1
|
Yang B, Feng C, Jiang H, Chen Y, Ding M, Dai H, Zhai Z, Yang M, Liang T, Zhang Y. Effects of long-term continuous cropping on microbial community structure and function in tobacco rhizosphere soil. Front Microbiol 2025; 16:1496385. [PMID: 40160271 PMCID: PMC11949956 DOI: 10.3389/fmicb.2025.1496385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/18/2025] [Indexed: 04/02/2025] Open
Abstract
As is well known, continuous cropping can lead to a decrease in crop yield and quality. Despite this, continuous cropping remains prevalent in practical agricultural production, particularly in the case of tobacco cultivation, owing to its high economic value. The samples for this study were collected from a flue-cured tobacco planting base located in Huili County, Liangshan Yi Autonomous Prefecture, Sichuan Province, China. After years of continuous planting, the yield of tobacco in this base has significantly decreased. In order to explain the microecological causes of this phenomenon, we collected non-continuous cropping, continuous cropping for 5 years, and continuous cropping for 10 years of tobacco rhizosphere soil, and analyzed the effects of long-term continuous cropping on nutrients, enzyme activities, microbial community structure, and function of tobacco rhizosphere soil. The results showed that with the continuous cropping, the majority nutrients (except for phosphorus and manganese) in rhizosphere soil decreased significantly, and the rhizosphere microbial community structure changed significantly. Correlation network analysis results showed that changes in the rhizosphere microbial community of tobacco were closely related to soil urease, active organic carbon, and available iron content. The results of functional analysis based on microorganisms and genes showed that the rhizosphere microbiota may change the content of soil nutrients through iron_respiration, sulfur_respiration, and Carbon fixation in prokaryotes pathways. The results of the correlation network analysis and the functional analysis mutually confirmed each other, both emphasizing the important role of soil carbon and iron in shaping the structure of the tobacco rhizosphere microbial community. Based on the results of this study, we propose to improve the microbial community structure of tobacco rhizosphere soil by increasing the levels of readily oxidizable organic carbon, available iron, and soil urease activity in the future, so as to alleviate the negative impact of continuous cropping on crop yield. The results of this study provide theoretical support for modifying the rhizosphere microbial environment through nutrient regulation, thereby enhancing plant growth in the context of continuous tobacco cropping.
Collapse
Affiliation(s)
- Bingye Yang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Changchun Feng
- Sichuan Tobacco Science Research Institute, Chengdu, China
| | - Hong Jiang
- Sichuan Tobacco Science Research Institute, Chengdu, China
| | - Yulan Chen
- Liangshan Branch of Sichuan Tobacco Company, Xichang, China
| | - Mengjiao Ding
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Huaxin Dai
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Zhen Zhai
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Mengmeng Yang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Taibo Liang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Yanling Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| |
Collapse
|
2
|
Gu G, Zeeshan Ul Haq M, Sun X, Zhou J, Liu Y, Yu J, Yang D, Yang H, Wu Y. Continuous cropping of Patchouli alters soil physiochemical properties and rhizosphere microecology revealed by metagenomic sequencing. Front Microbiol 2025; 15:1482904. [PMID: 39872816 PMCID: PMC11769982 DOI: 10.3389/fmicb.2024.1482904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
Continuous cropping (CC) profoundly impacts soil ecosystems, including changes in soil factors and the structure and stability of microbial communities. These factors are interrelated and together affect soil health and plant growth. In this research, metagenomic sequencing was used to explore the effects of CC on physicochemical properties, enzyme activities, microbial community composition, and functional genes of the rhizosphere soil of patchouli. We found that this can lead to changes in various soil factors, including the continuous reduction of pH andNH 4 + -N and the unstable changes of many factors. In addition, S-PPO enzyme activity increased significantly with the cropping years, but S-NAG increased in the first 2 years and decreased in the third cropping year. Metagenomic sequencing results showed that CC significantly changed the diversity and composition of rhizosphere microbial communities. The relative abundance of Pseudomonas and Bacteroides decreased substantially from the phylum level. At the genus level, the number of microbial genera specific to the zero-year cropping (CK) and first (T1), second (T2), and third (T3) years decreased significantly, to 1798, 172, 42, and 44, respectively. The abundance of many functional genes changed, among which COG0823, a gene with the cellular process and signaling functions, significantly increased after CC. In addition,NH 4 + -N, S-CAT, S-LAP, and SOC were the main environmental factors affecting rhizosphere-dominant microbial communities at the phylum level, while pH, SOC, and AK were the key environmental factors affecting rhizosphere functional genes of Pogostemon cablin. In summary, this study showed the dynamic changes of soil factors and rhizosphere microorganisms during CC, providing a theoretical basis for understanding the formation mechanism and prevention of CC obstacles and contributing to the formulation of scientific soil management and fertilization strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yougen Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| |
Collapse
|
3
|
Chen Z, Wang W, Chen L, Zhang P, Liu Z, Yang X, Shao J, Ding Y, Mi Y. Effects of pepper-maize intercropping on the physicochemical properties, microbial communities, and metabolites of rhizosphere and bulk soils. ENVIRONMENTAL MICROBIOME 2024; 19:108. [PMID: 39696399 DOI: 10.1186/s40793-024-00653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Intercropping increases land use efficiency and farmland ecological diversity. However, little is understood about whether and how soil biota, metabolites, and nutrients change under interspecific competition among plants. Thus, this study aimed to explore the changes in the physicochemical properties, microbial communities, and metabolites of rhizosphere and bulk soils of pepper monocropping and pepper-maize intercropping systems. RESULTS Intercropping significantly increased the contents of available phosphorus (AP) and available potassium (AK), and decreased the pH value, whereas it had little effect on the total nitrogen (TN) and organic matter (OM) in the rhizosphere and bulk soils, compared with those in monocropping pepper. Moreover, the OM content was higher in rhizosphere soil than in bulk soil. The microbial community structures and metabolite profiles also differed between the two systems. The diversity of bacteria and fungi increased in intercropped pepper. The relative abundances of Actinobacteria, Chloroflexi, Cyanobacteria, and Ascomycota were higher while those of Proteobacteria, Planctomycetes, Mucoromycota, and Basidiomycota were significantly lower in the rhizosphere and bulk soils from the intercropping system than in those from the monocropping system. Linear discriminant analysis revealed that the predominant bacteria and fungi in the rhizosphere soil from the intercropping system belonged to the order Sphingomonadales and genera Nitrospira, Phycicoccus and Auricularia, whereas those in the bulk soil from the intercropping system belonged to the phylum Acidobacteria and genera Calocera, Pseudogymnoascus, and Trichosporon. Intercropping promoted the secretion of flavonoids, alkaloids, and nucleotides and their derivatives in the rhizosphere soil and significantly increased the contents of organoheterocyclic compounds in the bulk soil. Furthermore, the AP and AK contents, and pH value had strong positive correlations with bacteria. In addition, co-occurrence network analysis also showed that asebogenin, trachelanthamidine, 5-methyldeoxycytidine, and soil pH were the key factors mediating root-soil-microbe interactions. CONCLUSION Intercropping can alter microbial community structures and soil metabolite composition in rhizosphere and bulk soils, enhancing soil nutrient contents, enriching soil beneficial microbes and secondary metabolites (flavonoids and alkaloids) of intercropped pepper, and provided a scientific basis for sustainable development in the pepper-maize intercropping system.
