1
|
Palucha N, Quataert K, Vlaeminck E, Schröder E, De Winter K, Soetaert W. High-throughput screening of acetogenic strains for growth and metabolite profiles on readily available biomass. BIORESOURCE TECHNOLOGY 2025; 419:132026. [PMID: 39755158 DOI: 10.1016/j.biortech.2024.132026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
Abundant biomass, including industrial waste streams and second-generation (2G) and third-generation (3G) feedstocks, offers significant potential for sustainable bioconversion, nevertheless challenges such as fermentation inhibitors, CO2 losses and substrate selectivity of traditional microbial hosts hinder process efficiency. In this study, we address these challenges by exploring acetogenic bacteria as alternative microbial hosts. Using a newly established high-throughput method, acetogens were evaluated for their capacity to hydrolyse and metabolize variety of substrates derived from 2G and 3G feedstocks and industrial waste streams. Our findings demonstrate metabolic versatility of acetogens in converting biomass-derived substrates into a wide array of products while also exhibiting resilience to common fermentation inhibitors. These unique capabilities position acetogens as promising alternatives that could potentially outperform conventional production hosts in achieving 100% biomass valorization while underscoring the need for further research into critical areas, such as the utilization of mixed substrates under industrially relevant conditions.
Collapse
Affiliation(s)
- Natálie Palucha
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium.
| | - Koen Quataert
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium.
| | - Elodie Vlaeminck
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium.
| | - Eliot Schröder
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium.
| | - Karel De Winter
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium.
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium.
| |
Collapse
|
2
|
Lu T, Liu F, Jiang C, Cao J, Ma X, Su E. Strategies for cultivation, enhancing lipid production, and recovery in oleaginous yeasts. BIORESOURCE TECHNOLOGY 2025; 416:131770. [PMID: 39528033 DOI: 10.1016/j.biortech.2024.131770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
As global consumption of oil increases and environmental pollution worsens, people are becoming more concerned with sustainable energy development and environmental protection. There is an urgent need to find a sustainable and environmentally friendly new source of lipids to produce biodiesel and other products. In recent years, oleaginous yeast has garnered widespread interest due to its high lipid content. Compared with traditional plant oil sources, oleaginous yeast offers several significant advantages. Firstly, its cultivation is not affected by seasonal and climatic conditions. Secondly, yeast cultivation does not require large amounts of arable land. Additionally, oleaginous yeast grows rapidly, has a short production cycle, and can efficiently accumulate lipids. This review introduces several prominent oleaginous yeasts, focusing on the impact of cultivation conditions on lipid production, strategies to enhance lipid yield, and the development of lipid recovery methods.
Collapse
Affiliation(s)
- Tingting Lu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Feixiang Liu
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Department of Biological Science and Food Engineering, Bozhou University, Bozhou 236800, PR China
| | - Chenan Jiang
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jun Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiaoqiang Ma
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
3
|
Yook S, Deewan A, Ziolkowski L, Lane S, Tohidifar P, Cheng MH, Singh V, Stasiewicz MJ, Rao CV, Jin YS. Engineering and evolution of Yarrowia lipolytica for producing lipids from lignocellulosic hydrolysates. BIORESOURCE TECHNOLOGY 2025; 416:131806. [PMID: 39536885 DOI: 10.1016/j.biortech.2024.131806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/09/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Yarrowia lipolytica, an oleaginous yeast, shows promise for industrial fermentation due to its robust acetyl-CoA flux and well-developed genetic engineering tools. However, its lack of an active xylose metabolism restricts the conversion of cellulosic sugars to valuable products. To address this, metabolic engineering, and adaptive laboratory evolution (ALE) were applied to the Y. lipolytica PO1f strain, resulting in an efficient xylose-assimilating strain (XEV). Whole-genome sequencing (WGS) of the XEV followed by reverse engineering revealed that the amplification of the heterologous oxidoreductase pathway and a mutation in the GTPase-activating protein gene (YALI0B12100g) might be the primary reasons for improved xylose assimilation in the XEV strain. When a sorghum hydrolysate was used, the XEV strain showed superior xylose consumption and lipid production compared to its parental strain (X123). This study advances our understanding of xylose metabolism in Y. lipolytica and proposes effective metabolic engineering strategies for optimizing lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Sangdo Yook
