1
|
Wang X, Li Y, Rensing C, Zhang X. Early inoculation and bacterial community assembly in plants: A review. Microbiol Res 2025; 296:128141. [PMID: 40120566 DOI: 10.1016/j.micres.2025.128141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
The relationship between plants and early colonizing microbes is crucial for regulating agricultural ecosystems. Recent evidence strongly suggests that by introducing beneficial microbes during the seed or seedling stages, the diversity and assembly structure of the plant-related microbial community during later plant development can be altered, recruiting beneficial bacteria to enhance plant protection. However, the mechanisms of community assembly and their effects on plant growth are still not fully understood. To deepen our understanding of the importance of early inoculation for improving plant performance, this review comprehensively summarizes recent research advancements on the effects of early introduction on plant growth and adaptability. The mechanisms and ecological significance of early inoculation in the assembly of plant-related bacterial communities are discussed, with particular emphasis on the importance of seed endophytes, plant growth-promoting rhizobacteria (PGPR), and synthetic microbial consortia as microbial inoculants in enhancing plant health and productivity. Additionally, this review proposes a new strategy: sequential inoculation during the seed and seedling stages, aiming to maximize the effects of microbes.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuyi Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoxia Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Haider S, Song J, Bai J, Wang X, Ren G, Bai Y, Huang Y, Shah T, Feng Y. Toward Low-Emission Agriculture: Synergistic Contribution of Inorganic Nitrogen and Organic Fertilizers to GHG Emissions and Strategies for Mitigation. PLANTS (BASEL, SWITZERLAND) 2025; 14:1551. [PMID: 40431118 PMCID: PMC12115026 DOI: 10.3390/plants14101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/05/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025]
Abstract
Nitrogen (N) and organic-source fertilizers in agriculture are important to sustain crop production for feeding the growing global population. However, their use can result in significant greenhouse gas (GHG) emissions, particularly carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), which are important climate drivers. This review discusses the interactive effects, uncovering both additive and suppressive outcomes of emissions under various soil and climatic conditions. In addition to examining the effects of nitrogen and the nitrogen use efficiency (NUE), it is crucial to comprehend the mechanisms and contributions of organic fertilizers to GHG emissions. This understanding is vital for developing mitigation strategies that effectively reduce emissions while maintaining agricultural productivity. In this review, the current knowledge is utilized for the management of nitrogen practices, such as the optimization of fertilization rates, timing, and methods of application, in terms of the nitrogen use efficiency and the related GHG emissions. Moreover, we discuss the role of organic fertilizers, including straw, manure, and biochar, as a mitigation strategy in relation to GHG emissions through soil carbon sequestration and enhanced nutrient cycling. Important strategies such as crop rotation, tillage, irrigation, organic fertilizers, and legume crops are considered as suitable approaches for minimizing emissions. Even with the progress made in mitigating fertilizer-related emissions, research gaps remain, specifically concerning the long-term effect of organic fertilizers and the interactions between microbial communities in the soil and fertilization practices. Furthermore, the differences in application practices and environmental conditions present considerable obstacles to accurate emission quantification. This review underlines the importance of conducting more thorough research on the combined application of N and organic fertilizers in multiple cropping systems to evolve region-specific mitigation strategies.
Collapse
Affiliation(s)
- Shahzad Haider
- College of Agronomy, Northwest A & F University, Yangling 712100, China; (S.H.); (J.S.); (J.B.); (X.W.); (G.R.); (Y.B.); (Y.H.)
- Shaanxi Engineering Research Center of Circular Agricultural, Yangling 712100, China
| | - Jiajie Song
- College of Agronomy, Northwest A & F University, Yangling 712100, China; (S.H.); (J.S.); (J.B.); (X.W.); (G.R.); (Y.B.); (Y.H.)
- Shaanxi Engineering Research Center of Circular Agricultural, Yangling 712100, China
| | - Jinze Bai
- College of Agronomy, Northwest A & F University, Yangling 712100, China; (S.H.); (J.S.); (J.B.); (X.W.); (G.R.); (Y.B.); (Y.H.)
- Shaanxi Engineering Research Center of Circular Agricultural, Yangling 712100, China
| | - Xing Wang
- College of Agronomy, Northwest A & F University, Yangling 712100, China; (S.H.); (J.S.); (J.B.); (X.W.); (G.R.); (Y.B.); (Y.H.)
- Shaanxi Engineering Research Center of Circular Agricultural, Yangling 712100, China
| | - Guangxin Ren
- College of Agronomy, Northwest A & F University, Yangling 712100, China; (S.H.); (J.S.); (J.B.); (X.W.); (G.R.); (Y.B.); (Y.H.)
- Shaanxi Engineering Research Center of Circular Agricultural, Yangling 712100, China
| | - Yuxin Bai
- College of Agronomy, Northwest A & F University, Yangling 712100, China; (S.H.); (J.S.); (J.B.); (X.W.); (G.R.); (Y.B.); (Y.H.)
- Shaanxi Engineering Research Center of Circular Agricultural, Yangling 712100, China
| | - Yuming Huang
- College of Agronomy, Northwest A & F University, Yangling 712100, China; (S.H.); (J.S.); (J.B.); (X.W.); (G.R.); (Y.B.); (Y.H.)
- Shaanxi Engineering Research Center of Circular Agricultural, Yangling 712100, China
| | - Tahir Shah
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China;
| | - Yongzhong Feng
- College of Agronomy, Northwest A & F University, Yangling 712100, China; (S.H.); (J.S.); (J.B.); (X.W.); (G.R.); (Y.B.); (Y.H.)
- Shaanxi Engineering Research Center of Circular Agricultural, Yangling 712100, China
| |
Collapse
|
3
|
Sharma V, Sheershwal A, Bisht S. Rhizobacteria Revolution: Amplifying Crop Resilience and Yield in a Changing Climate Through Plant Growth Promotion. J Basic Microbiol 2025:e039. [PMID: 40302384 DOI: 10.1002/jobm.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/31/2025] [Accepted: 04/06/2025] [Indexed: 05/02/2025]
Abstract
The rapid progression of climate change poses significant challenges to global agriculture, necessitating innovative solutions to ensure food security for an expanding population. Plant growth-promoting rhizobacteria (PGPR) offer a promising avenue for sustainable agriculture by enhancing crop resilience and productivity under environmental constraints. These beneficial microbes regulate key physiological processes in plants, such as phytohormone synthesis and nutrient solubilization. This enhances root architecture, improves soil fertility, and enables crops to adapt to resource-limited conditions. Moreover, PGPR strengthen plant defenses against abiotic stressors such as salinity, drought, and nutrient deficiencies, as well as biotic threats like pathogens. Empirical evidence demonstrates that PGPR inoculation can significantly enhance crop yields across diverse agroecosystems by increasing nutrient use efficiency and stress tolerance. Despite their proven potential, the effective deployment of PGPR in farming systems requires addressing critical issues related to scalability, formulation, and integration with existing practices. This review underscores the role of PGPR in mitigating climate-induced agricultural challenges, highlighting the need for interdisciplinary collaborations and robust knowledge-sharing networks to drive the adoption of PGPR-based interventions. By leveraging these microbial allies, we can pave the way for climate-resilient farming systems and safeguard global food security amidst an uncertain future.
Collapse
Affiliation(s)
- Vani Sharma
- Faculty of Science, Motherhood University, Roorkee, India
| | | | - Shiwali Bisht
- Faculty of Science, Motherhood University, Roorkee, India
| |
Collapse
|
4
|
Kaur T, Devi R, Negi R, Kour H, Singh S, Khan SS, Kumari C, Kour D, Chowdhury S, Kapoor M, Rai AK, Rustagi S, Shreaz S, Yadav AN. Macronutrients-availing microbiomes: biodiversity, mechanisms, and biotechnological applications for agricultural sustainability. Folia Microbiol (Praha) 2025; 70:293-319. [PMID: 39592542 DOI: 10.1007/s12223-024-01220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Nitrogen, phosphorus, and potassium are the three most essential micronutrients which play major roles in plant survivability by being a structural or non-structural component of the cell. Plants acquire these nutrients from soil in the fixed (NO3¯, NH4+) and solubilized forms (K+, H2PO4- and HPO42-). In soil, the fixed and solubilized forms of nutrients are unavailable or available in bare minimum amounts; therefore, agrochemicals were introduced. Agrochemicals, mined from the deposits or chemically prepared, have been widely used in the agricultural farms over the decades for the sake of higher production of the crops. The excessive use of agrochemicals has been found to be deleterious for humans, as well as the environment. In the environment, agrochemical usage resulted in soil acidification, disturbance of microbial ecology, and eutrophication of aquatic and terrestrial ecosystems. A solution to such devastating agro-input was found to be substituted by macronutrients-availing microbiomes. Macronutrients-availing microbiomes solubilize and fix the insoluble form of nutrients and convert them into soluble forms without causing any significant harm to the environment. Microbes convert the insoluble form to the soluble form of macronutrients (nitrogen, phosphorus, and potassium) through different mechanisms such as fixation, solubilization, and chelation. The microbiomes having capability of fixing and solubilizing nutrients contain some specific genes which have been reported in diverse microbial species surviving in different niches. In the present review, the biodiversity, mechanism of action, and genomics of different macronutrients-availing microbiomes are presented.
Collapse
Affiliation(s)
- Tanvir Kaur
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Rubee Devi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya, Faizabad, Uttar Pradesh, India
| | - Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Bhajhol, Solan, Himachal Pradesh, India
| | - Divjot Kour
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Sohini Chowdhury
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Monit Kapoor
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Sheikh Shreaz
- Desert Agriculture and Ecosystem Department, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|
5
|
Zampieri E, Cucu MA, Franchi E, Fusini D, Pietrini I, Centritto M, Balestrini R. Characterization of Different Soil Bacterial Strains and Assessment of Their Impact on the Growth of Triticum turgidum spp. durum and Lens culinaris spp. culinaris. Curr Microbiol 2025; 82:199. [PMID: 40097641 DOI: 10.1007/s00284-025-04171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
Plant growth-promoting bacteria (PGPB) are vital for enhancing plant growth, productivity, and sustainability in agriculture, also addressing food security challenges. The plant growth-promoting (PGP) potential of ten bacterial strains, isolated from a cultivated field in southern Italy, was characterized with biochemical and molecular analyses and plant growth-promoting activity was tested on two durum wheat varieties (RGT Aventadur and Farah) and a lentil one (Altamura Lentil) under semi-controlled conditions. The isolated strains were classified using 16S rRNA gene sequencing. Results showed that they belonged to Pseudomonaceae, Rhizobiaceae, Bacillaceae and Micrococcaceae families. They exhibited typical features of PGPB, such as inorganic phosphate solubilization, production of indole acetic acid, ammonia, and biofilm formation. Bacterial inoculation of wheat plants led to the identification of potentially interesting strains that positively affected biometric parameters (i.e., shoot height, tiller number and spike weight) in a genotype-dependent way. The contrasting effect of some bacterial strains on the two wheat genotypes supports the necessity to accurately formulate synthetic microbial consortia characterized by long-term PGP traits, taking into account that the application under field conditions might also be influenced by native soil microbiota.
Collapse
Affiliation(s)
- Elisa Zampieri
- Institute for Sustainable Plant Protection (CNR-IPSP), National Research Council of Italy, Turin, Italy
| | - Maria Alexandra Cucu
- Institute for Sustainable Plant Protection (CNR-IPSP), National Research Council of Italy, Turin, Italy
| | - Elisabetta Franchi
- R&D Environmental & Biological Laboratories, Eni S.P.A, San Donato Milanese, Italy
| | - Danilo Fusini
- R&D Environmental & Biological Laboratories, Eni S.P.A, San Donato Milanese, Italy
| | - Ilaria Pietrini
- R&D Environmental & Biological Laboratories, Eni S.P.A, San Donato Milanese, Italy
| | - Mauro Centritto
- Institute for Sustainable Plant Protection (CNR-IPSP), National Research Council of Italy, Turin, Italy
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, National Research Council of Italy, CNR-IBBR), Bari, Italy.
| |
Collapse
|
6
|
Breedt G, Korsten L, Gokul JK. Enhancing multi-season wheat yield through plant growth-promoting rhizobacteria using consortium and individual isolate applications. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01245-9. [PMID: 39907926 DOI: 10.1007/s12223-025-01245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
In recent decades, there has been a growing interest in harnessing plant growth-promoting rhizobacteria (PGPR) as a possible mechanism to mitigate the environmental impact of conventional agricultural practices and promote sustainable agricultural production. This study investigated the transferability of promising PGPR research from maize to another Poaceae cereal crop, wheat. This multi-seasonal study evaluated the wheat grain yield effect of Lysinibacillus sphaericus (T19), Paenibacillus alvei (T29) when applied i. individually, ii. as a consortium with Bacillus safensis (S7), and iii. at a 75% reduced fertilizer rate. Whole genome sequencing allowed annotation of genes linked to plant growth promotion, providing potential genomic explanations for the observed in-field findings. Application of the consortium compared to a commercial PGPR showed significantly increased wheat yield by 30.71%, and 25.03%, respectively, in season one, and 63.92% and 58.45%, respectively, under reduced fertilizer rates in season two. Individual application of T19 and T29 showed varying results, with T19 increasing wheat yield by 9.33% and 16.22% during seasons three and four but a substantial reduction (33.39%) during season five. T29 exhibited yield increases during season three (9.31%) and five (5.61%) but led to a significant reduction (21.15%) in season four. Genomic analysis unveiled a spectrum of plant growth-promoting genes including those associated with ammonification, phosphate solubilization, ethylene, siderophore, catalase, and superoxide dismutase production. These findings offer valuable insights into the mechanisms behind observed field results, with potential implications for advancing sustainable agriculture and crop productivity in evolving agricultural landscapes.