Collapse
Affiliation(s)
- Zeli Chen
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, Kunming, Yunnan, 650205, China
| | - Wenzhi Wang
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, Kunming, Yunnan, 650205, China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, Kunming, Yunnan, 650205, China
| | - Peng Zhang
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, Kunming, Yunnan, 650205, China
| | - Zhenhuan Liu
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, Kunming, Yunnan, 650205, China
| | - Xukun Yang
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, Kunming, Yunnan, 650205, China
| | - Jinliang Shao
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, Kunming, Yunnan, 650205, China
| | - Yan Ding
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, Kunming, Yunnan, 650205, China
| | - Yanhua Mi
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, Kunming, Yunnan, 650205, China.
| |
Collapse
|
4
|
Gao D, Gao X, Wang Y, Huo H, Wu Y, Yang Z, Zhang H, Yang X, Li F, Li X. Effects of long-term continuous cultivation on the structure and function of soil bacterial and fungal communities of Fritillaria Cirrhosa on the Qinghai-Tibetan Plateau. Sci Rep 2024; 14:21291. [PMID: 39266574 PMCID: PMC11393089 DOI: 10.1038/s41598-024-70625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/19/2024] [Indexed: 09/14/2024] Open
Abstract
Fritillaria cirrhosa, an endangered medicinal plant in the Qinghai-Tibet Plateau, is facing resource scarcity. Artificial cultivation has been employed to address this issue, but problems related to continuous cultivation hinder successful transplantation. Imbalanced microbial communities are considered a potential cause, yet the overall changes in the microbial community under continuous cropping systems remain poorly understood. Here, we investigated the effects of varying durations of continuous cropping on the bacterial and fungal communities, as well as enzymatic activities, in the rhizospheric soil of F. cirrhosa. Our findings revealed that continuous cropping of F. cirrhosa resulted in soil acidification, nutrient imbalances, and increased enzyme activity. Specifically, after 10 years of continuous cropping, there was a notable shift in the abundance and diversity (e.g., Chao1 index) of soil bacteria and fungi. Moreover, microbial composition analyses revealed a significant accumulation of harmful microorganisms associated with soil-borne diseases (e.g., Luteimonas, Parastagonospora, Pseudogymnoascus) in successively cropped soils, in contrast to the significant reduction of beneficial microorganisms (e.g., Sphingomonas, Lysobacter, Cladosporium) that promote plant growth and development and protect against diseases such as Fusarium sp.These changes led to decreased connectivity and stability within the soil microbial community. Structural equation modeling and redundancy analysis revealed that alkaline hydrolytic nitrogen and available phosphorus directly influenced soil pH, which was identified as the primary driver of soil microbial community changes and subsequently contributed to soil health deterioration. Overall, our results highlight that soil acidification and imbalanced rhizosphere microbial communities are the primary challenges associated with continuous cropping of F. cirrhosa. These findings establish a theoretical foundation for standardized cultivation practices of F. cirrhosa and the bioremediation of continuously cultivated soils.
Collapse
Affiliation(s)
- Dan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- The Key Laboratory for Health Industry of Bijie, Bijie Medical College, Bijie, 551700, China.
| | - Xusheng Gao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Ye Wang
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330000, China
| | - Huimin Huo
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Yuhan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Zemin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haobo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Xinyu Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Fengfu Li
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Yang K, Zheng Y, Sun K, Wu X, Zhang Z, He C, Xiao P. Rhizosphere microbial markers (micro-markers): A new physical examination indicator for traditional Chinese medicines. CHINESE HERBAL MEDICINES 2024; 16:180-189. [PMID: 38706829 PMCID: PMC11064633 DOI: 10.1016/j.chmed.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/17/2023] [Accepted: 11/18/2023] [Indexed: 05/07/2024] Open
Abstract
Rhizosphere microorganisms, as one of the most important components of the soil microbiota and plant holobiont, play a key role in the medicinal plant-soil ecosystem, which are closely related to the growth, adaptability, nutrient absorption, stress tolerance and pathogen resistance of host plants. In recent years, with the wide application of molecular biology and omics technologies, the outcomes of rhizosphere microorganisms on the health, biomass production and secondary metabolite biosynthesis of medicinal plants have received extensive attention. However, whether or to what extent rhizosphere microorganisms can contribute to the construction of the quality evaluation system of Chinese medicinal materials is still elusive. Based on the significant role of rhizosphere microbes in the survival and quality formation of medicinal plants, this paper proposed a new concept of rhizosphere microbial markers (micro-markers), expounded the relevant research methods and ideas of applying the new concept, highlighted the importance of micro-markers in the quality evaluation and control system of traditional Chinese medicines (TCMs), and introduced the potential value in soil environmental assessment, plant pest control and quality assessment of TCMs. It provides reference for developing ecological planting of TCMs and ensuring the production of high quality TCMs by regulating rhizosphere microbial communities.
