genus Bacillus and lactic acid bacteria in particular) in the alimentary tract of honey bees. The probiotic roles lactic acid bacteria play in combating the pathogenic P. larvae and the limitations referring to the application of these beneficial bacteria were addressed.
Collapse
Affiliation(s)
- Manhong Ye
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Xiaoyuan Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Fengping Yang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | | |
Collapse
|
9
|
Cebrián R, Martínez-García M, Fernández M, García F, Martínez-Bueno M, Valdivia E, Kuipers OP, Montalbán-López M, Maqueda M. Advances in the preclinical characterization of the antimicrobial peptide AS-48. Front Microbiol 2023; 14:1110360. [PMID: 36819031 PMCID: PMC9936517 DOI: 10.3389/fmicb.2023.1110360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Antimicrobial resistance is a natural and inevitable phenomenon that constitutes a severe threat to global public health and economy. Innovative products, active against new targets and with no cross- or co-resistance with existing antibiotic classes, novel mechanisms of action, or multiple therapeutic targets are urgently required. For these reasons, antimicrobial peptides such as bacteriocins constitute a promising class of new antimicrobial drugs under investigation for clinical development. Here, we review the potential therapeutic use of AS-48, a head-to-tail cyclized cationic bacteriocin produced by Enterococcus faecalis. In the last few years, its potential against a wide range of human pathogens, including relevant bacterial pathogens and trypanosomatids, has been reported using in vitro tests and the mechanism of action has been investigated. AS-48 can create pores in the membrane of bacterial cells without the mediation of any specific receptor. However, this mechanism of action is different when susceptible parasites are studied and involves intracellular targets. Due to these novel mechanisms of action, AS-48 remains active against the antibiotic resistant strains tested. Remarkably, the effect of AS-48 against eukaryotic cell lines and in several animal models show little effect at the doses needed to inhibit susceptible species. The characteristics of this molecule such as low toxicity, microbicide activity, blood stability and activity, high stability at a wide range of temperatures or pH, resistance to proteases, and the receptor-independent effect make AS-48 unique to fight a broad range of microbial infections, including bacteria and some important parasites.
Collapse
Affiliation(s)
- Rubén Cebrián
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital San Cecilio, Granada, Spain,*Correspondence: Rubén Cebrián, ✉
| | | | | | - Federico García
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital San Cecilio, Granada, Spain,Biomedicinal Research Network Center, Infectious Diseases (CIBERINFEC), Madrid, Spain
| | | | - Eva Valdivia
- Department of Microbiology, University of Granada, Granada, Spain
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Manuel Montalbán-López
- Department of Microbiology, University of Granada, Granada, Spain,Manuel Montalbán-López, ✉
| | - Mercedes Maqueda
- Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
10
|
Du Y, Li L, Zheng Y, Liu J, Gong J, Qiu Z, Li Y, Qiao J, Huo YX. Incorporation of Non-Canonical Amino Acids into Antimicrobial Peptides: Advances, Challenges, and Perspectives. Appl Environ Microbiol 2022; 88:e0161722. [PMID: 36416555 PMCID: PMC9746297 DOI: 10.1128/aem.01617-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The emergence of antimicrobial resistance is a global health concern and calls for the development of novel antibiotic agents. Antimicrobial peptides seem to be promising candidates due to their diverse sources, mechanisms of action, and physicochemical characteristics, as well as the relatively low emergence of resistance. The incorporation of noncanonical amino acids into antimicrobial peptides could effectively improve their physicochemical and pharmacological diversity. Recently, various antimicrobial peptides variants with improved or novel properties have been produced by the incorporation of single and multiple distinct noncanonical amino acids. In this review, we summarize strategies for the incorporation of noncanonical amino acids into antimicrobial peptides, as well as their features and suitabilities. Recent applications of noncanonical amino acid incorporation into antimicrobial peptides are also presented. Finally, we discuss the related challenges and prospects.