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Anshu Deewan
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Leah Ziolkowski
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephan Lane
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Payman Tohidifar
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ming-Hsun Cheng
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Vijay Singh
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Matthew J Stasiewicz
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher V Rao
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Peralta FT, Shi C, Widanagamage GW, Speight RE, O'Hara I, Zhang Z, Navone L, Behrendorff JB. Pretreated sugarcane bagasse matches performance of synthetic media for lipid production with Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2024; 413:131558. [PMID: 39362341 DOI: 10.1016/j.biortech.2024.131558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/25/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Engineered strains of Yarrowia lipolytica with modified lipid profiles and other desirable properties for microbial oil production are widely reported but are almost exclusively characterized in synthetic laboratory-grade media. Ensuring translatable performance between synthetic media and industrially scalable lignocellulosic feedstocks is a critical challenge. Yarrowia lipolytica growth and lipid production were characterized in media derived from two-step acid-catalyzed glycerol pretreatment of sugarcane bagasse. Fermentation performance was benchmarked against laboratory-grade synthetic growth media, including detailed characterization of media composition, nitrogen utilization, biomass and lipid production, and fatty acid product profile. A Yarrowia lipolytica strain modified to enable xylose consumption consumed all sugars, glycerol, and acetic acid, accumulating lipids to 34-44 % of cell dry weight. Growth and lipid content when grown in sugarcane bagasse-derived media were equivalent to or better than that observed with synthetic media. These sugarcane bagasse-derived media are suitable for transferable development of Yarrowia lipolytica fermentations from synthetic media.
Collapse
Affiliation(s)
- Francisco T Peralta
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Changrong Shi
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Gevindu Wathsala Widanagamage
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Robert E Speight
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Advanced Engineering Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD 4102, Australia.
| | - Ian O'Hara
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Industrial Transformation Training Centre for Bioplastics and Biocomposites, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Laura Navone
- ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - James B Behrendorff
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| |
Collapse
|
5
|
Mukheja Y, Kethavath SN, Banoth L, Pawar SV. Lignin: The green powerhouse for enzyme immobilization in biocatalysis and biosensing. Int J Biol Macromol 2024; 280:135940. [PMID: 39322172 DOI: 10.1016/j.ijbiomac.2024.135940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/31/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Enzymes play an important role in diverse industries and are critical components of many industrial products, yet, their application is limited due to their sensitivity to environmental conditions, recovery challenges, and susceptibility to inhibition. Immobilizing enzymes onto a suitable support matrix imparts higher resistance and improves operational flexibility, recyclability, and reusability. Lignin, a renewable and abundant biopolymer derived from the paper and pulp industry, has emerged as one of the prominent materials to be incorporated in support matrices. The distinctive characteristics of lignin include high mechanical strength, ease of separation, chemical stability, robust matrix for securing enzyme binding, biocompatibility, and ease of surface functionalization, making it a promising alternative to traditional synthetic materials. Research studies suggest the effectiveness of various lignin-based materials for immobilizing enzymes and significantly improving their stability, reusability, and catalytic activity. This article critically examines the unique properties of lignin and highlights significant contributions made in the development of enzyme immobilization for biocatalysis and biosensing applications. Additionally, the roles of hybrid materials, multienzyme immobilization, and innovative strategies like interfacial activation and enzyme shielding are discussed for overcoming the current challenges and developing sustainable, efficient, and robust biocatalytic and biosensing processes for industrial applications.