Collapse
Affiliation(s)
- Gerhardus Breedt
- Limpopo Department of Agriculture and Rural Development, Towoomba ADC, Private Bag X1615, Bela-Bela, 0480, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
- Department of Science and Innovation - National Research Foundation Centre of Excellence in Food Security, Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Jarishma Keriuscia Gokul
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
| |
Collapse
|
7
|
Tariq M, Zahoor M, Yasmeen T, Naqqash T, Rashid MAR, Abdullah M, Rafiq AR, Zafar M, Irfan I, Rasul I. Biocontrol efficacy of Bacillus licheniformis and Bacillus amyloliquefaciens against rice pathogens. PeerJ 2025; 13:e18920. [PMID: 39897490 PMCID: PMC11786712 DOI: 10.7717/peerj.18920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Biocontrol is a cost-effective and eco-friendly approach to control plant pathogens using natural enemies. Antagonistic microorganisms or their derivatives specifically target the plant pathogens while minimizing the harm to non-target organisms. Bacterial blight and brown spot are the major rice diseases caused by Xanthomonas oryzae pv. oryzae (Xoo) and Bipolaris oryzae (Bo), respectively. This study was conducted to assess the plant growth-promoting potential and biocontrol activity of root-associated bacteria against the rice pathogens, Xoo and Bo. A total of 98 bacteria were isolated from rice roots and characterized for plant growth-promoting properties including phosphate solubilization, indole-3-acetic acid production, nitrogen fixation and biofilm formation. Based on these properties, 36 bacteria were selected and tested for biocontrol potential against rice pathogens via co-culturing antagonism assay. LE7 exhibited the maximum inhibition of 79%, while FR8, PE2, LE7, LR22 and LR28 also significantly reduced the growth of Xoo. Likewise, FR2, LR22, LR35 and LE7 significantly inhibited the growth of Bo, in which LR22 exhibited the maximum inhibition of 81%. Under controlled-conditions, LE7 and LR22 significantly reduced the disease incidence of Xoo and Bo, respectively, and improved the growth of rice. Full-length 16S rRNA gene sequencing of most potential bacterial isolates, LE7 and LR22, revealed their maximum identity with Bacillus amyloliquefaciens and Bacillus licheniformis, respectively. Application of Bacillus spp. as biocontrol agent represents enormous potential in rice farming. The most promising bacterial isolates could be used as bioinoculants for rice disease management and improved production in a sustainable manner.
Collapse
Affiliation(s)
- Mohsin Tariq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mehvish Zahoor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tahira Yasmeen
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Muhammad Abdullah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abdul Rafay Rafiq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Marriam Zafar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Iqra Irfan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ijaz Rasul
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
8
|
Zhu L, Zhang P, Ma S, Yu Q, Wang H, Liu Y, Yang S, Chen Y. Enhancing carrot ( Daucus carota var. sativa Hoffm.) plant productivity with combined rhizosphere microbial consortium. Front Microbiol 2024; 15:1466300. [PMID: 39633805 PMCID: PMC11615968 DOI: 10.3389/fmicb.2024.1466300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Background Plant growth-promoting rhizobacteria (PGPR) are an integral part of agricultural practices due to their roles in promoting plant growth, improving soil conditions, and suppressing diseases. However, researches on the PGPR in the rhizosphere of carrots, an important vegetable crop, is relative limited. Therefore, this study aimed to isolate and characterize PGPR strains from the rhizosphere soil of greenhouse-grown carrots, with a focus on their potential to stimulate carrot growth. Methods Through a screening process, 12 high-efficiency phosphorus-solubilizing bacteria, one nitrogen-fixing strain, and two potassium-solubilizing strains were screened. Prominent among these were Bacillus firmus MN3 for nitrogen fixation ability, Acinetobacter pittii MP41 for phosphate solubilization, and Bacillus subtilis PK9 for potassium-solubilization. These strains were used to formulate a combined microbial consortium, N3P41K9, for inoculation and further analysis. Results The application of N3P41K9, significantly enhanced carrot growth, with an increase in plant height by 17.1% and root length by 54.5% in a pot experiment, compared to the control group. This treatment also elevated alkaline-hydrolyzable nitrogen levels by 72.4%, available phosphorus by 48.2%, and available potassium by 23.7%. Subsequent field trials confirmed the efficacy of N3P41K9, with a notable 12.5% increase in carrot yields. The N3P41K9 treatment had a minimal disturbance on soil bacterial diversity and abundance, but significantly increased the prevalence of beneficial genera such as Gemmatimonas and Nitrospira. Genus-level redundancy analysis indicated that the pH and alkali-hydrolyzable nitrogen content were pivotal in shaping the bacterial community composition. Discussion The findings of this study highlight the feasibility of combined microbial consortium in promoting carrot growth, increasing yield, and enriching the root environment with beneficial microbes. Furthermore, these results suggest the potential of the N3P41K9 consortium for soil amelioration, offering a promising strategy for sustainable agricultural practices.
Collapse
Affiliation(s)
- Liping Zhu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
- Postdoctoral Research Station, Rushan Hanwei Bio-Technical & Science CO., LTD., Weihai, Shandong, China
| | - Peiqiang Zhang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shunan Ma
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Quan Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Haibing Wang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yuexuan Liu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Song Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yanling Chen
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
9
|
Nguyen NK, Nguyen PM, Chau ATT, Do LT, Nguyen THT, Tran DHV, Le XT, Robatjazi J, Lasar HGW, Morton LW, Demyan MS, Tran HT, Tecimen HB. Long-term changes in soil biological activity and other properties of raised beds in Longan orchards. PeerJ 2024; 12:e18396. [PMID: 39677944 PMCID: PMC11639206 DOI: 10.7717/peerj.18396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/03/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction The Longan fruit tree of the Vietnam Mekong Delta is grown in raised beds to improve water drainage during the rainy season and can live as long as 100 years. Objective This research explores the extent to which the soil microorganisms as well as soil physical and chemical properties of these raised beds degrade over a period of 60 years under traditional management practices. Materials and Methods Raised bed topsoil samples at depths of 0-20 cm were obtained from four different Longan orchards raised bed age groups: group 1) 15-25 years (L1-L5); group 2) 26-37 years (L6-L10); group 3) 38-45 years (L11-L15); and group 4) 46-60 years. Soil biological properties were tested for nitrogen-fixing bacteria, phosphorus solubilizing bacteria, potassium solubilizing bacteria, calcium solubilizing bacteria and silicate solubilizing bacteria, β-glucosidase, urease, phosphomonoesterase, and phytase. Soil samples were also tested for moisture content, soil texture, soil porosity, and bulk density as well as soil chemical properties including pH, electrical conductivity (EC), soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (NH4 +, NO3 -), available phosphorus (AP), exchangeable potassium (K+), exchangeable calcium (Ca2 +), available silicate (SiO2), available copper (Cu), zinc (Zn), boron (B) and manganese (Mn). Key findings: The results showed that soil moisture, soil porosity, sand content, SOM, TP, TK, available P, exchangeable Ca2 +, available Si, nitrogen fixing bacteria number, β-glucosidase, urease, phosphomonoesterase, and phytase gradually and significantly decreased in the raised bed soil as the Longan orchard increased in age. Pearson correlation analysis between the ages of Longan orchards and soil properties revealed that raised bed ages were positively correlated with soil bulk density, but negatively correlated with soil moisture content, soil porosity, SOM, TN, β-glucosidase, urease, phosphomonoesterase, and phytase. Principal component analysis (PCA) showed Longan yields had a positive correlation with available NO3 - but negative correlation with NFB, exchangeable Ca2 +, pH, and available B. These findings reveal that traditional long-term management of Longan trees in raised beds significantly reduce soil organic matter, moisture content, porosity, and soil fertility with impacts on soil microbial numbers and activity within raised bed soils. Future Directions This suggests that more sustainable management practices, such as mulch and cover crops that decrease soil compaction and increase soil organic matter, improve soil porosity, total N, and feed soil microorganisms that are critical to nutrient cycling are needed to improve raised bed soil quality.
Collapse
Affiliation(s)
- Nghia Khoi Nguyen
- Department of Soil Science, College of Agriculture, Can Tho University, Can Tho City, Can Tho, Vietnam
| | - Phuong Minh Nguyen
- Department of Soil Science, College of Agriculture, Can Tho University, Can Tho City, Can Tho, Vietnam
| | - Anh Thy Thi Chau
- Department of Soil Science, College of Agriculture, Can Tho University, Can Tho City, Can Tho, Vietnam
| | - Luan Thanh Do
- Department of Soil Science, College of Agriculture, Can Tho University, Can Tho City, Can Tho, Vietnam
| | - Thu Ha Thi Nguyen
- Department of Soil Science, College of Agriculture, Can Tho University, Can Tho City, Can Tho, Vietnam
| | - Duong Hai Vo Tran
- Department of Agriculture and Aquaculture, Bac Lieu Technical and Economic College, Bac Lieu City, Bac Lieu, Vietnam
| | - Xa Thi Le
- School of Education, Soc Trang Community College, Soc Trang City, Soc Trang, Vietnam
| | - Javad Robatjazi
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States of America
| | - Hendra Gonsalve W. Lasar
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States of America
| | - Lois Wright Morton
- Department of Sociology and Criminal Justice, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, United States of America
| | - M. Scott Demyan
- School of Environment and Natural Resources, Ohio State University, Columbus, OH, United States of America
| | - Huu-Tuan Tran
- Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Hüseyin Barış Tecimen
- Department of Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, United States of America
| |
Collapse
|
10
|
Petipas RH, Peru C, Parks JM, Friesen ML, Jack CN. Prairie soil improves wheat establishment and accelerates the developmental transition to flowering compared to agricultural soils. Can J Microbiol 2024; 70:482-491. [PMID: 39110997 DOI: 10.1139/cjm-2023-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Less than 1% of native prairie lands remain in the United States. Located in eastern Washington, the rare habitat called Palouse prairie was largely converted to wheat monocropping. With this conversion came numerous physical, chemical, and biological changes to the soil that may ultimately contribute to reduced wheat yields. Here, we explored how wheat (Tritcum aestivum L.) seedling establishment, plant size, and heading, signifying the developmental transition to flowering, were affected by being planted in prairie soil versus agricultural soils. We then sought to understand whether the observed effects were the result of changes to the soil microbiota due to agricultural intensification. We found that prairie soil enhanced both the probability of wheat seedling survival and heading compared to agricultural soil; however, wheat growth was largely unaffected by soil source. We did not detect effects on wheat developmental transitions or phenotype when inoculated with prairie microbes compared with agricultural microbes, but we did observe general antagonistic effects of microbes on plant size, regardless of soil source. This work indicates that agricultural intensification has affected soils in a way that changes early seedling establishment and the timing of heading for wheat, but these effects may not be caused by microbes, and instead may be caused by soil nutrient conditions.
Collapse
Affiliation(s)
- Renee H Petipas
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Cassidy Peru
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Janice M Parks
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Maren L Friesen
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Chandra N Jack
- Department of Biology, Clark University, Worchester, MA 01610, USA
| |
Collapse
|
11
|
Wang T, Chen Q, Liang Q, Zhao Q, Lu X, Tian J, Guan Z, Liu C, Li J, Zhou M, Tian J, Liang C. Bacillus suppresses nitrogen efficiency of soybean-rhizobium symbiosis through regulation of nitrogen-related transcriptional and microbial patterns. PLANT, CELL & ENVIRONMENT 2024; 47:4305-4322. [PMID: 38963088 DOI: 10.1111/pce.15023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
The regulation of legume-rhizobia symbiosis by microorganisms has obtained considerable interest in recent research, particularly in the common rhizobacteria Bacillus. However, few studies have provided detailed explanations regarding the regulatory mechanisms involved. Here, we investigated the effects of Bacillus (Bac.B) on Bradyrhizobium-soybean (Glycine max) symbiosis and elucidated the underlying ecological mechanisms. We found that two Bradyrhizobium strains (i.e. Bra.Q2 and Bra.D) isolated from nodules significantly promoted nitrogen (N) efficiency of soybean via facilitating nodule formation, thereby enhanced plant growth and yield. However, the intrusion of Bac.B caused a reverse shift in the synergistic efficiency of N2 fixation in the soybean-Bradyrhizobium symbiosis. Biofilm formation and naringenin may be importantin suppression of Bra.Q2 growth regulated by Bac.B. In addition, transcriptome and microbiome analyses revealed that Bra.Q2 and Bac.B might interact to regulateN transport and assimilation, thus influence the bacterial composition related to plant N nutrition in nodules. Also, the metabolisms of secondary metabolites and hormones associated with plant-microbe interaction and growth regulation were modulated by Bra.Q2 and Bac.B coinoculation. Collectively, we demonstrate that Bacillus negatively affects Bradyrhizobium-soybean symbiosis and modulate microbial interactions in the nodule. Our findings highlight a novel Bacillus-based regulation to improve N efficiency and sustainable agricultural development.
Collapse
Affiliation(s)
- Tianqi Wang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Qianqian Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Quan Liang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Qian Zhao
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jihui Tian
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Zidi Guan
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Chang Liu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jifu Li
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Ming Zhou
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Babar S, Baloch A, Qasim M, Wang J, Wang X, Li Y, Khalid S, Jiang C. Unearthing the soil-bacteria nexus to enhance potassium bioavailability for global sustainable agriculture: A mechanistic preview. Microbiol Res 2024; 288:127885. [PMID: 39236472 DOI: 10.1016/j.micres.2024.127885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
Established as a plant macronutrient, potassium (K) substantially bestows plant growth and thus, global food production. It is absorbed by plants as potassium cation (K+) from soil solution, which is enriched through slow-release from soil minerals or addition of soluble fertilizers. Contribution of bioavailable K+ from soil is usually insignificant (< 2 %), although the earth's crust is rich in K-bearing minerals. However, K is fixed largely in interlayer spaces of K-bearing minerals, which can be released by K-solubilizing bacteria (KSB) such as Bacillus, Pseudomonas, Enterobacter, and Acidithiobacillus. The underlying mechanisms of K dissolution by KSB include acidolysis, ion exchange reactions, chelation, complexolysis, and release of various organic and inorganic acids such as citric, oxalic, acetic, gluconic, and tartaric acids. These acids cause disintegration of K-bearing minerals and bring K+ into soil solution that becomes available to the plants. Current literature review updates the scientific information about microbial species, factors, and mechanisms governing the bio-intrusion of K-bearing minerals. Moreover, it explores the potential of KSB not only for K-solubilization but also to enhance bioavailability of phosphorus, nitrogen, and micronutrients, as well as its other beneficial impact on plant growth. Thus, in the context of sustainable agricultural production and global food security, utilization of KSB may facilitate plant nutrient availability, conserve natural resources, and reduce environmental impacts caused by chemical fertilizers.