Collapse
Affiliation(s)
- Yuhui Du
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Li Li
- School of Chemical Engineering, Sichuan University (SCU), Chengdu, China
| | - Yue Zheng
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Jiaheng Liu
- School of Chemical Engineering, Sichuan University (SCU), Chengdu, China
| | - Julia Gong
- Marymount High School, Los Angeles, California, USA
| | - Zekai Qiu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yanni Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
11
|
Liu F, van Heel AJ, Chen J, Kuipers OP. Functional production of clostridial circularin A in Lactococcus lactis NZ9000 and mutational analysis of its aromatic and cationic residues. Front Microbiol 2022; 13:1026290. [PMID: 36504829 PMCID: PMC9726714 DOI: 10.3389/fmicb.2022.1026290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Circular bacteriocins, also known as bacterial head-to-tail cyclized peptides, are a subgroup of ribosomally synthesized and post-translationally modified peptides (RiPPs). Compared with their conventional linear counterparts, circular bacteriocins are highly stable over a broad temperature and pH range, and circularization decreases proteolytic degradation by exopeptidases. These features render them great potential as scaffold candidates to withstand strident conditions in food- and pharmaceutical applications. However, the biosynthesis and bioactivity of circular bacteriocins still remain largely unknown. To investigate and gain more insights into the biosynthesis of circular bacteriocins and to achieve efficient production and characterization of bacteriocin variants, we developed an efficient cloning and heterologous expression system for clostridial circularin A and successfully produced this circular peptide in Lactococcus lactis NZ9000. We report three system formats with single plasmid or plasmid combinations to achieve successful cloning and functional production of circularin A in L. lactis. These systematic varieties enabled us to choose the appropriate method to efficiently obtain various constructs with desired properties. With the established heterologous systems in L. lactis, we performed several mutagenesis studies in the precursor peptide to study its structure/function relationships. The overlay activity assay revealed that these mutant variants had variable effects on different indicator strains: lysine substitution for certain glutamine residue(s) greatly decreased its bioactivity against Clostridium perfringens and L. lactis NZ9000, and alanine replacement for the cationic residues significantly reduced the activity against Lactobacillus sake ATCC 15521, whereas alanine substitution for the aromatic residues decreased its bioactivity against all three testing strains dramatically. Moreover, the conditions for bacteriocin production were optimized. Results show that supplementing the minimal medium with extra glucose (or sucrose) and immediate nisin-induction improved the peptide yield significantly. Briefly, we developed an excellent system for the production of circularin A and a wide range of variant peptides in a convenient host, as well as a method for fast detection of peptide production and activity. This system facilitated our mutagenesis studies which provided valuable insights into the effects of mutating specific residues on its biosynthesis and bioactivity, and will eventually enable more complex research into the biosynthesis of circularin A.
Collapse
|
12
|
Peña N, Bland MJ, Sevillano E, Muñoz-Atienza E, Lafuente I, Bakkoury ME, Cintas LM, Hernández PE, Gabant P, Borrero J. In vitro and in vivo production and split-intein mediated ligation (SIML) of circular bacteriocins. Front Microbiol 2022; 13:1052686. [PMID: 36452926 PMCID: PMC9703936 DOI: 10.3389/fmicb.2022.1052686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/26/2022] [Indexed: 07/17/2024] Open
Abstract
Circular bacteriocins are antimicrobial peptides produced by bacteria that after synthesis undergo a head-to-tail circularization. Compared to their linear counterparts, circular bacteriocins are, in general, very stable to temperature and pH changes and more resistant to proteolytic enzymes, being considered as one of the most promising groups of antimicrobial peptides for their potential biotechnological applications. Up to now, only a reduced number of circular bacteriocins have been identified and fully characterized, although many operons potentially coding for new circular bacteriocins have been recently found in the genomes of different bacterial species. The production of these peptides is very complex and depends on the expression of different genes involved in their synthesis, circularization, and secretion. This complexity has greatly limited the identification and characterization of these bacteriocins, as well as their production in heterologous microbial hosts. In this work, we have evaluated a synthetic biology approach for the in vitro and in vivo production combined with a split-intein mediated ligation (SIML) of the circular bacteriocin garvicin ML (GarML). The expression of one single gene is enough to produce a protein that after intein splicing, circularizes in an active peptide with the exact molecular mass and amino acid sequence as native GarML. In vitro production coupled with SIML has been validated with other, well described and not yet characterized, circular bacteriocins. The results obtained suggest that this synthetic biology tool holds great potential for production, engineering, improving and testing the antimicrobial activity of circular bacteriocins.