Collapse
Affiliation(s)
- Kailin Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Yaping Zheng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Kangmeng Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Xinyan Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Zheng Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| |
Collapse
|
6
|
Wang F, Zhao Z, Han Y, Li S, Bi X, Ren S, Pan Y, Wang D, Liu X. The Bacterial and Fungal Compositions in the Rhizosphere of Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim.) Kitag. in a Typical Planting Region. Microorganisms 2024; 12:692. [PMID: 38674636 PMCID: PMC11051765 DOI: 10.3390/microorganisms12040692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Asarum is a traditional Chinese medicinal plant, and its dried roots are commonly used as medicinal materials. Research into the traits of the bacteria and fungus in the Asarum rhizosphere and how they relate to the potency of medicinal plants is important. During four cropping years and collecting months, we used ITS rRNA gene amplicon and sequencing to assess the population, diversity, and predominant kinds of bacteria and fungus in the rhizosphere of Asarum. HPLC was used to determine the three bioactive ingredients, namely asarinin, aristolochic acid I, and volatile oil. The mainly secondary metabolites of Asarum, relationships between microbial communities, soil physicochemical parameters, and possible influences on microbial communities owing to various cropping years and collecting months were all statistically examined. The cropping years and collecting months affected the abundance and diversity of rhizosphere bacteria and fungi, but the cropping year had a significant impact on the structures and compositions of the bacterial communities. The rhizosphere microorganisms were influenced by both the soil physicochemical properties and enzyme activities. Additionally, this study revealed that Trichoderma was positively correlated with the three bioactive ingredients of Asarum, while Tausonia showed entirely opposite results. Gibberella and Leptosphaeria demonstrated a significantly negative correlation with asarinin and violate oil, but they were weakly correlated with the aristolochic acid I content. This study revealed variations in the Asarum rhizosphere microorganism population, diversity, and dominant types across four cropping years and collecting months. The relationship between Asarum secondary metabolites, the soil physicochemical properties, enzyme activities, and rhizosphere microorganisms was discussed. Our results will guide the exploration of the soil characteristics and rhizosphere microorganisms' structures by regulating the microbial community to enhance Asarum quality.
Collapse
Affiliation(s)
- Fuqi Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (F.W.); (Z.Z.)
| | - Zilu Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (F.W.); (Z.Z.)
| | - Yangyang Han
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (F.W.); (Z.Z.)
| | - Shiying Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinhua Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shumeng Ren
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (F.W.); (Z.Z.)
| | - Yingni Pan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (F.W.); (Z.Z.)
| | - Dongmei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoqiu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (F.W.); (Z.Z.)
| |
Collapse
|
7
|
Guo J, Xie Z, Meng Q, Xu H, Peng Q, Wang B, Dong D, Yang J, Jia S. Distribution of rhizosphere fungi of Kobresia humilis on the Qinghai-Tibet Plateau. PeerJ 2024; 12:e16620. [PMID: 38406296 PMCID: PMC10885805 DOI: 10.7717/peerj.16620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/16/2023] [Indexed: 02/27/2024] Open
Abstract
Kobresia humilis is a major species in the alpine meadow communities of the Qinghai-Tibet Plateau (QTP); it plays a crucial role in maintaining the ecological balance of these meadows. Nevertheless, little is known about the rhizosphere fungi associated with K. humilis on the Qinghai Tibet Plateau. In this study, we used Illumina Miseq to investigate the fungal diversity, community structure, and ecological types in the root and rhizosphere soil of K. humilis across eight areas on the QTP and analyzed the correlation between rhizosphere fungi of K. humilis and environmental factors. A total of 19,423 and 25,101 operational taxonomic units (OTUs) were obtained from the roots and rhizosphere soil of K. humilis. These were classified into seven phyla, 25 classes, 68 orders, 138 families, and 316 genera in the roots, and nine phyla, 31 classes, 76 orders, 152 families, and 407 genera in the rhizosphere soil. There were 435 and 415 core OTUs identified in root and rhizosphere soil, respectively, which were categorized into 68 and 59 genera, respectively, with 25 shared genera. Among them, the genera with a relative abundance >1% included Mortierella, Microscypha, Floccularia, Cistella, Gibberella, and Pilidium. Compared with the rhizosphere soil, the roots showed five differing fungal community characteristics, as well as differences in ecological type, and in the main influencing environmental factors. First, the diversity, abundance, and total number of OTUs in the rhizosphere soil of K. humilis were higher than for the endophytic fungi in the roots by 11.85%, 9.85%, and 22.62%, respectively. The composition and diversity of fungal communities also differed between the eight areas. Second, although saprotroph-symbiotrophs were the main ecological types in both roots and rhizosphere soil; there were 62.62% fewer pathotrophs in roots compared to the rhizosphere soil. Thirdly, at the higher altitude sites (3,900-4,410 m), the proportion of pathotroph fungi in K. humilis was found to be lower than at the lower altitude sites (3,200-3,690 m). Fourthly, metacommunity-scale network analysis showed that during the long-term evolutionary process, ZK (EICZK = 1) and HY (EICHY = 1) were critical sites for development of the fungal community structure in the roots and rhizosphere soil of K. humilis, respectively. Fifthly, canonical correspondence analysis (CCA) showed that key driving factors in relation to the fungal community were longitude (R2 = 0.5410) for the root community and pH (R2 = 0.5226) for the rhizosphere soil community. In summary, these results show that K. humilis fungal communities are significantly different in the root and rhizosphere soil and at the eight areas investigated, indicating that roots select for specific microorganisms in the soil. This is the first time that the fungal distribution of K. humilis on the QTP in relation to long-term evolutionary processes has been investigated. These findings are critical for determining the effects of environmental variables on K. humilis fungal communities and could be valuable when developing guidance for ecological restoration and sustainable utilization of the biological resources of the QTP.