Collapse
Affiliation(s)
- Saba Babar
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Amanullah Baloch
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Sarmand Khalid
- Key Laboratory of Horticulture Plant Biology of Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
13
|
Dinh VP, Tran-Vu HA, Tran T, Duong BN, Dang-Thi NM, Phan-Van HL, Tran TK, Huynh VH, Nguyen TPT, Nguyen TQ. Improving Soil Quality and Crop Yields Using Enhancing Sustainable Rice Straw Management Through Microbial Enzyme Treatments. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241283001. [PMID: 39483681 PMCID: PMC11526194 DOI: 10.1177/11786302241283001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/27/2024] [Indexed: 11/03/2024]
Abstract
This study develops a model to raise public awareness about the consequences of burning rice straw after harvest, including environmental pollution, soil degradation, and increased CO2 emissions that contribute to the greenhouse effect. The distinctive feature of the research is the introduction of a post-harvest rice straw treatment process using microbial products capable of secreting cellulase enzymes, which can break down the cellulose in the straw. This process shortens the decomposition time and produces natural organic fertilizer, thus reducing cultivation costs by 60% and increasing crop yields by 20%. The experimental model was carried out in Cam My district, Dong Nai province, Vietnam, including 4 models: no microbial products; using Bio Decomposer; using NTT-01; and using NTT-02. Each experimental field had an area of 650 m². The results showed a significant reduction in straw decomposition time after 14 days of use of the products, with a decomposition rate of up to 80%, nearly twice as fast as without the products. This helps save time, produce natural organic fertilizers, reduce care costs, and increase rice yields, resulting in more income for local residents. These findings demonstrate the effectiveness of microbial treatments in sustainable agriculture and their potential for a broader application in the management of agricultural waste.
Collapse
Affiliation(s)
- Van-Phuc Dinh
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Hoai-An Tran-Vu
- Research and Development Institute Advanced Agrobiology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thanh Tran
- Research and Development Institute Advanced Agrobiology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Bich-Ngoc Duong
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Ngoc-Mai Dang-Thi
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Hoai-Luan Phan-Van
- Research and Development Institute Advanced Agrobiology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Tuan-Kiet Tran
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
- Research and Development Institute Advanced Agrobiology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Van-Hieu Huynh
- Nguyen Tat Thanh HI-TECH Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thi-Phuong-Tu Nguyen
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thanh Q Nguyen
- Institute of Interdisciplinary Social Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
14
|
Andreata MFL, Afonso L, Niekawa ETG, Salomão JM, Basso KR, Silva MCD, Alves LC, Alarcon SF, Parra MEA, Grzegorczyk KG, Chryssafidis AL, Andrade G. Microbial Fertilizers: A Study on the Current Scenario of Brazilian Inoculants and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:2246. [PMID: 39204682 PMCID: PMC11360115 DOI: 10.3390/plants13162246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
The increasing need for sustainable agricultural practices, combined with the demand for enhanced crop productivity, has led to a growing interest in utilizing microorganisms for biocontrol of diseases and pests, as well as for growth promotion. In Brazilian agriculture, the use of plant growth-promoting rhizobacteria (PGPR) and plant growth-promoting fungi (PGPF) has become increasingly prevalent, with a corresponding rise in the number of registered microbial inoculants each year. PGPR and PGPF occupy diverse niches within the rhizosphere, playing a crucial role in soil nutrient cycling and influencing a wide range of plant physiological processes. This review examines the primary mechanisms employed by these microbial agents to promote growth, as well as the strategy of co-inoculation to enhance product efficacy. Furthermore, we provide a comprehensive analysis of the microbial inoculants currently available in Brazil, detailing the microorganisms accessible for major crops, and discuss the market's prospects for the research and development of novel products in light of current challenges faced in the coming years.
Collapse
Affiliation(s)
- Matheus F. L. Andreata
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Leandro Afonso
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Erika T. G. Niekawa
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Julio M. Salomão
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Kawany Roque Basso
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Maria Clara D. Silva
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Leonardo Cruz Alves
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Stefani F. Alarcon
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Maria Eugenia A. Parra
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Kathlen Giovana Grzegorczyk
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | | | - Galdino Andrade
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| |
Collapse
|
15
|
Mohan I, Joshi B, Pathania D, Dhar S, Bhau BS. Phytobial remediation advances and application of omics and artificial intelligence: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37988-38021. [PMID: 38780844 DOI: 10.1007/s11356-024-33690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Industrialization and urbanization increased the use of chemicals in agriculture, vehicular emissions, etc., and spoiled all environmental sectors. It causes various problems among living beings at multiple levels and concentrations. Phytoremediation and microbial association are emerging as a potential method for removing heavy metals and other contaminants from soil. The treatment uses plant physiology and metabolism to remove or clean up various soil contaminants efficiently. In recent years, omics and artificial intelligence have been seen as powerful techniques for phytobial remediation. Recently, AI and modeling are used to analyze large data generated by omics technologies. Machine learning algorithms can be used to develop predictive models that can help guide the selection of the most appropriate plant and plant growth-promoting rhizobacteria combination that is most effective at remediation. In this review, emphasis is given to the phytoremediation techniques being explored worldwide in soil contamination.
Collapse
Affiliation(s)
- Indica Mohan
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Babita Joshi
- Plant Molecular Genetics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P., 226001, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Sunil Dhar
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Brijmohan Singh Bhau
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India.
| |
Collapse
|
16
|
Reddy BD, Kumar B, Sahni S, Yashaswini G, Karthik S, Reddy MSS, Kumar R, Mukherjee U, Krishna KS. Harnessing the power of native biocontrol agents against wilt disease of Pigeonpea incited by Fusarium udum. Sci Rep 2024; 14:12500. [PMID: 38822009 PMCID: PMC11143286 DOI: 10.1038/s41598-024-60039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/18/2024] [Indexed: 06/02/2024] Open
Abstract
Fusarium wilt, caused by (Fusarium udum Butler), is a significant threat to pigeonpea crops worldwide, leading to substantial yield losses. Traditional approaches like fungicides and resistant cultivars are not practical due to the persistent and evolving nature of the pathogen. Therefore, native biocontrol agents are considered to be more sustainable solution, as they adapt well to local soil and climatic conditions. In this study, five isolates of F. udum infecting pigeonpea were isolated from various cultivars and characterized morphologically and molecularly. The isolate from the ICP 8858 cultivar displayed the highest virulence of 90%. Besides, 100 endophytic bacteria, 100 rhizosphere bacteria and three Trichoderma spp. were isolated and tested against F. udum isolated from ICP 8858 under in vitro conditions. Out of the 200 bacteria tested, nine showed highest inhibition, including Rb-4 (Bacillus sp.), Rb-11 (B. subtilis), Rb-14 (B. megaterium), Rb-18 (B. subtilis), Rb-19 (B. velezensis), Eb-8 (Bacillus sp.), Eb-11 (B. subtilis), Eb-13 (P. aeruginosa), and Eb-21 (P. aeruginosa). Similarly, Trichoderma spp. were identified as T. harzianum, T. asperellum and Trichoderma sp. Notably, Rb-18 (B. subtilis) and Eb-21 (P. aeruginosa) exhibited promising characteristics such as the production of hydrogen cyanide (HCN), cellulase, siderophores, ammonia and nutrient solubilization. Furthermore, treating pigeonpea seedlings with these beneficial microorganisms led to increased levels of key enzymes (POD, PPO, and PAL) associated with resistance to Fusarium wilt, compared to untreated controls. In field trials conducted for four seasons, the application of these potential biocontrol agents as seed treatments on the susceptible ICP2376 cultivar led to the lowest disease incidence. Specifically, treatments T2 (33.33) (P. aeruginosa) and T3 (35.41) (T. harzianium) exhibited the lowest disease incidence, followed by T6 (36.5) (Carbendizim), T1 (36.66) (B. subtilis), T4 (52.91) (T. asperellum) and T5 (53.33) (Trichoderma sp.). Results of this study revealed that, P. aeruginosa (Eb-21), B. subtilis (Rb-18) and T. harzianum can be used for plant growth promotion and management of Fusarium wilt of pigeonpea.
Collapse
Affiliation(s)
- B Deepak Reddy
- Department of Plant Pathology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India.
| | - Birendra Kumar
- Department of Plant Pathology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Sangita Sahni
- Department of Plant Pathology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - G Yashaswini
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Somala Karthik
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - M S Sai Reddy
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Rajeev Kumar
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad, Central Agricultural University, Pusa, Bihar, India
| | - U Mukherjee
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - K Sai Krishna
- Department of Basic Sciences and Languages, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| |
Collapse
|
17
|
Thiengo CC, Galindo FS, Bernardes JVS, da Rocha LO, da Silva CD, Burak DL, Lavres J. Nitrogen fertilization regulates crosstalk between marandu palisadegrass and Herbaspirillum seropedicae: An investigation based on 15N isotopic analysis and root morphology. ENVIRONMENTAL RESEARCH 2024; 249:118345. [PMID: 38331147 DOI: 10.1016/j.envres.2024.118345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
Strategies seeking to increase the use efficiency of nitrogen (N) fertilizers and that benefit plant growth through multiple mechanisms can reduce production costs and contribute to more sustainable agriculture free of polluting residues. Under controlled conditions, we investigated the compatibility between foliar inoculation with an endophytic diazotrophic bacterium (Herbaspirillum seropedicae HRC54) at control and low, medium and high N fertilization levels (0, 25, 50 and 100 mg of N kg-1 as urea, respectively) in Marandu palisadegrass. Common procedures in our research field (biometric and nutritional assessments) were combined with isotopic techniques (natural abundance - δ15N‰ and 15N isotope dilution) and root scanning to determine the contribution of fixed N and recovery of N fertilizer by the grass. Overall, the combined use of 15N isotopic techniques revealed that inoculation not only improved the recovery of applied N-urea from the soil but also provided fixed nitrogen to Marandu palisade grass, resulting in an increase in the total accumulated N. When inoculated plants grew at control and low levels of N, a positive cascade effect encompassing root growth stimulation (nodes of smaller diameter roots), better soil and fertilizer resource exploitation and increased forage production was observed. In contrast, increasing N reduced the contributions of N fixed by H. seropedicae from 21.5% at the control level to 8.6% at the high N level. Given the minimal to no observed growth promotion, this condition was deemed inhibitory to the positive effects of H. seropedicae. We discuss how to make better use of H. seropedicae inoculation in Marandu palisadegrass, albeit on a small scale, thus contributing to a more rational and efficient use of N fertilizers. Finally, we pose questions for future investigations based on 15N isotopic techniques under field conditions, which have great applicability potential.
Collapse
Affiliation(s)
- Cassio Carlette Thiengo
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13418-900, Brazil.
| | - Fernando Shintate Galindo
- Faculty of Agricultural and Technological Sciences, São Paulo State University, Dracena, 17900-000, Brazil.
| | | | - Leticia Oliveira da Rocha
- Nucleus for the Development of Biological Inputs for Agriculture, North Fluminense State University Darcy Ribeiro, Campos dos Goytacazes, 28013-602, Brazil.
| | - Carlos Diego da Silva
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13418-900, Brazil.
| | - Diego Lang Burak
- Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alegre, 29500-000, Brazil.
| | - José Lavres
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, 13416-000, Brazil.
| |
Collapse
|
18
|
Breedt G, Korsten L, Gokul JK. Influence of Soil Phosphate on Rhizobacterial Performance in Affecting Wheat Yield. Curr Microbiol 2024; 81:170. [PMID: 38734822 PMCID: PMC11088555 DOI: 10.1007/s00284-024-03685-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/01/2024] [Indexed: 05/13/2024]
Abstract
As a primary nutrient in agricultural soils, phosphorus plays a crucial but growth-limiting role for plants due to its complex interactions with various soil elements. This often results in excessive phosphorus fertilizer application, posing concerns for the environment. Agri-research has therefore shifted focus to increase fertilizer-use efficiency and minimize environmental impact by leveraging plant growth-promoting rhizobacteria. This study aimed to evaluate the in-field incremental effect of inorganic phosphate concentration (up to 50 kg/ha/P) on the ability of two rhizobacterial isolates, Lysinibacillus sphaericus (T19), Paenibacillus alvei (T29), from the previous Breedt et al. (Ann Appl Biol 171:229-236, 2017) study on maize in enhancing the yield of commercially grown Duzi® cultivar wheat. Results obtained from three seasons of field trials revealed a significant relationship between soil phosphate concentration and the isolates' effectiveness in improving wheat yield. Rhizospheric samples collected at flowering during the third season, specifically to assess phosphatase enzyme activity at the different soil phosphate levels, demonstrated a significant decrease in soil phosphatase activity when the phosphorus rate reached 75% for both isolates. Furthermore, in vitro assessments of inorganic phosphate solubilization by both isolates at five increments of tricalcium phosphate-amended Pikovskaya media found that only isolate T19 was capable of solubilizing tricalcium at concentrations exceeding 3 mg/ml. The current study demonstrates the substantial influence of inorganic phosphate on the performance of individual rhizobacterial isolates, highlighting that this is an essential consideration when optimizing these isolates to increase wheat yield in commercial cultivation.