Collapse
Affiliation(s)
- Nuria Peña
- Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | | | - Ester Sevillano
- Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Estefanía Muñoz-Atienza
- Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Irene Lafuente
- Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | | | - Luis M. Cintas
- Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Pablo E. Hernández
- Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | | | - Juan Borrero
- Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
13
|
Current status and potentiality of class II bacteriocins from lactic acid bacteria: structure, mode of action and applications in the food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Wambui J, Stevens MJA, Sieber S, Cernela N, Perreten V, Stephan R. Targeted Genome Mining Reveals the Psychrophilic Clostridium estertheticum Complex as a Potential Source for Novel Bacteriocins, Including Cesin A and Estercticin A. Front Microbiol 2022; 12:801467. [PMID: 35095812 PMCID: PMC8792950 DOI: 10.3389/fmicb.2021.801467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial resistance in pathogenic bacteria is considered a major public health issue necessitating the discovery of alternative antimicrobial compounds. In this regard, targeted genome mining in bacteria occupying under-explored ecological niches has the potential to reveal such compounds, including bacteriocins. In this study, we determined the bacteriocin biosynthetic potential of the psychrophilic Clostridium estertheticum complex (CEC) through a combination of genome mining and phenotypic screening assays. The genome mining was performed in 40 CEC genomes using antiSMASH. The production of bacteriocin-like compounds was phenotypically validated through agar well (primary screening) and disk diffusion (secondary screening) assays using cell free supernatants (CFS) and partially purified extracts, respectively. Stability of four selected CFS against proteolytic enzymes, temperature and pH was determined while one CFS was analyzed by HRMS and MS/MS to identify potential bacteriocins. Twenty novel bacteriocin biosynthetic gene clusters (BBGC), which were classified into eight (six lantibiotics and two sactipeptides) distinct groups, were discovered in 18 genomes belonging to C. estertheticum (n = 12), C. tagluense (n = 3) and genomospecies2 (n = 3). Primary screening linked six BBGC with narrow antimicrobial activity against closely related clostridia species. All four preselected CFS retained activity after exposure to different proteolytic, temperature and pH conditions. Secondary screening linked BBGC1 and BBGC7 encoding a lantibiotic and sactipeptide, respectively, with activity against Bacillus cereus while lantibiotic-encoding BBGC2 and BBGC3 were linked with activity against B. cereus, Staphylococcus aureus (methicillin-resistant), Escherichia coli and Pseudomonas aeruginosa. MS/MS analysis revealed that C. estertheticum CF004 produces cesin A, a short natural variant of nisin, and HRMS indicated the production of a novel sactipeptide named estercticin A. Therefore, we have shown the CEC, in particular C. estertheticum, is a source of novel and stable bacteriocins that have activities against clinically relevant pathogens.