Collapse
Affiliation(s)
- Yashdeep Mukheja
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Santhosh Nayak Kethavath
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Chemical Engineering & Process Technology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Linga Banoth
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
6
|
Zhong Y, Gu J, Shang C, Deng J, Liu Y, Cui Z, Lu X, Qi Q. Sustainable succinic acid production from lignocellulosic hydrolysates by engineered strains of Yarrowia lipolytica at low pH. BIORESOURCE TECHNOLOGY 2024; 408:131166. [PMID: 39067709 DOI: 10.1016/j.biortech.2024.131166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Succinic acid (SA) is a valuable C4 platform chemical with diverse applications. Lignocellulosic biomass represents an abundant and renewable carbon resource for microbial production of SA. However, the presence of toxic compounds in pretreated lignocellulosic hydrolysates poses challenges to cell metabolism, leading to inefficient SA production. Here, engineered Yarrowia lipolytica Hi-SA2 was shown to utilize glucose and xylose from corncob hydrolysate to produce 32.6 g/L SA in shaking flasks. The high concentration of undetoxified hydrolysates significantly inhibited yeast growth and SA biosynthesis, with furfural identified as the key inhibitor. Through overexpressing glutathione synthetase encoding gene YlGsh2, the tolerance of engineered strain to furfural and toxic hydrolysate was significantly improved. In a 5-L bioreactor, Hi-SA2-YlGsh2 strain produced 45.34 g/L SA within 32 h, with a final pH of 3.28. This study provides a sustainable process for bio-based SA production, highlighting the efficient SA synthesis from lignocellulosic biomass through low pH fermentation.
Collapse
Affiliation(s)
- Yutao Zhong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jinhong Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Changyu Shang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jingyu Deng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Yuhang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
7
|
Fang L, Chen Y, He Q, Wang L, Duan Q, Huang C, Song H, Cao Y. Mining novel gene targets for improving tolerance to furfural and acetic acid in Yarrowia lipolytica using whole-genome CRISPRi library. BIORESOURCE TECHNOLOGY 2024; 403:130764. [PMID: 38718903 DOI: 10.1016/j.biortech.2024.130764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/25/2024] [Accepted: 04/28/2024] [Indexed: 05/20/2024]
Abstract
Abundant renewable resource lignocellulosic biomass possesses tremendous potential for green biomanufacturing, while its efficient utilization by Yarrowia lipolytica, an attractive biochemical production host, is restricted since the presence of inhibitors furfural and acetic acid in lignocellulosic hydrolysate. Given deficient understanding of inherent interactions between inhibitors and cellular metabolism, sufficiently mining relevant genes is necessary. Herein, 14 novel gene targets were discovered using clustered regularly interspaced short palindromic repeats interference library in Y. lipolytica, achieving tolerance to 0.35 % (v/v) acetic acid (the highest concentration reported in Y. lipolytica), 4.8 mM furfural, or a combination of 2.4 mM furfural and 0.15 % (v/v) acetic acid. The tolerance mechanism might involve improvement of cell division and decrease of reactive oxygen species level. Transcriptional repression of effective gene targets still enabled tolerance when xylose was a carbon source. This work forms a robust foundation for improving microbial tolerance to lignocellulose-derived inhibitors and revealing underlying mechanism.
Collapse
Affiliation(s)
- Lixia Fang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yaru Chen
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qianxi He
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Luxin Wang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qiyang Duan
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Congcong Huang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
8
|
Fernandes MA, Mota MN, Faria NT, Sá-Correia I. An Evolved Strain of the Oleaginous Yeast Rhodotorula toruloides, Multi-Tolerant to the Major Inhibitors Present in Lignocellulosic Hydrolysates, Exhibits an Altered Cell Envelope. J Fungi (Basel) 2023; 9:1073. [PMID: 37998878 PMCID: PMC10672028 DOI: 10.3390/jof9111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
The presence of toxic compounds in lignocellulosic hydrolysates (LCH) is among the main barriers affecting the efficiency of lignocellulose-based fermentation processes, in particular, to produce biofuels, hindering the production of intracellular lipids by oleaginous yeasts. These microbial oils are promising sustainable alternatives to vegetable oils for biodiesel production. In this study, we explored adaptive laboratory evolution (ALE), under methanol- and high glycerol concentration-induced selective pressures, to improve the robustness of a Rhodotorula toruloides strain, previously selected to produce lipids from sugar beet hydrolysates by completely using the major C (carbon) sources present. An evolved strain, multi-tolerant not only to methanol but to four major inhibitors present in LCH (acetic acid, formic acid, hydroxymethylfurfural, and furfural) was isolated and the mechanisms underlying such multi-tolerance were examined, at the cellular envelope level. Results indicate that the evolved multi-tolerant strain has a cell wall that is less susceptible to zymolyase and a decreased permeability, based on the propidium iodide fluorescent probe, in the absence or presence of those inhibitors. The improved performance of this multi-tolerant strain for lipid production from a synthetic lignocellulosic hydrolysate medium, supplemented with those inhibitors, was confirmed.