Collapse
Affiliation(s)
- Gerhardus Breedt
- Limpopo Department of Agriculture and Rural Development, Towoomba ADC, Private Bag X1615, Bela-Bela, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Pretoria, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Pretoria, South Africa
- Department of Science and Innovation - National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Jarishma Keriuscia Gokul
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Pretoria, South Africa.
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Private Bag X20, Pretoria, South Africa.
| |
Collapse
|
19
|
Bai X, Han Y, Han L. Transcriptional alterations of peanut root during interaction with growth-promoting Tsukamurella tyrosinosolvens strain P9. PLoS One 2024; 19:e0298303. [PMID: 38358983 PMCID: PMC10868839 DOI: 10.1371/journal.pone.0298303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
The plant growth-promoting rhizobacterium Tsukamurella tyrosinosolvens P9 can improve peanut growth. In this study, a co-culture system of strain P9 and peanut was established to analyze the transcriptome of peanut roots interacting with P9 for 24 and 72 h. During the early stage of co-culturing, genes related to mitogen-activated protein kinase (MAPK) and Ca2+ signal transduction, ethylene synthesis, and cell wall pectin degradation were induced, and the up-regulation of phenylpropanoid derivative, flavonoid, and isoflavone synthesis enhanced the defense response of peanut. The enhanced expression of genes associated with photosynthesis and carbon fixation, circadian rhythm regulation, indoleacetic acid (IAA) synthesis, and cytokinin decomposition promoted root growth and development. At the late stage of co-culturing, ethylene synthesis was reduced, whereas Ca2+ signal transduction, isoquinoline alkaloid synthesis, and ascorbate and aldarate metabolism were up-regulated, thereby maintaining root ROS homeostasis. Sugar decomposition and oxidative phosphorylation and nitrogen and fatty acid metabolism were induced, and peanut growth was significantly promoted. Finally, the gene expression of seedlings inoculated with strain P9 exhibited temporal differences. The results of our study, which explored transcriptional alterations of peanut root during interacting with P9, provide a basis for elucidating the growth-promoting mechanism of this bacterial strain in peanut.
Collapse
Affiliation(s)
- Xue Bai
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Yujie Han
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Lizhen Han
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
20
|
Li M, Hu J, Wei Z, Jousset A, Pommier T, Yu X, Xu Y, Shen Q. Synthetic microbial communities: Sandbox and blueprint for soil health enhancement. IMETA 2024; 3:e172. [PMID: 38868511 PMCID: PMC10989119 DOI: 10.1002/imt2.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 06/14/2024]
Abstract
We summarize here the use of SynComs in improving various dimensions of soil health, including fertility, pollutant removal, soil-borne disease suppression, and soil resilience; as well as a set of useful guidelines to assess and understand the principles for designing SynComs to enhance soil health. Finally, we discuss the next stages of SynComs applications, including highly diverse and multikingdom SynComs targeting several functions simultaneously.
Collapse
Affiliation(s)
- Mei Li
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and NutritionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Jie Hu
- Department of Microbial EcologyNetherlands Institute of EcologyWageningenThe Netherlands
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Thomas Pommier
- UMR INRAE 1418 Ecologie MicrobienneUniversité Claude Bernard Lyon 1VilleurbanneFrance
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and NutritionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
21
|
Ikiz B, Dasgan HY, Gruda NS. Utilizing the power of plant growth promoting rhizobacteria on reducing mineral fertilizer, improved yield, and nutritional quality of Batavia lettuce in a floating culture. Sci Rep 2024; 14:1616. [PMID: 38238449 PMCID: PMC10796387 DOI: 10.1038/s41598-024-51818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
In soilless cultivation, plants are grown with nutrient solutions prepared with mineral nutrients. Beneficial microorganisms are very important in plant nutrition. However, they are not present in soilless culture systems. In this study we investigated the impact of introducing Plant Growth Promoting Rhizobacteria (PGPR) as an alternative to traditional mineral fertilizer in hydroponic floating lettuce cultivation. By reducing mineral fertilizers at various ratios (20%, 40%, 60%, and 80%), and replacing them with PGPR, we observed remarkable improvements in multiple growth parameters. Applying PGPR led to significant enhancements in plant weight, leaf number, leaf area, leaf dry matter, chlorophyll content, yield, and nutrient uptake in soilles grown lettuce. Combining 80% mineral fertilizers with PGPR demonstrated a lettuce yield that did not significantly differ from the control treatment with 100% mineral fertilizers. Moreover, PGPR application improved the essential mineral concentrations and enhanced human nutritional quality, including higher levels of phenols, flavonoids, vitamin C, and total soluble solids. PGPR has potential as a sustainable substitute for synthetic mineral fertilizers in hydroponic floating lettuce cultivation, leading to environmentally friendly and nutritionally enriched farming.
Collapse
Affiliation(s)
- Boran Ikiz
- Department of Horticulture, Faculty of Agriculture, University of Cukurova, 01330, Adana, Turkey
| | - Hayriye Yildiz Dasgan
- Department of Horticulture, Faculty of Agriculture, University of Cukurova, 01330, Adana, Turkey.
| | - Nazim S Gruda
- Institute of Plant Sciences and Resource Conservation, Division of Horticultural Sciences, University of Bonn, 53113, Bonn, Germany.
| |
Collapse
|
22
|
Li F, Xi K, Li Y, Ming T, Huang Y, Zhang L. Genome-wide analysis of transmembrane 9 superfamily genes in wheat ( Triticum aestivum) and their expression in the roots under nitrogen limitation and Bacillus amyloliquefaciens PDR1 treatment conditions. FRONTIERS IN PLANT SCIENCE 2024; 14:1324974. [PMID: 38259936 PMCID: PMC10800943 DOI: 10.3389/fpls.2023.1324974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
Introduction Transmembrane 9 superfamily (TM9SF) proteins play significant roles in plant physiology. However, these proteins are poorly characterized in wheat (Triticum aestivum). The present study aimed at the genome-wide analysis of putative wheat TM9SF (TraesTM9SF) proteins and their potential involvement in response to nitrogen limitation and Bacillus amyloliquefaciens PDR1 treatments. Methods TraesTM9SF genes were retrieved from the wheat genome, and their physiochemical properties, alignment, phylogenetic, motif structure, cis-regulatory element, synteny, protein-protein interaction (PPI), and transcription factor (TF) prediction analyses were performed. Transcriptome sequencing and quantitative real-time polymerase reaction (qRT-PCR) were performed to detect gene expression in roots under single or combined treatments with nitrogen limitation and B. amyloliquefaciens PDR1. Results and discussion Forty-seven TraesTM9SF genes were identified in the wheat genome, highlighting the significance of these genes in wheat. TraesTM9SF genes were absent on some wheat chromosomes and were unevenly distributed on the other chromosomes, indicating that potential regulatory functions and evolutionary events may have shaped the TraesTM9SF gene family. Fifty-four cis-regulatory elements, including light-response, hormone response, biotic/abiotic stress, and development cis-regulatory elements, were present in the TraesTM9SF promoter regions. No duplication of TraesTM9SF genes in the wheat genome was recorded, and 177 TFs were predicted to target the 47 TraesTM9SF genes in a complex regulatory network. These findings offer valued data for predicting the putative functions of uncharacterized TM9SF genes. Moreover, transcriptome analysis and validation by qRT-PCR indicated that the TraesTM9SF genes are expressed in the root system of wheat and are potentially involved in the response of this plant to single or combined treatments with nitrogen limitation and B. amyloliquefaciens PDR1, suggesting their functional roles in plant growth, development, and stress responses. Conclusion These findings may be vital in further investigation of the function and biological applications of TM9SF genes in wheat.
Collapse
Affiliation(s)
- Fei Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Kuanling Xi
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yuke Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Tang Ming
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yufeng Huang
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Lijun Zhang
- Science and Technology Division, Guizhou Normal University, Guiyang, China
| |
Collapse
|
23
|
Krishnappa C, Balamurugan A, Velmurugan S, Kumar S, Sampathrajan V, Kundu A, Javed M, Chouhan V, Ganesan P, Kumar A. Rice foliar-adapted Pantoea species: Promising microbial biostimulants enhancing rice resilience against foliar pathogens, Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae. Microb Pathog 2024; 186:106445. [PMID: 37956936 DOI: 10.1016/j.micpath.2023.106445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Foliar fungal blast and bacterial leaf blight have significant impacts on rice production, and their management through host resistance and agrochemicals has proven inadequate. To achieve their sustainable management, innovative approaches like leveraging the foliar microbiome, which collaborates with plants and competes against pathogens, are essential. In our study, we isolated three Pantoea strains (P. agglomerans Os-Ep-PPA-1b, P. vagans Os-Ep-PPA-3b, and P. deleyi Os-Ep-VPA-9a) from the rice phylloplane. These isolates exhibited antimicrobial action through their metabolome and volatilome, while also promoting rice growth. Our analysis, using Gas Chromatography-Mass Spectrometry (GC-MS), revealed the presence of various antimicrobial compounds such as esters and fatty acids produced by these Pantoea isolates. Inoculating rice seedlings with P. agglomerans and P. vagans led to increased root and shoot growth. Additionally, bacterized seedlings displayed enhanced immunocompetence, as evidenced by upregulated expressions of defense genes (OsEDS1, OsFLS2, OsPDF2.2, OsACO4, OsICS OsPR1a, OsNPR1.3, OsPAD4, OsCERK1.1), along with heightened activities of defense enzymes like Polyphenol Oxidase and Peroxidase. These plants also exhibited elevated levels of total phenols. In field trials, the Pantoea isolates contributed to improved plant growth, exemplified by increased flag-leaf length, panicle number, and grains per panicle, while simultaneously reducing the incidence of chaffy grains. Hypersensitivity assays performed on a model plant, tobacco, confirmed the non-pathogenic nature of these Pantoea isolates. In summary, our study underscores the potential of Pantoea bacteria in combatting rice foliar diseases. Coupled with their remarkable growth-promoting and biostimulant capabilities, these findings position Pantoea as promising agents for enhancing rice cultivation.
Collapse
Affiliation(s)
- Charishma Krishnappa
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Alexander Balamurugan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Shanmugam Velmurugan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Shanu Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Vellaikumar Sampathrajan
- Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, 625104, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Mohammed Javed
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Vinod Chouhan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Prakash Ganesan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
24
|
Jang Y, Sharavdorj K, Ahn Y, Cho J. Effects of Planting Density and Nitrogen Fertilization on the Growth of Forage Rice in Reclaimed and General Paddy Fields. PLANTS (BASEL, SWITZERLAND) 2023; 13:13. [PMID: 38202321 PMCID: PMC10780310 DOI: 10.3390/plants13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
The purpose of this study is to identify the different effects exerted by planting density and nitrogen fertilization on high-salinity reclaimed paddy fields (RPF) and general paddy fields (GPFs), and to find the amount of fertilization and the planting density suitable for the growth of forage rice in each paddy field. Nitrogen fertilization with high-salt and low-salt soils, an untreated control plot, treatment with 200 kg/ha, 300 kg/ha, and 400 kg/ha, and planting densities of 30 cm × 10 cm and 30 cm × 16 cm, growth, and feed values were investigated. In both experimental locations, there was no significant change in the soil due to N treatment, but in the case of RPF, electrical conductivity (EC) decreased significantly from more than 5 dS/m to up to 2.87 dS/m during the yellow ripe stage due to the influence of floods and concentrated precipitation in the fields. In all soils, as both the amount of N treatment and the planting density increased, there was a proportional relationship in which the number of tillers and the dry weight also increased, with the occurrence of lodging also being increased. The dry weight, as expected, was 1.5 times higher at a planting distance of 10 cm, rather than 16 cm. In addition, in both locations, the N treatment led to an increase in the dry weight, but when N treatment reached 400 kg/ha (2.0), the dry weight decreased instead. Moreover, although there was no clear difference in feed value according to N treatment, in RPF, the neutral detergent fiber (NDF) was higher than 60%, the relative feed value (RFV) was less than 98, and the total digestible nutrient (TDN) was also low, confirming that the quality of rice was higher in GPF.
Collapse
Affiliation(s)
- Yeongmi Jang
- Department of Crop Science, College of Agricultural and Life Sciences, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (Y.J.); (K.S.)
| | - Khulan Sharavdorj
- Department of Crop Science, College of Agricultural and Life Sciences, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (Y.J.); (K.S.)
| | - Youngjik Ahn
- Department of Horticulture and Forestry, Pai Chai University, 155-40, Baejae-ro, Seo-gu, Daejeon 35345, Republic of Korea;
| | - Jinwoong Cho
- Department of Crop Science, College of Agricultural and Life Sciences, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (Y.J.); (K.S.)
| |
Collapse
|
25
|
Biswas S, Philip I, Jayaram S, Sarojini S. Endophytic bacteria Klebsiella spp. and Bacillus spp. from Alternanthera philoxeroides in Madiwala Lake exhibit additive plant growth-promoting and biocontrol activities. J Genet Eng Biotechnol 2023; 21:153. [PMID: 38030944 PMCID: PMC10686955 DOI: 10.1186/s43141-023-00620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The worldwide increase in human population and environmental damage has put immense pressure on the overall global crop production making it inadequate to feed the entire population. Therefore, the need for sustainable and environment-friendly practices to enhance agricultural productivity is a pressing priority. Endophytic bacteria with plant growth-promoting ability and biocontrol activity can strongly enhance plant growth under changing environmental biotic and abiotic conditions. Herein, we isolated halotolerant endophytic bacteria from an aquatic plant, Alternanthera philoxeroides, from the polluted waters of Madiwala Lake in Bangalore and studied their plant growth promotion (PGP) and biocontrol ability for use as bioinoculant. RESULTS The isolated bacterial endophytes were screened for salt tolerance ranging from 5 to 15% NaCl concentration. Klebsiella pneumoniae showed halotolerant up to 10% NaCl and Bacillus amyloliquefaciens and Bacillus subtilis showed up to 15%. All three strains demonstrated good PGP abilities such as aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, phosphate solubilization, ammonia production, and nitrogen fixation. In addition, K. pneumoniae also exhibited high indoleacetic acid (IAA) production (195.66 ± 2.51 µg/ml) and potassium solubilization (2.13 ± 0.07 ppm). B. amyloliquefaciens and B. subtilis showed good extracellular enzyme production against cellulase, lipase, protease, and amylase. Both the isolates showed a broad spectrum of antimicrobial activity against the tested organisms. The optimization of IAA production by K. pneumoniae was done by the response surface methodology (RSM) tool. Characterization of IAA produced by the isolate was done by gas chromatography-mass spectrometry (GCMS) analysis. The enhanced plant growth-promoting ability of K. pneumoniae was also demonstrated using various growth parameters in a pot trial experiment using the seeds of Vigna unguiculata. CONCLUSION The isolated bacterial endophytes reported in this study can be utilized as PGP promotion and biocontrol agents in agricultural applications, to enhance crop yield under salinity stress. The isolate K. pneumoniae may be used as a biofertilizer in sustainable agriculture and more work can be done to optimize the best formulations for its application as a microbial inoculant for crops.