Collapse
Affiliation(s)
- Joseph Wambui
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
- *Correspondence: Joseph Wambui,
| | - Marc J. A. Stevens
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Simon Sieber
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Nicole Cernela
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Roger Stephan
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Major D, Flanzbaum L, Lussier L, Davies C, Caldo KMP, Acedo JZ. Transporter Protein-Guided Genome Mining for Head-to-Tail Cyclized Bacteriocins. Molecules 2021; 26:7218. [PMID: 34885800 PMCID: PMC8659200 DOI: 10.3390/molecules26237218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/02/2022] Open
Abstract
Head-to-tail cyclized bacteriocins are ribosomally synthesized antimicrobial peptides that are defined by peptide backbone cyclization involving the N- and C- terminal amino acids. Their cyclic nature and overall three-dimensional fold confer superior stability against extreme pH and temperature conditions, and protease degradation. Most of the characterized head-to-tail cyclized bacteriocins were discovered through a traditional approach that involved the screening of bacterial isolates for antimicrobial activity and subsequent isolation and characterization of the active molecule. In this study, we performed genome mining using transporter protein sequences associated with experimentally validated head-to-tail cyclized bacteriocins as driver sequences to search for novel bacteriocins. Biosynthetic gene cluster analysis was then performed to select the high probability functional gene clusters. A total of 387 producer strains that encode putative head-to-tail cyclized bacteriocins were identified. Sequence and phylogenetic analyses revealed that this class of bacteriocins is more diverse than previously thought. Furthermore, our genome mining strategy captured hits that were not identified in precursor-based bioprospecting, showcasing the utility of this approach to expanding the repertoire of head-to-tail cyclized bacteriocins. This work sets the stage for future isolation of novel head-to-tail cyclized bacteriocins to serve as possible alternatives to traditional antibiotics and potentially help address the increasing threat posed by resistant pathogens.
Collapse
Affiliation(s)
- Daniel Major
- Department of Biology, Mount Royal University, Calgary, AB T3E 6K6, Canada; (D.M.); (L.F.); (C.D.)
| | - Lara Flanzbaum
- Department of Biology, Mount Royal University, Calgary, AB T3E 6K6, Canada; (D.M.); (L.F.); (C.D.)
| | - Leah Lussier
- Department of Chemistry and Physics, Mount Royal University, Calgary, AB T3E 6K6, Canada;
| | - Carly Davies
- Department of Biology, Mount Royal University, Calgary, AB T3E 6K6, Canada; (D.M.); (L.F.); (C.D.)
| | - Kristian Mark P. Caldo
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Jeella Z. Acedo
- Department of Chemistry and Physics, Mount Royal University, Calgary, AB T3E 6K6, Canada;
| |
Collapse
|
16
|
Prichula J, Primon-Barros M, Luz RCZ, Castro ÍMS, Paim TGS, Tavares M, Ligabue-Braun R, d’Azevedo PA, Frazzon J, Frazzon APG, Seixas A, Gilmore MS. Genome Mining for Antimicrobial Compounds in Wild Marine Animals-Associated Enterococci. Mar Drugs 2021; 19:328. [PMID: 34204046 PMCID: PMC8229437 DOI: 10.3390/md19060328] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
New ecosystems are being actively mined for new bioactive compounds. Because of the large amount of unexplored biodiversity, bacteria from marine environments are especially promising. Further, host-associated microbes are of special interest because of their low toxicity and compatibility with host health. Here, we identified and characterized biosynthetic gene clusters encoding antimicrobial compounds in host-associated enterococci recovered from fecal samples of wild marine animals remote from human-affected ecosystems. Putative biosynthetic gene clusters in the genomes of 22 Enterococcus strains of marine origin were predicted using antiSMASH5 and Bagel4 bioinformatic software. At least one gene cluster encoding a putative bioactive compound precursor was identified in each genome. Collectively, 73 putative antimicrobial compounds were identified, including 61 bacteriocins (83.56%), 10 terpenes (13.70%), and 2 (2.74%) related to putative nonribosomal peptides (NRPs). Two of the species studied, Enterococcus avium and Enterococcus mundtti, are rare causes of human disease and were found to lack any known pathogenic determinants but yet possessed bacteriocin biosynthetic genes, suggesting possible additional utility as probiotics. Wild marine animal-associated enterococci from human-remote ecosystems provide a potentially rich source for new antimicrobial compounds of therapeutic and industrial value and potential probiotic application.