Collapse
Affiliation(s)
- Jing Guo
- School of Ecology and Environmental Science, Qinghai University of Science and Technology, Xining, China
| | - Zhanling Xie
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
- State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, China
| | - Qing Meng
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
- State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, China
| | - Hongyan Xu
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Qingqing Peng
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
- State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, China
| | - Bao Wang
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
| | - Deyu Dong
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
| | - Jiabao Yang
- College of Ecological and Environment Engineering, Qinghai University, Xining, China
| | - Shunbin Jia
- Department of Ecological Restoration at Qinghai Grassland Station, Xining, China
| |
Collapse
|
8
|
Liu L, Jin Y, Chen M, Lian H, Liu Y, Yin Q, Wang H. A Study of Soil-Borne Fusarium Wilt in Continuous Cropping Chrysanthemum Cultivar 'Guangyu' in Henan, China. J Fungi (Basel) 2023; 10:14. [PMID: 38248924 PMCID: PMC10820174 DOI: 10.3390/jof10010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
Cut chrysanthemum, known as a highly favored floral choice globally, experiences a significant decline in production due to continuous cropping. The adverse physiological effects on cut chrysanthemums result from the degradation of a soil's physical and chemical properties, coupled with the proliferation of pathogens. The "Guangyu" cultivar in Xinxiang, Henan Province, China, has been specifically influenced by these effects. First, the precise pathogen accountable for wilt disease was effectively identified and validated in this study. An analysis was then conducted to examine the invasion pattern of the pathogen and the physiological response of chrysanthemum. Finally, the PacBio platform was employed to investigate the dynamic alterations in the microbial community within the soil rhizosphere by comparing the effects of 7 years of monocropping with the first year. Findings indicated that Fusarium solani was the primary causative agent responsible for wilt disease, because it possesses the ability to invade and establish colonies in plant roots, leading to alterations in various physiological parameters of plants. Continuous cropping significantly disturbed the microbial community composition, potentially acting as an additional influential factor in the advancement of wilt.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (L.L.)
| |
Collapse
|
9
|
Gulzar S, Manzoor MA, Liaquat F, Zahid MS, Arif S, Zhou X, Zhang Y. Endophytic bacterial diversity by 16S rRNA gene sequencing of Pak choi roots under fluazinam, Trichoderma harzianum, and Sophora flavescens inoculation. Funct Integr Genomics 2023; 23:194. [PMID: 37266724 DOI: 10.1007/s10142-023-01119-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Affiliation(s)
- Shazma Gulzar
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai, China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai, China
| | - Fiza Liaquat
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai, China
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul, South Korea
| | - Muhammad Salman Zahid
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai, China
| | - Samiah Arif
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai, China
| | - Xuanwei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai, China
| | - Yidong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai, China.
| |
Collapse
|
10
|
Ao J, Wang Z, Yang Q, Li B, Li Y, Li Y. Differentially enriched fungal communities in root rot resistant and susceptible varieties of tobacco ( Nicotiana tabacum L.) under continuous monoculture cropping. Front Microbiol 2022; 13:1036091. [PMID: 36569055 PMCID: PMC9768445 DOI: 10.3389/fmicb.2022.1036091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Root rot is a major disease of tobacco that causes crop losses of up to 15-20% of global tobacco production. The present study aimed to compare the fungal communities, and physicochemical properties of rhizosphere soil of root rot resistant (Yunyan 87; Y) and susceptible (Honghua Dajinyuan; H) tobacco varieties. Four treatments of each variety under continuous monocropping cultures included: control groups (HT0 and YT0); 2 years of continuous cropping (HT2 and YT2); 4 years of continuous cropping (HT4 and YT4); and 8 years of continuous cropping (YT8 and HT8). The soil physicochemical properties including available nitrogen (AN), available phosphorus (AP), available potassium (AK), and organic matter (OM) were increased (p < 0.05) from HT0 to HT8, whereas the resistant variety (Y) showed an inconsistent trend from YT0 to YT8. The pH was decreased (p < 0.05) from HT0 to HT8 and YT0 to YT8. Further, the disease incidence rate and disease index of the H variety also increased (p < 0.05) from HT0 to HT8. Alpha diversity analysis revealed that susceptible variety had higher fungal diversity from HT0 to HT8, while resistant variety exhibited lower diversity from YT0 to YT8. Ascomycota and Mortierellomycota were the dominant phyla in H and Y. Ascomycota abundance was increased (p < 0.05), whereas Mortierellomycota was decreased (p < 0.05) for continuous cropping years in H and Y. Penicillium, Fusarium, and Chrysosporium were the top three abundant genera in both varieties. The relative abundance of Penicillium spp. was increased (p < 0.05) in Y, whereas decreased (p < 0.05) in H variety. Specifically, Chrysosporium spp. was increased (p < 0.05) whereas Fusarium spp. was decreased (p < 0.05) in YT2. Redundancy analysis (RDA) revealed that fungal communities in H and Y rhizospheres were influenced by pH and carbon content, respectively. The top three highly enriched (p < 0.05) pathways in both varieties were fatty acid elongation, fatty acid β-oxidation I, and glyoxylate cycle. Our study concluded that resistant variety exhibited lower fungal diversity and functionally enriched metabolic pathways than susceptible variety that might be the result of molecular breeding practices, however, the relative abundance of Penicillium spp. were increased in resistant variety under long-term monoculture cropping.