Collapse
Affiliation(s)
- Soma Biswas
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore-29, India
| | - Indhu Philip
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore-29, India
| | - Saranya Jayaram
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore-29, India
| | - Suma Sarojini
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore-29, India.
| |
Collapse
|
26
|
Vaidya H, Solanki VH, Kansara RV, Desai C, Singh S, Patel J, Vyas TK, Patel H. Development of a novel method for multiple phytohormone analysis by UHPLC-MS/MS from bio-enriched organic fertilizer prepared using banana pseudostem sap waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71482-71490. [PMID: 36376649 DOI: 10.1007/s11356-022-23941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/28/2022] [Indexed: 06/14/2023]
Abstract
Banana harvesting generates a large amount of banana pseudostem waste, which is generally burnt or thrown away, despite containing many nutrients. Bio-enriched organic fertilizer (BOF) was prepared from banana pseudostem sap (BPS), and it has been patented (Patent No. WO 2013/001478 Al). Several reports revealed that its application increases plant growth promotion of various horticulture crops. Apart from macro- and micronutrients, it also contained phytohormones. Hence, the present study aims to detect and quantify phytohormone in it. A novel method was developed to extract four phytohormones, viz., indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), gibberellic acid (GA3), and salicylic acid (SA) using single solvent from BPS and BOF. Extracted hormones were analyzed by ultrahigh-performance liquid chromatography coupled with heated electrospray ionization tandem mass spectrometry (UHPLC-HESI-MS/MS). BOF showed a higher concentration of IAA, IBA, GA3, and SA than BPS. Thus, this is the first time a method has been reported to extract and detect phytohormones from banana pseudostem sap.
Collapse
Affiliation(s)
- Harihar Vaidya
- Soil and Water Management Research Unit, Navsari Agricultural University, Near Eru Junction, Navsari, 396450, Gujarat, India.
| | - Vanrajsinh H Solanki
- Food Quality Testing Laboratory, Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Rohan V Kansara
- Food Quality Testing Laboratory, Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Chirag Desai
- Soil and Water Management Research Unit, Navsari Agricultural University, Near Eru Junction, Navsari, 396450, Gujarat, India
| | - Susheel Singh
- Food Quality Testing Laboratory, Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Jayesh Patel
- Soil and Water Management Research Unit, Navsari Agricultural University, Near Eru Junction, Navsari, 396450, Gujarat, India
| | - Trupti K Vyas
- Food Quality Testing Laboratory, Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Hiren Patel
- School of Sciences, P.P. Savani University, Surat, 394135, Gujarat, India
| |
Collapse
|
27
|
Ali M, Ahmed I, Tariq H, Abbas S, Zia MH, Mumtaz A, Sharif M. Growth improvement of wheat ( Triticum aestivum) and zinc biofortification using potent zinc-solubilizing bacteria. FRONTIERS IN PLANT SCIENCE 2023; 14:1140454. [PMID: 37251763 PMCID: PMC10213544 DOI: 10.3389/fpls.2023.1140454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
Zinc (Zn) is an indispensable element for proper plant growth. A sizeable proportion of the inorganic Zn that is added to soil undergoes a transformation into an insoluble form. Zinc-solubilizing bacteria (ZSB) have the potential to transform the insoluble Zn into plant-accessible forms and are thus promising alternatives for Zn supplementation. The current research was aimed at investigating the Zn solubilization potential of indigenous bacterial strains and to evaluate their impact on wheat growth and Zn biofortification. A number of experiments were conducted at the National Agriculture Research Center (NARC), Islamabad, during 2020-21. A total of 69 strains were assessed for their Zn-solubilizing ability against two insoluble Zn sources (ZnO and ZnCO3) using plate assay techniques. During the qualitative assay, the solubilization index and solubilization efficiency were measured. The qualitatively selected Zn-solubilizing bacterial strains were further tested quantitatively using broth culture for Zn and phosphorus (P) solubility. Tricalcium phosphate was used as insoluble source of P. The results showed that broth culture pH was negatively correlated with Zn solubilization, i.e., ZnO (r2 = 0.88) and ZnCO3 (r2 = 0.96). Ten novel promising strains, i.e., Pantoea sp. NCCP-525, Klebsiella sp. NCCP-607, Brevibacterium sp. NCCP-622, Klebsiella sp. NCCP-623, Acinetobacter sp. NCCP-644, Alcaligenes sp. NCCP-650, Citrobacter sp. NCCP-668, Exiguobacterium sp. NCCP-673, Raoultella sp. NCCP-675, and Acinetobacter sp. NCCP-680, were selected from the ecology of Pakistan for further experimentation on wheat crop based on plant growth-promoting rhizobacteria (PGPR) traits, i.e., solubilization of Zn and P in addition to being positive for nifH and acdS genes. Before evaluating the bacterial strains for plant growth potential, a control experiment was also conducted to determine the highest critical Zn level from ZnO to wheat growth using different Zn levels (0.1, 0.05, 0.01, 0.005, and 0.001% Zn) against two wheat varieties (Wadaan-17 and Zincol-16) in sand culture under glasshouse conditions. Zinc-free Hoagland nutrients solution was used to irrigate the wheat plants. As a result, 50 mg kg-1 of Zn from ZnO was identified as the highest critical level for wheat growth. Using the critical level (50 mg kg-1 of Zn), the selected ZSB strains were inoculated alone and in consortium to the seed of wheat, with and without the use of ZnO, in sterilized sand culture. The ZSB inoculation in consortium without ZnO resulted in improved shoot length (14%), shoot fresh weight (34%), and shoot dry weight (37%); with ZnO root length (116%), it saw root fresh weight (435%), root dry weight (435%), and Zn content in the shoot (1177%) as compared to the control. Wadaan-17 performed better on growth attributes, while Zincol-16 had 5% more shoot Zn concentration. The present study concluded that the selected bacterial strains show the potential to act as ZSB and are highly efficient bio-inoculants to combat Zn deficiency, and the inoculation of these strains in consortium performed better in terms of growth and Zn solubility for wheat as compared to individual inoculation. The study further concluded that 50 mg kg-1 Zn from ZnO had no negative impact on wheat growth; however, higher concentrations hampered wheat growth.
Collapse
Affiliation(s)
- Murad Ali
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
- Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar, Pakistan
- Cereal Crops Research Institute (CCRI), Pirsabak, Nowshera, Pakistan
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Hamza Tariq
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Saira Abbas
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Munir Hussain Zia
- Research and Development Department, Fauji Fertilizer Company (FFC) Limited, Rawalpindi, Pakistan
| | - Amer Mumtaz
- Food Sciences Research Institute (FSRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Muhammad Sharif
- Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
28
|
de Andrade LA, Santos CHB, Frezarin ET, Sales LR, Rigobelo EC. Plant Growth-Promoting Rhizobacteria for Sustainable Agricultural Production. Microorganisms 2023; 11:microorganisms11041088. [PMID: 37110511 PMCID: PMC10146397 DOI: 10.3390/microorganisms11041088] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Rhizosheric bacteria with several abilities related to plant growth and health have been denominated Plant Growth-Promoting Rhizobacteria (PGPR). PGPR promote plant growth through several modes of action, be it directly or indirectly. The benefits provided by these bacteria can include increased nutrient availability, phytohormone production, shoot and root development, protection against several phytopathogens, and reduced diseases. Additionally, PGPR can help plants to withstand abiotic stresses such as salinity and drought and produce enzymes that detoxify plants from heavy metals. PGPR have become an important strategy in sustainable agriculture due to the possibility of reducing synthetic fertilizers and pesticides, promoting plant growth and health, and enhancing soil quality. There are many studies related to PGPR in the literature. However, this review highlights the studies that used PGPR for sustainable production in a practical way, making it possible to reduce the use of fertilizers such as phosphorus and nitrogen and fungicides, and to improve nutrient uptake. This review addresses topics such as unconventional fertilizers, seed microbiome for rhizospheric colonization, rhizospheric microorganisms, nitrogen fixation for reducing chemical fertilizers, phosphorus solubilizing and mineralizing, and siderophore and phytohormone production for reducing the use of fungicides and pesticides for sustainable agriculture.
Collapse
Affiliation(s)
- Luana Alves de Andrade
- Agricultural and Livestock Microbiology Graduate Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), São Paulo 14884-900, Brazil
| | - Carlos Henrique Barbosa Santos
- Agricultural and Livestock Microbiology Graduate Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), São Paulo 14884-900, Brazil
| | - Edvan Teciano Frezarin
- Agricultural and Livestock Microbiology Graduate Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), São Paulo 14884-900, Brazil
| | - Luziane Ramos Sales
- Agricultural and Livestock Microbiology Graduate Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), São Paulo 14884-900, Brazil
| | - Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Graduate Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), São Paulo 14884-900, Brazil
| |
Collapse
|
29
|
He Z, Chen M, Ling B, Cao T, Wang C, Li W, Tang W, Chen K, Zhou Y, Chen J, Xu Z, Wang D, Guo C, Ma Y. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) in transgenic wheat confers tolerance to phosphorus starvation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:580-586. [PMID: 36774913 DOI: 10.1016/j.plaphy.2023.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
In plants, autophagy plays an important role in regulating intracellular degradation and amino acid recycling in response to nutrient starvation, senescence, and other environmental stresses. Foxtail millet (Setaria italica) shows strong resistance to various abiotic stresses; however, current understanding of the regulation network of abiotic stress resistance in foxtail millet remains limited. In this study, we aimed to determine the autophagy-related gene SiATG8a in foxtail millet. We found that SiATG8a was mainly expressed in the stem and was induced by low-phosphorus (LP) stress. Overexpression of SiATG8a in wheat (Triticum aestivum) significantly increased the grain yield and spike number per m2 under LP treatment compared to those in the WT varieties S366 and S4056. There was no significant difference in the grain P content between SiATG8a-overexpressing wheat and WT wheat under normal phosphorus (NP) and LP treatments. However, the phosphorus (P) content in the roots, stems, and leaves of transgenic plants was significantly higher than that in WT plants under NP and LP conditions. Furthermore, the expression of P transporter genes, such as TaPHR1, TaPHR3, TaIPS1, and TaPT9, in SiATG8a-transgenic wheat was higher than that in WT under LP. Collectively, overexpression of SiATG8a increases the P content of roots, stems, and leaves of transgenic wheat under LP conditions by modulating the expression of P-related transporter gene, which may result in increased grain yield; thus, SiATG8a is a candidate gene for generating transgenic wheat with improved tolerance to LP stress in the field.
Collapse
Affiliation(s)
- Zhang He
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, 150025, China.
| | - Ming Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Bingqi Ling
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Tao Cao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chunxiao Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Weiwei Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, 150025, China.
| | - Wensi Tang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Kai Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yongbin Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhaoshi Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Dan Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, 150025, China.
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, 150025, China.
| | - Youzhi Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
30
|
Patel A, Sahu KP, Mehta S, Javed M, Balamurugan A, Ashajyothi M, Sheoran N, Ganesan P, Kundu A, Gopalakrishnan S, Gogoi R, Kumar A. New Insights on Endophytic Microbacterium-Assisted Blast Disease Suppression and Growth Promotion in Rice: Revelation by Polyphasic Functional Characterization and Transcriptomics. Microorganisms 2023; 11:microorganisms11020362. [PMID: 36838327 PMCID: PMC9963279 DOI: 10.3390/microorganisms11020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/24/2022] [Accepted: 01/01/2023] [Indexed: 02/05/2023] Open
Abstract
Plant growth-promoting endophytic microbes have drawn the attention of researchers owing to their ability to confer fitness benefits in many plant species. Here, we report agriculturally beneficial traits of rice-leaf-adapted endophytic Microbacterium testaceum. Our polyphasic taxonomic investigations revealed its identity as M. testaceum. The bacterium displayed typical endophytism in rice leaves, indicated by the green fluorescence of GFP-tagged M. testaceum in confocal laser scanning microscopy. Furthermore, the bacterium showed mineral solubilization and production of IAA, ammonia, and hydrolytic enzymes. Tobacco leaf infiltration assay confirmed its non-pathogenic nature on plants. The bacterium showed antifungal activity on Magnaporthe oryzae, as exemplified by secreted and volatile organic metabolome-mediated mycelial growth inhibition. GC-MS analysis of the volatilome of M. testaceum indicated the abundance of antimicrobial compounds. Bacterization of rice seedlings showed phenotypic traits of MAMP-triggered immunity (MTI), over-expression of OsNPR1 and OsCERK, and the consequent blast suppressive activity. Strikingly, M. testaceum induced the transcriptional tradeoff between physiological growth and host defense pathways as indicated by up- and downregulated DEGs. Coupled with its plant probiotic features and the defense elicitation activity, the present study paves the way for developing Microbacterium testaceum-mediated bioformulation for sustainably managing rice blast disease.