Collapse
Affiliation(s)
- Mónica A. Fernandes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Nuno T. Faria
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
9
|
Konzock O, Tous-Mohedano M, Cibin I, Chen Y, Norbeck J. Cinnamic acid and p-coumaric acid are metabolized to 4-hydroxybenzoic acid by Yarrowia lipolytica. AMB Express 2023; 13:84. [PMID: 37561285 PMCID: PMC10415236 DOI: 10.1186/s13568-023-01590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Yarrowia lipolytica has been explored as a potential production host for flavonoid synthesis due to its high tolerance to aromatic acids and ability to supply malonyl-CoA. However, little is known about its ability to consume the precursors cinnamic and p-coumaric acid. In this study, we demonstrate that Y. lipolytica can consume these precursors through multiple pathways that are partially dependent on the cultivation medium. By monitoring the aromatic acid concentrations over time, we found that cinnamic acid is converted to p-coumaric acid. We identified potential proteins with a trans-cinnamate 4-monooxygenase activity in Y. lipolytica and constructed a collection of 15 knock-out strains to identify the genes responsible for the reaction. We identified YALI1_B28430g as the gene encoding for a protein that converts cinnamic acid to p-coumaric acid (designated as TCM1). By comparing different media compositions we found that complex media components (casamino acids and yeast extract) induce this pathway. Additionally, we discover the conversion of p-coumaric acid to 4-hydroxybenzoic acid. Our findings provide new insight into the metabolic capabilities of Y. lipolytica and hold great potential for the future development of improved strains for flavonoid production.
Collapse
Affiliation(s)
- Oliver Konzock
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden.
| | - Marta Tous-Mohedano
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Irene Cibin
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Yun Chen
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Joakim Norbeck
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
10
|
da Silva RR, Zaiter MA, Boscolo M, da Silva R, Gomes E. Xylose consumption and ethanol production by Pichia guilliermondii and Candida oleophila in the presence of furans, phenolic compounds, and organic acids commonly produced during the pre-treatment of plant biomass. Braz J Microbiol 2023; 54:753-759. [PMID: 36826705 PMCID: PMC10234969 DOI: 10.1007/s42770-023-00937-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
For 2G ethanol production, pentose fermentation and yeast tolerance to lignocellulosic hydrolyzate components are essential to improve biorefinery yields. Generally, physicochemical pre-treatment methodologies are used to facilitate access to cellulose and hemicellulose in plant material, which consequently can generate microbial growth inhibitory compounds, such as furans, weak acids, and phenolic compounds. Because of the unsatisfactory yield of wild-type Saccharomyces cerevisiae during pentose fermentation, the search for xylose-fermenting yeasts tolerant to microbial growth inhibitors has gained attention. In this study, we investigated the ability of the yeasts Pichia guilliermondii G1.2 and Candida oleophila G10.1 to produce ethanol from xylose and tolerate the inhibitors furfural, 5-hydroxymethylfurfural (HMF), acetic acid, formic acid, ferulic acid, and vanillin. We demonstrated that both yeasts were able to grow and consume xylose in the presence of all single inhibitors, with greater growth limitation in media containing furfural, acetic acid, and vanillin. In saline medium containing a mixture of these inhibitors (2.5-3.5 mM furfural and HMF, 1 mM ferulic acid, 1-1.5 mM vanillin, 10-13 mM acetic acid, and 5-7 mM formic acid), both yeasts were able to produce ethanol from xylose, similar to that detected in the control medium (without inhibitors). In future studies, the proteins involved in the transport of pentose and tolerance to these inhibitors need to be investigated.