Collapse
Affiliation(s)
- Jincheng Ao
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- Yunnan Tuer Lanyi Agricultural Technology Co., Ltd., Kunming, China
| | - Zheng Wang
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, China
| | - Qigang Yang
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, China
| | - Bo Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Ying Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yongmei Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
11
|
Wang G, Ren Y, Bai X, Su Y, Han J. Contributions of Beneficial Microorganisms in Soil Remediation and Quality Improvement of Medicinal Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3200. [PMID: 36501240 PMCID: PMC9740990 DOI: 10.3390/plants11233200] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Medicinal plants (MPs) are important resources widely used in the treatment and prevention of diseases and have attracted much attention owing to their significant antiviral, anti-inflammatory, antioxidant and other activities. However, soil degradation, caused by continuous cropping, excessive chemical fertilizers and pesticide residues and heavy metal contamination, seriously restricts the growth and quality formation of MPs. Microorganisms, as the major biota in soil, play a critical role in the restoration of the land ecosystem. Rhizosphere microecology directly or indirectly affects the growth and development, metabolic regulation and active ingredient accumulation of MPs. Microbial resources, with the advantages of economic efficiency, harmless to environment and non-toxic to organisms, have been recommended as a promising alternative to conventional fertilizers and pesticides. The introduction of beneficial microbes promotes the adaptability of MPs to adversity stress by enhancing soil fertility, inhibiting pathogens and inducing systemic resistance. On the other hand, it can improve the medicinal quality by removing soil pollutants, reducing the absorption and accumulation of harmful substances and regulating the synthesis of secondary metabolites. The ecological and economic benefits of the soil microbiome in agricultural practices are increasingly recognized, but the current understanding of the interaction between soil conditions, root exudates and microbial communities and the mechanism of rhizosphere microecology affecting the secondary metabolism of MPs is still quite limited. More research is needed to investigate the effects of the microbiome on the growth and quality of different medicinal species. Therefore, the present review summarizes the main soil issues in medicinal plant cultivation, the functions of microbes in soil remediation and plant growth promotion and the potential mechanism to further guide the use of microbial resources to promote the ecological cultivation and sustainable development of MPs.
Collapse
Affiliation(s)
| | | | | | | | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
12
|
Liu L, Cao H, Geng Y, Zhang Q, Bu X, Gao D. Response of soil microecology to different cropping practice under Bupleurum chinense cultivation. BMC Microbiol 2022; 22:223. [PMID: 36138372 PMCID: PMC9494904 DOI: 10.1186/s12866-022-02638-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
The effects of cropping practices on the rhizosphere soil physical properties and microbial communities of Bupleurum chinense have not been studied in detail. The chemical properties and the microbiome of rhizosphere soil of B. chinense were assessed in the field trial with three cropping practices (continuous monocropping, Bupleurum-corn intercropping and Bupleurum-corn rotation). The results showed cropping practices changed the chemical properties of the rhizosphere soil and composition, structure and diversity of the rhizosphere microbial communities. Continuous monocropping of B. chinense not only decreased soil pH and the contents of NO3--N and available K, but also decreased the alpha diversity of bacteria and beneficial microorganisms. However, Bupleurum-corn rotation improved soil chemical properties and reduced the abundance of harmful microorganisms. Soil chemical properties, especially the contents of NH4+-N, soil organic matter (SOM) and available K, were the key factors affecting the structure and composition of microbial communities in the rhizosphere soil. These findings could provide a new basis for overcoming problems associated with continuous cropping and promote development of B. chinense planting industry by improving soil microbial communities.
Collapse
Affiliation(s)
- Li Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan, 250355, China
| | - Hailu Cao
- Hengde Bencao (Beijing) Agricultural Technology Co., LTD, Beijing, 250100, China
| | - Yannan Geng
- Department of pharmacy, Affiliated Hospital of Shandong University of TCM, Jinan, 250355, China
| | - Quanfang Zhang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xun Bu
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Demin Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan, 250355, China.
| |
Collapse
|
13
|
Insights into Pyrroloquinoline Quinone (PQQ) Effects on Soil Nutrients and Pathogens from Pepper Monocropping Soil under Anaerobic and Aerobic Conditions. Microbiol Spectr 2022; 10:e0093322. [PMID: 35852313 PMCID: PMC9430733 DOI: 10.1128/spectrum.00933-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Imbalances of soil available nutrients and soilborne diseases have seriously restricted the productivity of crops and jeopardized food security worldwide. Pyrroloquinoline quinone (PQQ), a redox cofactor in some bacteria involved in glucose metabolism and phosphorus mineralization, could be anticipated to alter soil ecosystems to a certain extent. However, there is limited information on PQQ defending soilborne pathogens and regulating soil main nutrients. Here, a pot experiment based on mono-cropping soils of pepper was conducted to examine the effects of PQQ amendment on reconstructing soil microbial communities and soil nutrients under aerobic/anaerobic conditions comprising three treatments, namely, control, PQQ (aerobic), and FL-PQQ (anaerobic). The results revealed that soil microbial community composition and soil nutrients were distinctly altered by PQQ regimes. Compared to control, PQQ treatment significantly increased the content of soil available phosphorus (AP), while FL_PQQ treatment strongly improved the content of soil available nitrogen (AN). In terms of pathogens, relative to control, both PQQ treatments suppressed the abundances of pathogens, of which FL_PQQ treatment significantly decreased the abundance of the pathotrophic fungal by 64% and the abundance of Fusarium oxysporum by 57%, largely attributed to the increase of organic acid generators (Oxobacter, Hydrogenispora) and potential antagonists (Bacillus, Talaromyces). Structural equation modeling (SEM) showed that PQQ regimes suppressed pathogens by indirectly regulating soil physicochemical properties and microbial communities. Overall, we proposed that PQQ application both in aerobic/anaerobic conditions could improve soil available nutrients and suppress soil pathogens in pepper monocropping soils. IMPORTANCE The attention to PQQ (pyrroloquinoline quinone) effect on soil nutrients and pathogens was less paid in monocropping soils. However, the underlying microbial interacting mechanism remains unclear. Adopting a novel external bio-additive, the effects of PQQ on soil main nutrients and the pathotrophic fungal under aerobic and anaerobic regimes will be investigated, which would help to improve soil quality health. Our main conclusion was that PQQ would help to remediate monocropping obstacle soils in terms of soil nutrients and soil pathogens by associating with the microbial community, and anaerobic PQQ application more favored amelioration of continuous obstacle soils. These results will benefit the health and sustainable development of pepper production as well as other greenhouse vegetable production.