Collapse
|
31
|
Xu F, Liang Y, Wang X, Guo Y, Tang K, Feng F. Synergic mitigation of saline-alkaline stress in wheat plant by silicon and Enterobacter sp. FN0603. Front Microbiol 2023; 13:1100232. [PMID: 36726561 PMCID: PMC9885204 DOI: 10.3389/fmicb.2022.1100232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Although microorganisms and silicon are well documented as factors that mitigate salt stress, their effect mitigating saline-alkaline stress in plants remains unknown. In this study, wheat plant seeds were treated with silicon, Enterobacter sp. FN0603 alone and in combination of both. Wheat seeds were soaked in silicon and bacterial solutions and sown in pots containing artificial saline-alkaline soils to compare the effects among all treatments. The results showed that the treatments with silicon and FN0603 alone significantly changed plant morphology, enhanced the rhizosphere soil nutrient content and enzyme activities, improved some important antioxidant enzyme activities (e.g., superoxide dismutase) and the contents of small molecules (e.g., proline) that affected osmotic conditions in the top second leaves. However, treatment with silicon and FN0603 in combination significantly further increased these stress tolerance indexes and eventually promoted the plant growth dramatically compared to the treatments with silicon or FN0603 alone (p < 0.01), indicating a synergic plant growth-promoting effect. High relative abundance of strain FN0603 was detected in the treated plants roots, and silicon further improved the colonization of FN0603 in stressed wheat roots. Strain FN0603 particularly when present in combination with silicon changed the root endophytic bacterial and fungal communities rather than the rhizosphere communities. Bipartite network analysis, variation partitioning analysis and structure equation model further showed that strain FN0603 indirectly shaped root endophytic bacterial and fungal communities and improved plant physiology, rhizosphere soil properties and plant growth through significantly and positively directing FN0603-specific biomarkers (p < 0.05). This synergetic effect of silicon and plant growth-promoting microorganism in the mitigation of saline-alkaline stress in plants via shaping root endophyte community may provide a promising approach for sustainable agriculture in saline-alkaline soils.
Collapse
Affiliation(s)
- Fangfang Xu
- Laboratory for Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Yungang Liang
- Laboratory for Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaobing Wang
- Laboratory for Wheat Breeding and Cultivation, Institute of Crop Sciences, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Yuze Guo
- Laboratory for Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Kai Tang
- Laboratory for Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Fuying Feng
- Laboratory for Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
32
|
Zahra ST, Tariq M, Abdullah M, Azeem F, Ashraf MA. Dominance of Bacillus species in the wheat ( Triticum aestivum L.) rhizosphere and their plant growth promoting potential under salt stress conditions. PeerJ 2023; 11:e14621. [PMID: 36643649 PMCID: PMC9835707 DOI: 10.7717/peerj.14621] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/01/2022] [Indexed: 01/10/2023] Open
Abstract
Wheat (Triticum aestivum L.) is a major source of calorific intake in its various forms and is considered one of the most important staple foods. Improved wheat productivity can contribute substantially to addressing food security in the coming decades. Soil salinity is the most serious limiting factor in crop production and fertilizer use efficiency. In this study, 11 bacteria were isolated from wheat rhizosphere and examined for salt tolerance ability. WGT1, WGT2, WGT3, WGT6, WGT8, and WGT11 were able to tolerate NaCl salinity up to 4%. Bacterial isolates were characterized in vitro for plant growth-promoting properties including indole-3-acetic acid (IAA) production, phosphate solubilization, nitrogen fixation, zinc solubilization, biofilm formation, and cellulase-pectinase production. Six isolates, WGT1, WGT3, WGT4, WGT6, WGT8, and WGT9 showed IAA production ability ranging from 0.7-6 µg m/L. WGT8 displayed the highest IAA production. Five isolates, WGT1, WGT2, WGT5, WGT10, and WGT11, demonstrated phosphate solubilization ranging from 1.4-12.3 µg m/L. WGT2 showed the highest phosphate solubilization. Nitrogen fixation was shown by only two isolates, WGT1 and WGT8. Zinc solubilization was shown by WGT1 and WGT11 on minimal media. All isolates showed biofilm formation ability, where WGT4 exhibited maximum potential. Cellulase production ability was noticed in WGT1, WGT2, WGT4, and WGT5, while pectinase production was observed in WGT2 and WGT3. Phylogenetic identification of potential bacteria isolates confirmed their close relationship with various species of the genus Bacillus. WGT1, WGT2, and WGT3 showed the highest similarity with B. cereus, WGT6 with B. tianshenii, WGT8 with B. subtilis, and WGT11 with B. thuringiensis. Biofertilizer characteristics of salt-tolerant potential rhizospheric bacteria were evaluated by inoculating wheat plants under controlled conditions and field experiments. B. cereus WGT1 and B. thuringiensis WGT11 displayed the maximum potential to increase plant growth parameters and enhance grain yield by 37% and 31%, respectively. Potential bacteria of this study can tolerate salt stress, have the ability to produce plant growth promoting substances under salt stress and contribute significantly to enhance wheat grain yield. These bacterial isolates have the potential to be used as biofertilizers for improved wheat production under salinity conditions and contribute to the sustainable agriculture.
Collapse
Affiliation(s)
- Syeda Tahseen Zahra
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Mohsin Tariq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Muhammad Abdullah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| |
Collapse
|
33
|
Cheng B, Wang C, Yue L, Chen F, Cao X, Lan Q, Liu T, Wang Z. Selenium nanomaterials improve the quality of lettuce (Lactuca sativa L.) by modulating root growth, nutrient availability, and photosynthesis. NANOIMPACT 2023; 29:100449. [PMID: 36610662 DOI: 10.1016/j.impact.2022.100449] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/19/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Macro- or micro-nutrients are essential for crop yield and nutritional quality. In this work, selenium engineering nanomaterials (Se ENMs, 0.5 mg‧kg-1) significantly increased the yield and nutritional quality of lettuce, which was better than that of selenite (Na2SeO3). Under the treatment of Se ENMs, macro-nutrients including nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) were increased by 15.8%, 98.5%, 42.8%, 146.9%, and 62.5%, respectively, and micro-nutrients including manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn) were also increased by 87.4%, 78.0%, 61.1%, and 56.1%, respectively. As a result, the improved nutritional status of lettuce leaves increased photosynthesis (59.2%) and yield (37.6%). Root diameters and root tips of lettuce were increased by 23.9% and 18.6%, respectively, upon exposure to Se ENMs, which may be responsible for facilitating the absorption of macro and micro nutrients from the soil. These effects were significantly better than SeO32- treated group. Metabolome results indicated that Se ENMs could improve the shikimic acid, phenylalanine, and tyrosine pathway, resulting in an enhancement of the beneficial compounds, including quercetin, rutin, and coumarin, by 2.9, 2.7, and 2.4-fold, respectively. Besides, pyruvic acid and TCA cycle were also improved by Se ENMs. These results provide new insight into the positive effect of Se ENMs on crop yield and nutritional quality, which demonstrate that the Se ENMs-enabled agriculture practices have a promising prospect as a sustainable crop strategy.
Collapse
Affiliation(s)
- Bingxu Cheng
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qianqian Lan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
34
|
Jaiswal DK, Gawande SJ, Soumia PS, Krishna R, Vaishnav A, Ade AB. Biocontrol strategies: an eco-smart tool for integrated pest and diseases management. BMC Microbiol 2022; 22:324. [PMID: 36581846 PMCID: PMC9801620 DOI: 10.1186/s12866-022-02744-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
For the burgeoning global population, sustainable agriculture practices are crucial for accomplishing the zero-hunger goal. The agriculture sector is very concerned about the rise in insecticide resistance and the Modern Environmental Health Hazards (MEHHs) that are problems for public health due to on pesticide exposure and residues. Currently, farming practices are being developed based on microbial bio-stimulants, which have fewer negative effects and are more efficient than synthetic agro-chemicals. In this context, one of the most important approaches in sustainable agriculture is the use of biocontrol microbes that can suppress phytopathogens and insects. Simultaneously, it is critical to comprehend the role of these microbes in promoting growth and disease control, and their application as biofertilizers and biopesticides, the success of which in the field is currently inconsistent. Therefore, editorial is part of a special issue titled "Biocontrol Strategies: An Eco-smart Tool for Integrated Pest and Disease Management" which focuses on biocontrol approaches that can suppress the biotic stresses, alter plant defense mechanisms, and offer new eco-smart ways for controlling plant pathogens and insect pests under sustainable agriculture.
Collapse
Affiliation(s)
- Durgesh Kumar Jaiswal
- grid.32056.320000 0001 2190 9326Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra India
| | | | - P. S. Soumia
- grid.464810.fICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune India
| | - Ram Krishna
- grid.459616.90000 0004 1776 4760ICAR- Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh India
| | - Anukool Vaishnav
- grid.7400.30000 0004 1937 0650University of Zurich, Reckenholzstrasse, Zurich, Switzerland
| | - Avinash Bapurao Ade
- grid.32056.320000 0001 2190 9326Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra India
| |
Collapse
|
35
|
Kelbessa BG, Ghadamgahi F, Kumar PL, Ortiz R, Whisson SC, Bhattacharjee R, Vetukuri RR. Antagonistic and plant growth promotion of rhizobacteria against Phytophthora colocasiae in taro. FRONTIERS IN PLANT SCIENCE 2022; 13:1035549. [PMID: 36531382 PMCID: PMC9755733 DOI: 10.3389/fpls.2022.1035549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Taro leaf blight caused by Phytophthora colocasiae adversely affects the growth and yield of taro. The management of this disease depends heavily on synthetic fungicides. These compounds, however, pose potential hazards to human health and the environment. The present study aimed to investigate an alternative approach for plant growth promotion and disease control by evaluating seven different bacterial strains (viz., Serratia plymuthica, S412; S. plymuthica, S414; S. plymuthica, AS13; S. proteamaculans, S4; S. rubidaea, EV23; S. rubidaea, AV10; Pseudomonas fluorescens, SLU-99) and their different combinations as consortia against P. colocasiae. Antagonistic tests were performed in in vitro plate assays and the effective strains were selected for detached leaf assays and greenhouse trials. Plant growth-promoting and disease prevention traits of selected bacterial strains were also investigated in vitro. Our results indicated that some of these strains used singly (AV10, AS13, S4, and S414) and in combinations (S4+S414, AS13+AV10) reduced the growth of P. colocasiae (30-50%) in vitro and showed disease reduction ability when used singly or in combinations as consortia in greenhouse trials (88.75-99.37%). The disease-suppressing ability of these strains may be related to the production of enzymes such as chitinase, protease, cellulase, and amylase. Furthermore, all strains tested possessed plant growth-promoting traits such as indole-3-acetic acid production, siderophore formation, and phosphate solubilization. Overall, the present study revealed that bacterial strains significantly suppressed P. colocasiae disease development using in vitro, detached leaf, and greenhouse assays. Therefore, these bacterial strains can be used as an alternative strategy to minimize the use of synthetic fungicides and fertilizers to control taro blight and improve sustainable taro production.
Collapse
Affiliation(s)
- Bekele Gelena Kelbessa
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Farideh Ghadamgahi
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - P. Lava Kumar
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Stephen C. Whisson
- Cell and Molecular Sciences, James Hutton Institute, Dundee, United Kingdom
| | | | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
36
|
Klimasmith IM, Kent AD. Micromanaging the nitrogen cycle in agroecosystems. Trends Microbiol 2022; 30:1045-1055. [PMID: 35618540 DOI: 10.1016/j.tim.2022.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 01/13/2023]
Abstract
While large inputs of synthetic nitrogen fertilizers enable our current rate of crop production and feed a growing global population, these fertilizers come at a heavy environmental cost. Driven by microbial processes, excess applied nitrogen is lost from agroecosystems as nitrate and nitrous oxide (N2O) contaminating aquatic ecosystems and contributing to climate change. Interest in nitrogen-fixing microorganisms as an alternative to synthetic fertilizers is rapidly accelerating. Microbial inoculants offer the promise of a sustainable and affordable source of nitrogen, but the impact of inoculants on nitrogen dynamics at an ecosystem level is not fully understood. This review synthesizes recent studies on microbial inoculants as tools for nutrient management and considers the ramifications of inoculants for nitrogen transformations beyond fixation.
Collapse
Affiliation(s)
- Isaac M Klimasmith
- Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Angela D Kent
- Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
37
|
Tsegaye Z, Alemu T, Desta FA, Assefa F. Plant growth-promoting rhizobacterial inoculation to improve growth, yield, and grain nutrient uptake of teff varieties. Front Microbiol 2022; 13:896770. [PMID: 36338042 PMCID: PMC9633851 DOI: 10.3389/fmicb.2022.896770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/29/2022] [Indexed: 08/26/2023] Open
Abstract
Inoculation of plant growth-promoting rhizobacteria (PGPR) improves the growth, yield, and plant nutrient uptake, as well as rhizosphere fertility, without harming the environment and human health. This study aimed to examine the effect of either individual or consortium of PGP bacterial inoculation on the growth, yield, and grain nutrient uptake of teff varieties. Three potential PGPR strains (i.e., Pseudomonas fluorescens biotype G, Enterobacter cloacae ss disolvens, and Serratia marcescens ss marcescens) were used for this study. Field evaluation was carried out in RCBD with 5 treatments. Highly significant (P < 0.001) differences were observed among treatments for plant height (PH), panicle length (PL), number of the total spike (NTS), shoot dry weight (SDW), grain yield (GY), and straw yield (SY). There was also teff variety that significantly (P < 0.01) affects PL, SDW, and SY. However, the interaction effect of the two factors (treatment*variety) did not significantly influence teff agronomic traits and grain nutrient uptake. The highest PH (133.5 cm), PL (53.2), NTS (30.9), SDW (18.1 t/ha), SY (10.7 t/ha), and GY (2.7 t/ha) were observed on Dukem variety (Dz-01-974) inoculated with PGPR consortium. Wherein 2.2 fold increase was observed in grain yield per hectare over the control. Inoculation of PGPR consortium showed better performance in promoting plant growth, yield, and grain nutrient uptake of teff varieties compared with the individual PGP bacterial application, and PGPR consortium could be used as inoculants to enhance teff production and productivity.