Collapse
Affiliation(s)
- Ronivaldo Rodrigues da Silva
- Instituto de Biociencias, Letras e Ciencias Exatas, Universidade Estadual Paulista "Julio de Mesquita Filho", Cristovao Colombo, 2265, Jd Nazareth, Ibilce‑Unesp, Sao Jose do Rio Preto, São Paulo, Brazil.
| | - Mohammed Anas Zaiter
- Instituto de Biociencias, Letras e Ciencias Exatas, Universidade Estadual Paulista "Julio de Mesquita Filho", Cristovao Colombo, 2265, Jd Nazareth, Ibilce‑Unesp, Sao Jose do Rio Preto, São Paulo, Brazil
| | - Maurício Boscolo
- Instituto de Biociencias, Letras e Ciencias Exatas, Universidade Estadual Paulista "Julio de Mesquita Filho", Cristovao Colombo, 2265, Jd Nazareth, Ibilce‑Unesp, Sao Jose do Rio Preto, São Paulo, Brazil
| | - Roberto da Silva
- Instituto de Biociencias, Letras e Ciencias Exatas, Universidade Estadual Paulista "Julio de Mesquita Filho", Cristovao Colombo, 2265, Jd Nazareth, Ibilce‑Unesp, Sao Jose do Rio Preto, São Paulo, Brazil
| | - Eleni Gomes
- Instituto de Biociencias, Letras e Ciencias Exatas, Universidade Estadual Paulista "Julio de Mesquita Filho", Cristovao Colombo, 2265, Jd Nazareth, Ibilce‑Unesp, Sao Jose do Rio Preto, São Paulo, Brazil
| |
Collapse
|
11
|
Dias B, Fernandes H, Lopes M, Belo I. Yarrowia lipolytica produces lipid-rich biomass in medium mimicking lignocellulosic biomass hydrolysate. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12565-6. [PMID: 37191683 DOI: 10.1007/s00253-023-12565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
In recent years, lignocellulosic biomass has become an attractive low-cost raw material for microbial bioprocesses aiming the production of biofuels and other valuable chemicals. However, these feedstocks require preliminary pretreatments to increase their utilization by microorganisms, which may lead to the formation of various compounds (acetic acid, formic acid, furfural, 5-hydroxymethylfurfural, p-coumaric acid, vanillin, or benzoic acid) with antimicrobial activity. Batch cultures in microplate wells demonstrated the ability of Yarrowia strains (three of Y. lipolytica and one of Y. divulgata) to grow in media containing each one of these compounds. Cellular growth of Yarrowia lipolytica W29 and NCYC 2904 (chosen strains) was proven in Erlenmeyer flasks and bioreactor experiments where an accumulation of intracellular lipids was also observed in culture medium mimicking lignocellulosic biomass hydrolysate containing glucose, xylose, acetic acid, formic acid, furfural, and 5-HMF. Lipid contents of 35% (w/w) and 42% (w/w) were obtained in bioreactor batch cultures with Y. lipolytica W29 and NCYC 2904, respectively, showing the potential of this oleaginous yeast to use lignocellulosic biomass hydrolysates as feedstock for obtaining valuable compounds, such as microbial lipids that have many industrial applications. KEY POINTS: • Yarrowia strains tolerate compounds found in lignocellulosic biomass hydrolysate • Y. lipolytica consumed compounds found in lignocellulosic biomass hydrolysate • 42% (w/w) of microbial lipids was attained in bioreactor batch cultures.
Collapse
Affiliation(s)
- Bruna Dias
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| | - Helena Fernandes
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| | - Marlene Lopes
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal.