Collapse
|
14
|
Naeem I, Asif T, Zhang T, Guan Y, Wu X, Tariq H, Wang D. Mixing effects of three Eurasian plants on root decomposition in the existence of living plant community in a meadow steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151400. [PMID: 34742802 DOI: 10.1016/j.scitotenv.2021.151400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
In grasslands, roots of different plant species decay in combination in the presence of living plants, besides, most root decomposition studies are conducted on how roots of plants decomposed alone or in artificial compositions in the absence of living plants. Therefore, we evaluated how roots of different perennial plants induced effects on decomposition process under living plants and their associated mechanisms. By using litter bag technique, we determined the root decomposition process of three perennial plants, Leymus chinensis, Phragmites australis, and Kalimeris integrifolia grown in monocultures, bi- and tri-species mixtures, after 12 months of incubation under living plants and bare soil communities. We found both additive and non-additive effects on decomposition dynamics indicating that root mass losses of compositions cannot be calculated from decaying rates of individual species. The rich-nutrient roots of K. integrifolia in monocultures and in mixtures with other plant species decayed faster. Compared with bare soil, microbial activities were enhanced under living plant communities and hence stimulated decomposition rates. Our results indicated that microbial activities are important but secondary factors to root physico-chemical properties impacting root decomposition rates. In conclusion, the empirical relationships developed here are helpful to better understand the effects of root properties and microbial activities on decay rates.
Collapse
Affiliation(s)
- Iqra Naeem
- Institute of Grassland Science/School of Environment, Key Laboratory of Vegetation Ecology, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Talal Asif
- Peatland Ecology Research Group (PERG), Centre for Northern Studies, Department of Plant Sciences, Université Laval, Quebec, Québec, Canada
| | - Tianyu Zhang
- Institute of Grassland Science/School of Environment, Key Laboratory of Vegetation Ecology, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Yue Guan
- Institute of Grassland Science/School of Environment, Key Laboratory of Vegetation Ecology, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Xuefeng Wu
- Institute of Grassland Science/School of Environment, Key Laboratory of Vegetation Ecology, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, PR China
| | - Hina Tariq
- Department of Forestry and Range Management, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Deli Wang
- Institute of Grassland Science/School of Environment, Key Laboratory of Vegetation Ecology, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, PR China.
| |
Collapse
|
15
|
da Silva SIA, de Souza TAF, de Lucena EO, da Silva LJR, Laurindo LK, dos Santos Nascimento G, Santos D. High phosphorus availability promotes the diversity of arbuscular mycorrhizal spores’ community in different tropical crop systems. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Tan G, Liu Y, Peng S, Yin H, Meng D, Tao J, Gu Y, Li J, Yang S, Xiao N, Liu D, Xiang X, Zhou Z. Soil potentials to resist continuous cropping obstacle: Three field cases. ENVIRONMENTAL RESEARCH 2021; 200:111319. [PMID: 34052246 DOI: 10.1016/j.envres.2021.111319] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/09/2021] [Accepted: 05/09/2021] [Indexed: 05/13/2023]
Abstract
Continuous cropping has become the most common system in intensive, modern agricultural production; however, obstacles often appear in continuous cropping patterns after a few years of use. There have been several studies about the impacts of continuous cropping on soil microbial, but few about differences between soil experiencing continuous cropping obstacles and those where such obstacles had been resisted. Here, after ten or twenty years of continuous tobacco cropping, we collected soil samples investigating discrepancies in soil property and bacterial community between soils experiencing continuous cropping obstacles and soils where the obstacles were resisted providing insight into preventing and controlling continuous cropping obstacles. Results showed that soil organic matter (SOM), available phosphorus (AP), total nitrogen (TN), nitrate-N (NO3--N), and bacterial diversity of samples where continuous cropping obstacles had been resisted were significantly higher than those where continuous cropping obstacles were present. Besides, SOM, AP, TN, and Ammonium-N (NH4+-N) considerably affected the bacterial community. Among all variables, NH4+-N explained the largest proportion of bacterial community variation. Molecular ecological networks were used to putatively identify keystone taxa, including Acidobacteria Gp1, Acidobacteria Gp2, Acidobacteria Gp16, and WPS-1_genera_incertae_sedis. Their relative abundance significantly changed between the two conditions. Overall, our results indicate that decreases in soil nutrient content and bacterial diversity, and significant changes in some keystone taxa abundances may be important factors leading to increased soil-borne diseases and reduced tobacco production potential or quality. Thus, during agricultural production, we could regulate the stability of the soil-crop-microbial ecological system via crop rotation, intercropping, or the use of specialized bio-fertilizers and soil conditioners to mitigate continuous cropping obstacles.
Collapse
Affiliation(s)
- Ge Tan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Yongjun Liu
- Tobacco Research Institute of Hunan Province, Changsha, 410004, China; College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| | - Shuguang Peng
- Tobacco Research Institute of Hunan Province, Changsha, 410004, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Jiemeng Tao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Yabing Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Sheng Yang
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| | - Nengwen Xiao
- The Institute of Ecology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dongmei Liu
- The Institute of Ecology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaowu Xiang
- Agricultural Bureau of Dongkou County, Hunan Province, Shaoyang, 422300, China
| | - Zhicheng Zhou
- Tobacco Research Institute of Hunan Province, Changsha, 410004, China.
| |
Collapse
|
17
|
COLMENA: A Culture Collection of Native Microorganisms for Harnessing the Agro-Biotechnological Potential in Soils and Contributing to Food Security. DIVERSITY 2021. [DOI: 10.3390/d13080337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
COLMENA is a microbial culture collection dedicated to the characterization, classification, preservation, and transferal of native microorganisms isolated from various agro-systems and other ecosystems in Mexico. This collection aims to protect microbial diversity, reducing soil degradation, but also exploiting its agro-biotechnological potential. So far, COLMENA has isolated and cryopreserved soil microorganisms from different crops in two major agricultural regions in Mexico, the Yaqui Valley, Sonora, and the Fuerte Valley, Sinaloa. COLMENA has specialized in the identification and characterization of microbial strains with metabolic capacities related to the promotion of plant growth and the biocontrol of phytopathogens. Thus, COLMENA has identified several promising plant growth-promoting microbial (PGPM) strains due to their metabolic and genetic potentials and their beneficial effects in vivo and field trials. These findings demonstrate the biotechnological potential of these strains for their future use in profitable agricultural alternatives focused on enhancing global food security. To share the knowledge and results of the COLMENA team’s scientific research, a virtual platform was created, where the database of the studied and preserved microorganisms is available to professionals, researchers, agricultural workers, and anyone who is interested.