Collapse
Affiliation(s)
- Zerihun Tsegaye
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Microbial Biodiversity Directorate, Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia
| | - Tesfaye Alemu
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Feleke Adey Desta
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fassil Assefa
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
38
|
Zhang Y, Zhang H, Zhang Z, Qian Q, Zhang Z, Xiao J. ProPan: a comprehensive database for profiling prokaryotic pan-genome dynamics. Nucleic Acids Res 2022; 51:D767-D776. [PMID: 36169225 PMCID: PMC9825599 DOI: 10.1093/nar/gkac832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 01/30/2023] Open
Abstract
Compared with conventional comparative genomics, the recent studies in pan-genomics have provided further insights into species genomic dynamics, taxonomy and identification, pathogenicity and environmental adaptation. To better understand genome characteristics of species of interest and to fully excavate key metabolic and resistant genes and their conservations and variations, here we present ProPan (https://ngdc.cncb.ac.cn/propan), a public database covering 23 archaeal species and 1,481 bacterial species (in a total of 51,882 strains) for comprehensively profiling prokaryotic pan-genome dynamics. By analyzing and integrating these massive datasets, ProPan offers three major aspects for the pan-genome dynamics of the species of interest: 1) the evaluations of various species' characteristics and composition in pan-genome dynamics; 2) the visualization of map association, the functional annotation and presence/absence variation for all contained species' gene clusters; 3) the typical characteristics of the environmental adaptation, including resistance genes prediction of 126 substances (biocide, antimicrobial drug and metal) and evaluation of 31 metabolic cycle processes. Besides, ProPan develops a very user-friendly interface, flexible retrieval and multi-level real-time statistical visualization. Taken together, ProPan will serve as a weighty resource for the studies of prokaryotic pan-genome dynamics, taxonomy and identification as well as environmental adaptation.
Collapse
Affiliation(s)
| | | | - Zaichao Zhang
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Qiheng Qian
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhewen Zhang
- Correspondence may also be addressed to Zhewen Zhang.
| | - Jingfa Xiao
- To whom correspondence should be addressed. Tel: +86 10 8409 7443; Fax: +86 10 8409 7720;
| |
Collapse
|
39
|
Sun R, Zhang W, Liu Y, Yun W, Luo B, Chai R, Zhang C, Xiang X, Su X. Changes in phosphorus mobilization and community assembly of bacterial and fungal communities in rice rhizosphere under phosphate deficiency. Front Microbiol 2022; 13:953340. [PMID: 35992700 PMCID: PMC9382406 DOI: 10.3389/fmicb.2022.953340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
Rhizosphere microorganisms are closely associated with phosphorus (P) uptake in plants and are considered potential agents to mitigate P shortage. However, the mechanisms of rhizospheric microbial community assembly under P deficiency have yet to be elucidated. In this study, bacterial and fungal communities in rice rhizosphere and their P mobilization potential under high (+P) and low (−P) concentrations of P were investigated. Bacterial and fungal community structures were significantly different between −P and +P treatments. And both bacterial and fungal P-mobilizing taxa were enriched in-P treatment; however, the proportion of P-mobilizing agents in the fungal community was markedly greater than that in the bacterial community. A culture experiment confirmed that microbial phosphate solubilizing capacity was significantly higher in −P treatment compared with that in +P treatment. −P treatment lowered bacterial diversity in rice rhizosphere but increased fungal diversity. Further analysis demonstrated that the contribution of deterministic processes in governing bacterial community assembly was strengthened under P deficiency but was largely weakened in shaping the fungal community. These results highlighted that enriching P-mobilizing microbes in the rhizosphere is a vital way for rice to cope with P deficiency, and that fungi contribute considerably to P mobilization in rice rhizosphere. Findings from the study provide novel insights into the assembly of the rhizosphere microbiome under P deficiency and this will facilitate the development of rhizosphere microbial regulation strategies to increase nutrient uptake in plants.
Collapse
Affiliation(s)
- Ruibo Sun
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Wenjie Zhang
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yangbing Liu
- Anhui Provincial Territorial Space Planning Institute, Hefei, China
| | - Wenjing Yun
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Bingbing Luo
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Rushan Chai
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Chaochun Zhang
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Xingjia Xiang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, China
- *Correspondence: Xingjia Xiang,
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Xiaofeng Su,
| |
Collapse
|
40
|
Roslan MAM, Sobri ZM, Zuan ATK, Abdul Rahman NA. Okra Growth, Yield and Rhizosphere Microbiome Responses to the Encapsulated Bioinoculant Application under Reduced Fertilization Regime. BIOLOGY 2022; 11:biology11081107. [PMID: 35892963 PMCID: PMC9332871 DOI: 10.3390/biology11081107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
There is limited evidence that Enterobacter hormaechei can improve plant physiology and yield through soil phosphate (P) and potassium (K) amelioration. This study unraveled the effect of different soil inoculation methods i.e., free-cell and encapsulated (alginate bead containing sugar-protein hydrolysate and molasses) E. hormaechei 40a with different rates of PK-fertilization on okra P and K uptake, and soil rhizosphere bacterial community. The results revealed that 3HB (half-dose PK-fertilizer + encapsulated strain 40a) had the highest soil available P (SAP) and K (SAK), as well as P and K uptake for all plant organs, followed by 3F (full-dose PK-fertilizer), 3HI (half-dose PK-fertilizer + free-cell strain 40a), and 3H (half-dose PK-fertilizer), and improved yield by up to 75.6%. Both inoculated and full-dose fertilizer treatments produced larger pods (>15 cm) compared to 3H. We discovered increased bacterial richness and diversity in both 3HB and 3HI samples compared to uninoculated treatments. Both 3HB and 3F treatments were positively correlated with the increasing abundance of Acidobacteriales, Burkholderia caballeronia paraburkholderia, Gemmataceae, and Sphingomonas along with the SAP and SAK. The plant-beneficial effect of one-time 3HB treatment on okra growth and yield was comparable to biweekly inoculation in 3HI, suggesting a new cost-effective farming approach in precision agriculture.
Collapse
Affiliation(s)
- Muhamad Aidilfitri Mohamad Roslan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence: (M.A.M.R.); (N.A.A.R.)
| | - Zulfazli M. Sobri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Nor Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence: (M.A.M.R.); (N.A.A.R.)
| |
Collapse
|
41
|
Shruti S, Afreen J, Rutuja A, Yasmin M. Development of miniaturized agar based assays in 96-well microplates applicable to high-throughput screening of industrially valuable microorganisms. METHODS IN MICROBIOLOGY 2022; 199:106526. [PMID: 35738492 DOI: 10.1016/j.mimet.2022.106526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022]
Abstract
High-throughput screening (HTS) is a present-day approach for assaying thousands of cultures in parallel. This miniaturization allows rapid screening of large number of microorganims capable of producing bio-based materials thereby meeting the demands of the ever evolving food, pharmaceutical and cosmetic industry. In this study, agar-based assays for phosphate solubilization, cellulose degradation and lactic acid production were developed in 96-well microplates using Biomek FXP Automated Liquid Handling system. Techno-economic analysis from this study reveals the lower overall cost per assay using HTS as compared to conventional Petri plate assays. Though automated liquid handling workstations have been used to perform liquid-based assays, there are very few studies which report their use for agar-based microplate assays. These findings thus corroborate the establishment of rapid and efficient miniaturized, qualitative agar-based screening methods for identifying microorganisms with potential for commercial application.
Collapse
Affiliation(s)
- Sinha Shruti
- Praj-Matrix - R&D Centre (Division of Praj Industries Limited), 402/403/1098, Urawade, Pirangut, Mulshi, Pune 412 115, Maharashtra, India; Department of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India.
| | - Jikare Afreen
- Praj-Matrix - R&D Centre (Division of Praj Industries Limited), 402/403/1098, Urawade, Pirangut, Mulshi, Pune 412 115, Maharashtra, India
| | - Ankulkar Rutuja
- Praj-Matrix - R&D Centre (Division of Praj Industries Limited), 402/403/1098, Urawade, Pirangut, Mulshi, Pune 412 115, Maharashtra, India
| | - Mirza Yasmin
- Praj-Matrix - R&D Centre (Division of Praj Industries Limited), 402/403/1098, Urawade, Pirangut, Mulshi, Pune 412 115, Maharashtra, India
| |
Collapse
|
42
|
Mortinho ES, Jalal A, da Silva Oliveira CE, Fernandes GC, Pereira NCM, Rosa PAL, do Nascimento V, de Sá ME, Teixeira Filho MCM. Co-Inoculations with Plant Growth-Promoting Bacteria in the Common Bean to Increase Efficiency of NPK Fertilization. AGRONOMY 2022; 12:1325. [DOI: 10.3390/agronomy12061325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Given the hypothesis that co-inoculation with plant growth-promoting bacteria (PGPB) enhances the beneficial effects of Rhizobium tropici with greater mineral nutrition, optimizes biological nitrogen fixation and reduces use of fertilizers in bean plants, the objective of this research was to evaluate the synergistic effects of Rhizobium tropici associated with Azospirillum brasilense, Bacillus subtilis, Pseudomonas fluorescens and their combinations, on increasing the efficiency of NPK fertilization to obtain high winter yields of the (irrigated) common bean in the Cerrado region. The experiment was carried out in the field over two years in a Rhodic Hapludox under a no-till system in Selvíria, Brazil. The experimental design comprised complete randomized blocks with four replications in a 3 × 7 factorial scheme. The treatments consisted of three doses of NPK fertilizer (control—0 kg ha−1 (control); 50% of the recommended dose; 100% of the recommended dose in two parts) and seven doses of inoculation or co-inoculation (control; Rhizobium tropici; R. tropici + Azospirillum brasilense; R. tropici + Bacillus subtilis; R. tropici + Pseudomonas fluorescens; R. tropici + A. brasilense + B. subtilis; R. tropici + A. brasilense + P. fluorescens). The PGPB in the co-inoculations increased the hundred-grain weight, the grain pod−1, the grain plant−1 and the grain yield following the NPK doses. The grain yield of the common bean was increased by co-inoculation with R. tropici + A. brasilense + P. fluorescens without NPK treatments, co-inoculation with R. tropici + P. fluorescens and R. tropici + A. brasilense + B. subtilis with the 50% dose of NPK and co-inoculation with R. tropici + B. subtilis with the recommended dose of NPK fertilizer (100%).
Collapse
Affiliation(s)
- Emariane Satin Mortinho
- School of Engineering (FEIS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Arshad Jalal
- School of Engineering (FEIS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | | | | | | | | | - Vagner do Nascimento
- College of Agricultural and Technological Sciences (FCAT), São Paulo State University (UNESP), Dracena 17900-000, SP, Brazil
| | - Marco Eustáquio de Sá
- School of Engineering (FEIS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | | |
Collapse
|
43
|
Kirui CK, Njeru EM, Runo S. Diversity and Phosphate Solubilization Efficiency of Phosphate Solubilizing Bacteria Isolated from Semi-Arid Agroecosystems of Eastern Kenya. Microbiol Insights 2022; 15:11786361221088991. [PMID: 35464120 PMCID: PMC9019392 DOI: 10.1177/11786361221088991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
Phosphorus (P) is a major nutrient required for plant growth but it forms complexes with other elements in soil upon application. A cost-effective way of availing P to plants is by use of Phosphate Solubilizing Bacteria (PSB). There is a wide range of PSB suited for diverse agro-ecologies. A large part of Eastern Kenya especially the lower altitude regions are semi-arid with nutrient depleted soils and predominated by low-income smallholders farmers who do not afford costly inorganic fertilizers. To alleviate poor soil nutrition in this agroecosystem, we sought to study the diversity of phosphate solubilizing bacteria and their phosphate solubilization efficiency. The bacteria were selectively isolated in Pikovskaya’s agar media. Bacterial colonies were enumerated as Colony Forming Units and morphological characterization determined by analyzing morphological characteristics. Genetic characterization was determined based on sequencing of 16S rRNA. A total of 71 PSB were isolated and they were placed into 23 morphological groups. Correlation analysis showed a negative correlation between phosphate solubilizing bacteria and the levels of phosphorus, iron, calcium, magnesium and soil pH. Analysis of 16S rRNA sequences revealed that the genetic sequences of the isolates matched the strains from the genera Burkholderia, Pseudomonas, Bacillus, Enterobacter, Pantoea, Paraburkholderia, Cronobacter, Ralstonia, Curtobacterium, and Massilia deposited in NCBI Database. Analysis of Molecular Variance showed that variation within populations was higher than that of among populations. Phosphate solubilization index values ranged between 1.143 and 5.883. Findings on biodiversity of phosphate solubilizing bacteria led to identification of 10 candidate isolates for plant growth improvement and subsequently, bio-fertilizer development.