Collapse
Affiliation(s)
- Janira Prichula
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Muriel Primon-Barros
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Romeu C. Z. Luz
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Ícaro M. S. Castro
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Thiago G. S. Paim
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Maurício Tavares
- Centro de Estudos Costeiros, Limnológicos e Marinhos (CECLIMAR), Universidade Federal do Rio Grande do Sul (UFRGS), Campus Litoral Norte, Imbé 95625-000, RS, Brazil;
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, UFCSPA, Porto Alegre 90050-170, RS, Brazil; (R.L.-B.); (A.S.)
| | - Pedro A. d’Azevedo
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Jeverson Frazzon
- Food Science Institute, UFRGS, Porto Alegre 90035-003, RS, Brazil;
| | - Ana P. G. Frazzon
- Department of Microbiology, Immunology and Parasitology, UFRGS, Porto Alegre 90050-170, RS, Brazil;
| | - Adriana Seixas
- Department of Pharmacosciences, UFCSPA, Porto Alegre 90050-170, RS, Brazil; (R.L.-B.); (A.S.)
| | - Michael S. Gilmore
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Lebedeva J, Jukneviciute G, Čepaitė R, Vickackaite V, Pranckutė R, Kuisiene N. Genome Mining and Characterization of Biosynthetic Gene Clusters in Two Cave Strains of Paenibacillus sp. Front Microbiol 2021; 11:612483. [PMID: 33505378 PMCID: PMC7829367 DOI: 10.3389/fmicb.2020.612483] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
The genome sequencing and mining of microorganisms from unexplored and extreme environments has become important in the process of identifying novel biosynthetic pathways. In the present study, the biosynthetic potential of Paenibacillus sp. strains 23TSA30-6 and 28ISP30-2 was investigated. Both strains were isolated from the deep oligotrophic Krubera-Voronja Cave and were found to be highly active against both Gram-positive and Gram-negative bacteria. Genome mining revealed a high number of biosynthetic gene clusters in the cave strains: 21 for strain 23TSA30-6 and 19 for strain 28ISP30-2. Single clusters encoding the biosynthesis of phosphonate, terpene, and siderophore, as well as a single trans-AT polyketide synthase/non-ribosomal peptide synthetase, were identified in both genomes. The most numerous clusters were assigned to the biosynthetic pathways of non-ribosomal peptides and ribosomally synthesized and post-translationally modified peptides. Although four non-ribosomal peptide synthetase gene clusters were predicted to be involved in the biosynthesis of known compounds (fusaricidin, polymyxin B, colistin A, and tridecaptin) of the genus Paenibacillus, discrepancies in the structural organization of the clusters, as well as in the substrate specificity of some adenylation domains, were detected between the reference pathways and the clusters in our study. Among the clusters involved in the biosynthesis of ribosomally synthesized peptides, only one was predicted to be involved in the biosynthesis of a known compound: paenicidin B. Most biosynthetic gene clusters in the genomes of the cave strains showed a low similarity with the reference pathways and were predicted to represent novel biosynthetic pathways. In addition, the cave strains differed in their potential to encode the biosynthesis of a few unique, previously unknown compounds (class II lanthipeptides and three non-ribosomal peptides). The phenotypic characterization of proteinaceous and volatile compounds produced by strains 23TSA30-6 and 28ISP30-2 was also performed, and the results were compared with those of genome mining.