Collapse
|
18
|
Yan L, Zhang W, Duan W, Zhang Y, Zheng W, Lai X. Temporal Bacterial Community Diversity in the Nicotiana tabacum Rhizosphere Over Years of Continuous Monocropping. Front Microbiol 2021; 12:641643. [PMID: 34113322 PMCID: PMC8186668 DOI: 10.3389/fmicb.2021.641643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/28/2021] [Indexed: 01/19/2023] Open
Abstract
Long-term continuous monocropping negatively influences the physicochemical and biological characteristics of cultivated soil, especially for the economically important crop of flue-cured tobacco that is intolerant to continuous monocropping. The underlying mechanism of soil sickness under continuous monoculture and the temporal dynamic changes over the tobacco life cycle among different monoculture time spans remain poorly characterized. In this study, high-throughput sequencing targeting the 16S rRNA gene phylogenetic marker was performed on 60 soil samples of rhizosphere soil from flue−cured tobacco in the replanting, growth and harvest period across 5, 10, and 20 years of a continuous monocropping system. Bacterial community diversity decreased with the increase in duration of continuous monocropping, and the rhizosphere microbiota was highly dynamic in the harvest period. The random forests algorithm identified 17 taxa as biomarkers and a model was established to correlate root microbiota with continuous monocropping time of flue-cured tobacco. Molecular ecological network analysis elaborated the differences and interactions in bacterial co-occurrence patterns under different monocropping systems. The co-occurrence microbial network was larger in size but there were fewer interactions among microbial communities with the increase in continuous monocropping duration. These results provide insights into the changes of flue−cured tobacco root microbiome diversity in response to continuous monocropping and suggest a model for successional dynamics of the root-associated microbiota over continuous monocropping time and development stage. This study may help elucidate the theoretical basis underlying obstacles to continuous monocropping and could contribute to improving guidance for tobacco production.
Collapse
Affiliation(s)
- Lang Yan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agriculture Science, Xichang University, Xichang, China
| | - Wenyou Zhang
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agriculture Science, Xichang University, Xichang, China
| | - Wangjun Duan
- China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Yizheng Zhang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wen Zheng
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agriculture Science, Xichang University, Xichang, China
| | - Xianjun Lai
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agriculture Science, Xichang University, Xichang, China
| |
Collapse
|
19
|
Gao Z, Hu Y, Han M, Xu J, Wang X, Liu L, Tang Z, Jiao W, Jin R, Liu M, Guan Z, Ma Z. Effects of continuous cropping of sweet potatoes on the bacterial community structure in rhizospheric soil. BMC Microbiol 2021; 21:102. [PMID: 33794774 PMCID: PMC8015022 DOI: 10.1186/s12866-021-02120-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Continuous cropping obstacles from sweet potatoes are widespread, which seriously reduce the yield and quality, causing certain economic losses. Bacteria of rhizospheric soil are the richest and are associated with obstacles to continuous cropping. However, few studies have examined how continuous sweet potato cropping affects the rhizospheric soil bacterial community structure. RESULTS In the study, the Illumina MiSeq method was used to explore the variations in rhizospheric soil bacterial community structure of different sweet potato varieties after continuous cropping, as well as the correlation between soil characteristics and the bacterial community. The results showed that (1) the dominant bacterial phyla in rhizospheric soils from both Xushu 18 and Yizi 138 were Proteobacteria, Acidobacteria, and Actinobacteria. The most dominant genus was Subgroup 6_norank. The relative abundance of rhizospheric soil bacteria varied significantly between the two sweet potato varieties. (2) The richness and diversity indexes of bacteria were higher in Xushu 18 rhizospheric soil than in Yizi 138 soil after continuous cropping. Moreover, beneficial Lysobacter and Bacillus were more prevalent in Xushu 18, while Yizi 138 contained more harmful Gemmatimonadetes. (3) Soil pH decreased after continuous cropping, and redundancy analysis indicated that soil pH was significantly correlated with the bacterial community. Spearman's rank correlation coefficient analysis demonstrated that pH was positively associated with Planctomycetes and Acidobacteria, but negatively associated with Actinobacteria and Firmicutes. CONCLUSIONS After continuous cropping, the bacterial community structure and physicochemical properties of sweet potato rhizospheric soil were changed, and the changes from different sweet potato varieties were different. The contents of Lysobacter and Bacillus were higher in the sweet potato variety resistant to continuous cropping. It provides a basis for developing new microbial fertilizers for sweet potatoes to alleviate the continuous cropping obstacle.
Collapse
Affiliation(s)
- Zhiyuan Gao
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, China
| | - Yaya Hu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, China
| | - Meikun Han
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, China
| | - Junjie Xu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, China
| | - Xue Wang
- Agricultural Product Quality Inspection Center of Shijiazhuang, Shijiazhuang, China
| | - Lanfu Liu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, China
| | - Zhonghou Tang
- Xuzhou Sweet Potato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou, China
| | - Weijing Jiao
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, China
| | - Rong Jin
- Xuzhou Sweet Potato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou, China
| | - Ming Liu
- Xuzhou Sweet Potato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou, China
| | - Zhengjun Guan
- Department of Life Science, Yuncheng University, Yuncheng, China.
| | - Zhimin Ma
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, China.