Collapse
Affiliation(s)
- Charles Kibet Kirui
- Department of Biochemistry, Microbiology & Biotechnology, Kenyatta University, Kenya
| | - Ezekiel Mugendi Njeru
- Department of Biochemistry, Microbiology & Biotechnology, Kenyatta University, Kenya
| | - Steven Runo
- Department of Biochemistry, Microbiology & Biotechnology, Kenyatta University, Kenya
| |
Collapse
|
44
|
Salama AM, Behaery MS, Elaal AEA, Abdelaal A. Influence of cerium oxide nanoparticles on dairy effluent nitrate and phosphate bioremediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:326. [PMID: 35381908 PMCID: PMC8983513 DOI: 10.1007/s10661-022-10003-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
This study investigated, for the first time, the role of cerium oxide nanoparticles (CeO2 NPs) on dairy effluent nitrate and phosphate bioremediation using different inoculum sources. Two inoculum sources (wastewater and sludge) were obtained from the dairy wastewater treatment plant unit. A culture was prepared to be tested in the treatment of nitrate and phosphate effluent, and the role of CeO2 NPs was checked to be completely efficient after 5 days of incubation. The reduction efficiency of nitrate using sludge as inoculum source was improved up to 89.01% and 68.12% for phosphate compared to control. In the case of using wastewater as an inoculum source, the nitrate reduction was improved up to 83.30% and 87.75% for phosphate compared to control. The bacterial richness showed a significant variance (higher richness) between control and other samples. The optimal concentration of CeO2 NPs for inoculum richness and nitrate and phosphate reduction was (sludge: 1 × 10-10 ppm) and (wastewater: 1 × 10-12 ppm). The results revealed that CeO2 NPs could enhance the microbial growth of different inoculum sources that have a key role in dairy effluent nitrate and phosphate bioremediation.
Collapse
Affiliation(s)
- Abeer M Salama
- Environmental Sciences Department, Faculty of Science, Port Said University, Port Said, 42526, Egypt
| | - Moktar S Behaery
- Environmental Sciences Department, Faculty of Science, Port Said University, Port Said, 42526, Egypt
| | - Amira E Abd Elaal
- Environmental Sciences Department, Faculty of Science, Port Said University, Port Said, 42526, Egypt
| | - Ahmed Abdelaal
- Environmental Sciences Department, Faculty of Science, Port Said University, Port Said, 42526, Egypt.
| |
Collapse
|
45
|
Application of Bioorganic Fertilizer on Panax notoginseng Improves Plant Growth by Altering the Rhizosphere Microbiome Structure and Metabolism. Microorganisms 2022; 10:microorganisms10020275. [PMID: 35208730 PMCID: PMC8879206 DOI: 10.3390/microorganisms10020275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 12/04/2022] Open
Abstract
Bioorganic fertilizers can alleviate (a) biotic stresses and sustainably increase crop yields. The effect of bioorganic fertilizers on the rhizosphere bacterial community of Panax notoginseng and soil metabolism remains unknown. Here, we tracked the changes in the soil physicochemical properties, bacterial microbiota responses, and soil metabolic functions after the addition of a bioorganic fertilizer in a P. notoginseng field. The application of a bioorganic fertilizer reduced the soil acidification, improved the organic matter, and increased the contents of the total/available soil nutrients. Soil amendment with a bioorganic fertilizer significantly affected the structure of the rhizosphere bacterial community, leading to the enrichment of specific bacterial consortia such as Rhodanobacter, Arthrobacter, Sphingomonas, Devosia, Pseudolabrys, Luteimonas, Lysobacter, Nitrosospira, and Nakamurella. Previously, many of these genera have been associated with nutrient cycling, plant productivity, and disease suppression. Metabolome analysis further highlighted that the bioorganic fertilizer treatment significantly reduced phenolic acids and flavonoids and enhanced organic acids, saccharides and alcohols, and amino acids. This result indicates a high survival of bacterial microbiota in the rhizosphere and an availability of nutrients for P. notoginseng growth. This work showed that the application of bioorganic fertilizers significantly improves soil health status, alters soil metabolic functions, and stimulates a specific subset of rhizosphere microbiota for nutrient cycling and disease protection in P. notoginseng.
Collapse
|
46
|
Chu LL, Bae H. Bacterial endophytes from ginseng and their biotechnological application. J Ginseng Res 2022; 46:1-10. [PMID: 35035239 PMCID: PMC8753428 DOI: 10.1016/j.jgr.2021.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Ginseng has been well-known as a medicinal plant for thousands of years. Bacterial endophytes ubiquitously colonize the inside tissues of ginseng without any disease symptoms. The identification of bacterial endophytes is conducted through either the internal transcribed spacer region combined with ribosomal sequences or metagenomics. Bacterial endophyte communities differ in their diversity and composition profile, depending on the geographical location, cultivation condition, and tissue, age, and species of ginseng. Bacterial endophytes have a significant effect on the growth of ginseng through indole-3-acetic acid (IAA) and siderophore production, phosphate solubilization, and nitrogen fixation. Moreover, bacterial endophytes can protect ginseng by acting as biocontrol agents. Interestingly, bacterial endophytes isolated from Panax species have the potential to produce ginsenosides and bioactive metabolites, which can be used in the production of food and medicine. The ability of bacterial endophytes to transform major ginsenosides into minor ginsenosides using β-glucosidase is gaining increasing attention as a promising biotechnology. Recently, metabolic engineering has accelerated the possibilities for potential applications of bacterial endophytes in producing beneficial secondary metabolites.
Collapse
Affiliation(s)
- Luan Luong Chu
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, Viet Nam
- Bioresource Research Center, Phenikaa University, Hanoi, Viet Nam
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
47
|
Jha V, Purohit H, Dafale NA. Revealing the potential of Klebsiella pneumoniae PVN-1 for plant beneficial attributes by genome sequencing and analysis. 3 Biotech 2021; 11:473. [PMID: 34777930 DOI: 10.1007/s13205-021-03020-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
Genome sequencing of Klebsiella pneumoniae PVN-1, isolated from effluent treatment plant (ETP), generates a 5.064 Mb draft genome with 57.6% GC content. The draft genome assembled into 19 contigs comprises 4783 proteins, 3 rRNA, 44 tRNA, 8 other RNA, 4911 genes, and 73 pseudogenes. Genome information revealed the presence of phosphate metabolism/solubilizing, potassium solubilizing, auxin production, and other plant benefiting attributes like enterobactin and pyrroloquinoline quinone biosynthesis genes. Presence of gcd and pqq genes in K. pneumoniae PVN-1 genome validates the inorganic phosphate solubilizing potential (528.5 mg/L). Pangenome analysis identified a unique 5'-Nucleotidase that further assists in enhanced phosphate acquisition. Additionally, the genetic potential for complete benzoate, catechol, and phenylacetate degradation with stress response and heavy metal (Cu, Zn, Ni, Co) resistance was identified in K. pneumoniae PVN-1. Functioning of annotated plant benefiting genes validates by the metabolic activity of auxin production (7.40 µg/mL), nitrogen fixation, catalase activity, potassium solubilization (solubilization index-3.47), and protease activity (proteolytic index-2.27). In conclusion, the K. pneumoniae PVN-1 genome has numerous beneficial qualities that can be employed to enhance plant growth as well as for phytoremediation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03020-2.
Collapse
|
48
|
Comparative Analysis of the Cultured and Total Bacterial Community in the Wheat Rhizosphere Microbiome Using Culture-Dependent and Culture-Independent Approaches. Microbiol Spectr 2021; 9:e0067821. [PMID: 34668733 PMCID: PMC8528112 DOI: 10.1128/spectrum.00678-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Rhizosphere and root-associated bacteria are key components of crop production and sustainable agriculture. However, utilization of these beneficial bacteria is often limited by conventional culture techniques because a majority of soil microorganisms cannot be cultured using standard laboratory media. Therefore, the purpose of this study was to improve culturability and investigate the diversity of the bacterial communities from the wheat rhizosphere microbiome collected from three locations in Egypt with contrasting soil characteristics by using metagenomic analysis and improved culture-based methods. The improved strategies of the culture-dependent approach included replacing the agar in the medium with gellan gums and modifying its preparation by autoclaving the phosphate and gelling agents separately. Compared to the total operational taxonomic units (OTUs) observed from the metagenomic data sets derived from the three analyzed soils, 1.86 to 2.52% of the bacteria were recovered using the modified cultivation strategies, whereas less than 1% were obtained employing the standard cultivation protocols. Twenty-one percent of the cultivable isolates exhibited multiple plant growth-promoting (PGP) properties, including P solubilization activity and siderophore production. From the metagenomic analysis, the most abundant phyla were Proteobacteria, Actinobacteria, Chloroflexi, Bacteroidetes, and Firmicutes. Moreover, the relative abundance of the specific bacterial taxa was correlated with the soil characteristics, demonstrating the effect of the soil in modulating the plant rhizosphere microbiome. IMPORTANCE Bacteria colonizing the rhizosphere, a narrow zone of soil surrounding the root system, are known to have beneficial effects in improving the growth and stress tolerance of plants. However, most bacteria in natural environments, especially those in rhizosphere soils, are recalcitrant to cultivation using traditional techniques, and thus their roles in soil health and plant growth remain unexplored. Hence, investigating new culture media and culture conditions to bring “not-yet-cultured” species into cultivation and to identify new functions is still an important task for all microbiologists. To this end, we describe improved cultivation protocols that increase the number and diversity of cultured bacteria from the rhizosphere of wheat plants. Using such approaches will lead to new insights into culturing more beneficial bacteria that live in the plant rhizosphere, in so doing creating greater opportunities not only for field application but also for promoting sustainability.
Collapse
|
49
|
Kunda P, Mukherjee A, Dhal PK. Insights into endophytic bacterial diversity of rice grown across the different agro-ecological regions of West Bengal, India. World J Microbiol Biotechnol 2021; 37:184. [PMID: 34580777 DOI: 10.1007/s11274-021-03153-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Endophytes have recently garnered importance worldwide and multiple studies are being conducted to understand their important role and mechanism of interaction inside plants. But before we indulge in their functions it is necessary to dig into the microbiome. This will help to get a complete picture of the microbes intrinsic to their host and understand changes in community composition with respect to their habitats. To fulfil this requirement in our study we have attempted to dissect the endophytic diversity in roots of rice plant grown across the various agro-ecological zones of West Bengal by undergoing amplicon analysis of their 16S rRNA gene. Based on the measured environmental parameters agro-ecological zones can be divided into two groups: nutrient dense groups, representing zones like Gangetic, Northern hill and Terai-Teesta zone characterised by soil with higher levels of nitrogen (N) and total organic carbon and nutrient low groups representing Coastal saline, Red-laterite and Vindhyan zone mainly characterised by high electroconductivity and pH. Gammaproteobacteria, Alphaproteobacteria, Bacilli and Bacteroidetes were mostly abundant in nutrient dense sites whereas Clostridia and Planctomycetes were concentrated in nutrient low sites. Few genera (Aeromonas, Sulfurospirillum, Uliginosibacterium and Acidaminococcus) are present in samples cultivated in all the zones representing the core microbiome of rice in West Bengal, while some other genera like Lactococcus, Dickeya, Azonexus and Pectobacterium are unique to specific zone. Hence it can be concluded that this study has provided some insight in to the endophytic status of rice grown across the state of West Bengal.
Collapse
Affiliation(s)
- Pranamita Kunda
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata, West Bengal, 700 032, India
- Agricultural and Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, Giridih, Jharkhand, India
| | - Abhishek Mukherjee
- Agricultural and Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, Giridih, Jharkhand, India
| | - Paltu Kumar Dhal
- Department of Life Science and Biotechnology, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata, West Bengal, 700 032, India.
| |
Collapse
|
50
|
Duan B, Li L, Chen G, Su-Zhou C, Li Y, Merkeryan H, Liu W, Liu X. 1-Aminocyclopropane-1-Carboxylate Deaminase-Producing Plant Growth-Promoting Rhizobacteria Improve Drought Stress Tolerance in Grapevine ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2021; 12:706990. [PMID: 37388278 PMCID: PMC10305780 DOI: 10.3389/fpls.2021.706990] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/06/2021] [Indexed: 07/01/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPRs) that produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase are capable of reducing limits to plant growth due to water-deficient conditions. Here, seven PGPR strains that can produce ACC deaminase were successfully obtained from the rhizosphere soil of grapevine (Vitis vinifera L.) in arid regions of China. The strains belonged to three different genera: Pseudomonas, Enterobacter, and Achromobacter, according to their 16S rDNA sequencing analysis. A drought tolerance experiment revealed two PGPR strains (DR3 and DR6) with exceptionally high phosphate solubilization, nitrogen fixation, indoleacetic acid (IAA), and exopolysaccharides secretion potential. Both strains were selected for use in a pot experiment to evaluate their growth-promoting effects on grapevines under drought conditions. Each of these two PGPRs and their mixed inoculation into grapevines were expected to alleviate the comprehensive growth inhibition of grapevines caused by drought stress. The mixed inoculation was hypothesized to elicit the best growth-promoting effects. Inoculation with the PGPRs not only enhanced the root-adhering soil/root tissue ratios and soil aggregate stability, but it also increased the nitrogen and phosphorus levels in the soil and plant leaves. Further, inoculation with PGPRs significantly altered the plant height, biomass of shoot and root organs, relative water contents, and net photosynthetic rate of leaves, enabling grapevines to better cope with drought. Moreover, the contents of IAA, abscisic acid, and malondialdehyde in these grapevines under drought stress were significantly changed by PGPRs. They indirectly affected biochemical and physiological properties of grapevines to alleviate their drought stress. Taken together, these results demonstrate that the DR3 and DR6 PGPRs might be useful for effectively weakening the growth inhibition caused by drought in grapevines. The strains might also be applied as effective bioinoculants to maintain the quality of wine grapes.
Collapse
Affiliation(s)
- Bingbing Duan
- College of Enology, Northwest A&F University, Yangling, China
| | - Lin Li
- College of Enology, Northwest A&F University, Yangling, China
| | - Guoqiao Chen
- College of Enology, Northwest A&F University, Yangling, China
| | | | - Yashan Li
- College of Enology, Northwest A&F University, Yangling, China
- School of Chemistry and Life Sciences, Chuxiong Normal University, Chuxiong, China
| | | | - Wei Liu
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xu Liu
- College of Enology, Northwest A&F University, Yangling, China
- Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yinchuan, China
| |
Collapse
|