Collapse
Affiliation(s)
- Jolanta Lebedeva
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Gabriele Jukneviciute
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rimvydė Čepaitė
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vida Vickackaite
- Department of Analytical and Environmental Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Raminta Pranckutė
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Nomeda Kuisiene
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
18
|
Danielski GM, Evangelista AG, Luciano FB, de Macedo REF. Non-conventional cultures and metabolism-derived compounds for bioprotection of meat and meat products: a review. Crit Rev Food Sci Nutr 2020; 62:1105-1118. [DOI: 10.1080/10408398.2020.1835818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gabriela Maia Danielski
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
- Undergraduate Program in Agronomy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | | | | |
Collapse
|
19
|
Crystal structure and site-directed mutagenesis of circular bacteriocin plantacyclin B21AG reveals cationic and aromatic residues important for antimicrobial activity. Sci Rep 2020; 10:17398. [PMID: 33060678 PMCID: PMC7562740 DOI: 10.1038/s41598-020-74332-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/21/2020] [Indexed: 12/02/2022] Open
Abstract
Plantacyclin B21AG is a circular bacteriocin produced by Lactiplantibacillus plantarum B21 which displays antimicrobial activity against various Gram-positive bacteria including foodborne pathogens, Listeria monocytogenes and Clostridium perfringens. It is a 58-amino acid cyclised antimicrobial peptide, with the N and C termini covalently linked together. The circular peptide backbone contributes to remarkable stability, conferring partial proteolytic resistance and structural integrity under a wide temperature and pH range. Here, we report the first crystal structure of a circular bacteriocin from a food grade Lactobacillus. The protein was crystallised using the hanging drop vapour diffusion method and the structure solved to a resolution of 1.8 Å. Sequence alignment against 18 previously characterised circular bacteriocins revealed the presence of conserved charged and aromatic residues. Alanine substitution mutagenesis validated the importance of these residues. Minimum inhibitory concentration analysis of these Ala mutants showed that Phe8Ala and Trp45Ala mutants displayed a 48- and 32-fold reduction in activity, compared to wild type. The Lys19Ala mutant displayed the weakest activity, with a 128-fold reduction. These experiments demonstrate the relative importance of aromatic and cationic residues for the antimicrobial activity of plantacyclin B21AG and by extension, other circular bacteriocins sharing these evolutionarily conserved residues.
Collapse
|
20
|
Discovery and characterisation of circular bacteriocin plantacyclin B21AG from Lactiplantibacillus plantarum B21. Heliyon 2020; 6:e04715. [PMID: 32904251 PMCID: PMC7452424 DOI: 10.1016/j.heliyon.2020.e04715] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/22/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Lactiplantibacillus plantarum B21 isolated from Vietnamese sausage (nem chua) has previously displayed broad antimicrobial activity against Gram-positive bacteria including foodborne pathogens Listeria monocytogenes and Clostridium perfringens. This study successfully identified the antimicrobial agent as plantacyclin B21AG, a 5668 Da circular bacteriocin demonstrating high thermostability, resistance to a wide range of pH, proteolytic resistance and temporal stability. We report a reverse genetics approach to identify and characterise plantacyclin B21AG from first principles. The bacteriocin was purified from culture supernatant by a three-step process consisting of concentration, n-butanol extraction and cation exchange chromatography. A de novo peptide sequencing using LC-MS/MS techniques identified two putative peptide fragments which were mapped to the genome sequence of L. plantarum B21. This revealed an ORF corresponding to a putative circular bacteriocin with a 33-amino acid leader peptide and a 58-amino acid mature peptide encoded on a native plasmid pB21AG01. The bacteriocin is shown to be a small cationic predominantly α-helical protein (69%). The corresponding gene cluster, consisted of seven genes associated with post-translational circularisation, immunity and secretion. Whilst plantacyclin B21AG is 86% identical to the newly published plantaricyclin A it is more highly cationic having a net charge of +3 due to an additional basic residue in the putative membrane interaction region. This and other substitutions may well go some way to explaining functional differences. The robust nature of plantacyclin B21AG, its antimicrobial activity and associated machinery for cyclisation make it an interesting biotechnological target for development, both as a food-safe antimicrobial or potentially a platform technology for recombinant protein circularisation.
Collapse
|