| |
Collapse
|
20
|
Pang Z, Dong F, Liu Q, Lin W, Hu C, Yuan Z. Soil Metagenomics Reveals Effects of Continuous Sugarcane Cropping on the Structure and Functional Pathway of Rhizospheric Microbial Community. Front Microbiol 2021; 12:627569. [PMID: 33746921 PMCID: PMC7973049 DOI: 10.3389/fmicb.2021.627569] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
The continuous cropping of plants can result in the disruption of the soil microbial community and caused significant declines in yields. However, there are few reports on the effects of continuous cropping of sugarcane on the microbial community structure and functional pathway. In the current study, we analyzed the structural and functional changes of microbial community structure in the rhizospheric soil of sugarcane in different continuous cropping years using Illumina Miseq high-throughput sequencing and metagenomics analysis. We collected rhizosphere soils from fields of no continuous cropping history (NCC), 10 years of continuous cropping (CC10), and 30 years of continuous cropping (CC30) periods in the Fujian province. The results demonstrated that continuous sugarcane cropping resulted in significant changes in the physicochemical properties of soil and the composition of soil bacterial and fungal communities. With the continuous cropping, the crop yield dramatically declined from NCC to CC30. Besides, the redundancy analysis (RDA) of the dominant bacterial and fungal phyla and soil physicochemical properties revealed that the structures of the bacterial and fungal communities were mainly driven by pH and TS. Analysis of potential functional pathways during the continuous cropping suggests that different KEGG pathways were enriched in different continuous cropping periods. The significant reduction of bacteria associated with rhizospheric soil nitrogen and sulfur cycling functions and enrichment of pathogenic bacteria may be responsible for the reduction of effective nitrogen and total sulfur content in rhizospheric soil of continuous sugarcane as well as the reduction of sugarcane yield and sugar content. Additionally, genes related to nitrogen and sulfur cycling were identified in our study, and the decreased abundance of nitrogen translocation genes and AprAB and DsrAB in the dissimilatory sulfate reduction pathway could be the cause of declined biomass. The findings of this study may provide a theoretical basis for uncovering the mechanism of obstacles in continuous sugarcane cropping and provide better guidance for sustainable development of the sugarcane.
Collapse
Affiliation(s)
- Ziqin Pang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugar Industry, Nanning, China
| | - Fei Dong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiang Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chaohua Hu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhaonian Yuan
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugar Industry, Nanning, China
| |
Collapse
|
21
|
Ji L, Tian L, Nasir F, Chang J, Chang C, Zhang J, Li X, Tian C. Impacts of replanting American ginseng on fungal assembly and abundance in response to disease outbreaks. Arch Microbiol 2021; 203:2157-2170. [PMID: 33616683 PMCID: PMC8205870 DOI: 10.1007/s00203-021-02196-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/24/2020] [Accepted: 02/04/2021] [Indexed: 11/29/2022]
Abstract
Soil physicochemical properties and fungal communities are pivotal factors for continuous cropping of American ginseng (Panax quinquefolium L.). However, the response of soil physicochemical properties and fungal communities to replant disease of American ginseng has not yet been studied. High-throughput sequencing and soil physicochemical analyses were undertaken to investigate the difference of soil fungal communities and environmental driver factors in new and old ginseng fields; the extent of replant disease in old ginseng fields closely related to changes in soil properties and fungal communities was also determined. Results indicated that fungal communities in an old ginseng field were more sensitive to the soil environment than those in a new ginseng field, and fungal communities were mainly driven by soil organic matter (SOM), soil available phosphorus (AP), and available potassium (AK). Notably, healthy ginseng plants in new and old ginseng fields may influence fungal communities by actively recruiting potential disease suppressive fungal agents such as Amphinema, Cladophialophora, Cadophora, Mortierella, and Wilcoxina. When these key groups and members were depleted, suppressive agents in the soil possibly declined, increasing the abundance of pathogens. Soil used to grow American ginseng in the old ginseng field contained a variety of fungal pathogens, including Alternaria, Armillaria, Aphanoascus, Aspergillus, Setophoma, and Rhexocercosporidium. Additionally, micro-ecological factors affecting disease outbreaks in the old ginseng field included a strengthening in competition relationships, a weakening in cooperation relationships, and a change of trophic strategies among fungal communities.
Collapse
Affiliation(s)
- Li Ji
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Jingjing Chang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunling Chang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Jianfeng Zhang
- Key Laboratory of Straw Biology and Utilization of the Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Xiujun Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China. .,Key Laboratory of Straw Biology and Utilization of the Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
22
|
Wu ZY, Meng XF, Jiao YS, Guo BL, Sui XH, Ma SJ, Chen WF, Singh RP. Bradyrhizobium arachidis mediated enhancement of (oxy)matrine content in the medicinal legume Sophora flavescens. Lett Appl Microbiol 2021; 72:570-577. [PMID: 33474743 DOI: 10.1111/lam.13453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 12/30/2022]
Abstract
Effect of rhizobial inoculation and nitrate application on the content of bioactive compounds in legume plants is an interesting aspect for interactions among microbes, plants and chemical fertilizers, as well as for cultivated practice of legumes. In this study, nitrate (0, 5 and 20 mmol l-1 ) and Bradyrhizobium arachidis strain CCBAU 051107T were applied, individually or in combination, to the root rhizosphere of the medicinal legume Sophora flavescens Aiton (SFA). Then the plant growth, nodulation and active ingredients including (oxy)matrine of SFA were determined and compared. Rhizobial inoculation alone significantly increased the numbers and fresh weight of root nodules. Nodulation was significantly inhibited due to nitrate (5 and 20 mmol l-1 ). Only oxymatrine was detected in the control plants without rhizobial inoculation and nitrate supplement, while both oxymatrine and matrine were synthesized in plants treated with inoculation of B. arachidis or supplied with nitrate. The content of oxymatrine was the highest in plants inoculated solely with rhizobia and was not significantly altered by additional application of nitrate. Combinations of B. arachidis inoculation and different concentrations of nitrate did not significantly change the concentrations of (oxy)matrine in the plant. In conclusion, sole rhizobial inoculation was the best approach to increase the contents of key active ingredients oxymatrine and matrine in the medicinal legume SFA.
Collapse
Affiliation(s)
- Z Y Wu
- State Key Laboratory of Agrobiotechnology, Beijing, China.,College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - X F Meng
- State Key Laboratory of Agrobiotechnology, Beijing, China.,College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Y S Jiao
- State Key Laboratory of Agrobiotechnology, Beijing, China.,College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - B L Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - X H Sui
- State Key Laboratory of Agrobiotechnology, Beijing, China.,College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - S J Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, China
| | - W F Chen
- State Key Laboratory of Agrobiotechnology, Beijing, China.,College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - R P Singh
- Department of Research and Development, Biotechnology, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|