| | - Isabel Belo
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
12
|
Yan Q, Jacobson TB, Ye Z, Cortés-Pena YR, Bhagwat SS, Hubbard S, Cordell WT, Oleniczak RE, Gambacorta FV, Vazquez JR, Shusta EV, Amador-Noguez D, Guest JS, Pfleger BF. Evaluation of 1,2-diacyl-3-acetyl triacylglycerol production in Yarrowia lipolytica. Metab Eng 2023; 76:18-28. [PMID: 36626963 DOI: 10.1016/j.ymben.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Plants produce many high-value oleochemical molecules. While oil-crop agriculture is performed at industrial scales, suitable land is not available to meet global oleochemical demand. Worse, establishing new oil-crop farms often comes with the environmental cost of tropical deforestation. The field of metabolic engineering offers tools to transplant oleochemical metabolism into tractable hosts while simultaneously providing access to molecules produced by non-agricultural plants. Here, we evaluate strategies for rewiring metabolism in the oleaginous yeast Yarrowia lipolytica to synthesize a foreign lipid, 3-acetyl-1,2-diacyl-sn-glycerol (acTAG). Oils made up of acTAG have a reduced viscosity and melting point relative to traditional triacylglycerol oils making them attractive as low-grade diesels, lubricants, and emulsifiers. This manuscript describes a metabolic engineering study that established acTAG production at g/L scale, exploration of the impact of lipid bodies on acTAG titer, and a techno-economic analysis that establishes the performance benchmarks required for microbial acTAG production to be economically feasible.
Collapse
Affiliation(s)
- Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tyler B Jacobson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA; DOE Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Zhou Ye
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yoel R Cortés-Pena
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA; Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, 205 N. Mathews Avenue, Urbana, IL, 61801, USA
| | - Sarang S Bhagwat
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA; Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, 205 N. Mathews Avenue, Urbana, IL, 61801, USA
| | - Susan Hubbard
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - William T Cordell
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Rebecca E Oleniczak
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Francesca V Gambacorta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Julio Rivera Vazquez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA; DOE Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; Department of Neurological Surgery, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA; DOE Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Jeremy S Guest
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA; Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, 205 N. Mathews Avenue, Urbana, IL, 61801, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
13
|
Coleman SM, Cordova LT, Lad BC, Ali SA, Ramanan E, Collett JR, Alper HS. Evolving tolerance of Yarrowia lipolytica to hydrothermal liquefaction aqueous phase waste. Appl Microbiol Biotechnol 2023; 107:2011-2025. [PMID: 36719433 DOI: 10.1007/s00253-023-12393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
Hydrothermal liquefaction (HTL) is an emerging method for thermochemical conversion of wet organic waste and biomass into renewable biocrude. HTL also produces an aqueous phase (HTL-AP) side stream containing 2-4% light organic compounds that require treatment. Although anaerobic digestion (AD) of HTL-AP has shown promise, lengthy time periods were required for AD microbial communities to adapt to metabolic inhibitors in HTL-AP. An alternative for HTL-AP valorization was recently demonstrated using two engineered strains of Yarrowia lipolytica, E26 and Diploid TAL, for the overproduction of lipids and the polyketide triacetic acid lactone (TAL) respectively. These strains tolerated up to 10% HTL-AP (v/v) in defined media and up to 25% (v/v) HTL-AP in rich media. In this work, adaptive laboratory evolution (ALE) of these strains increased the bulk population tolerance for HTL-AP to up to 30% (v/v) in defined media and up to 35% (v/v) for individual isolates in rich media. The predominate organic acids within HTL-AP (acetic, butyric, and propionic) were rapidly consumed by the evolved Y. lipolytica strains. A TAL-producing isolate (strain 144-3) achieved a nearly 3-fold increase in TAL titer over the parent strain while simultaneously reducing the chemical oxygen demand (COD) of HTL-AP containing media. Fermentation with HTL-AP as the sole nutrient source demonstrated direct conversion of waste into TAL at 10% theoretical yield. Potential genetic mutations of evolved TAL production strains that could be imparting tolerance were explored. This work advances the potential of Y. lipolytica to biologically treat and simultaneously extract value from HTL wastewater. KEY POINTS: • Adaptive evolution of two Y. lipolytica strains enhanced their tolerance to waste. • Y. lipolytica reduces chemical oxygen demand in media containing waste. • Y. lipolytica can produce triacetic acid lactone directly from wastewater.
Collapse
Affiliation(s)
- Sarah M Coleman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Lauren T Cordova
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Beena C Lad
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th Street Stop A500, Austin, TX, 78712, USA
| | - Sabah A Ali
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Esha Ramanan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - James R Collett
- Chemical and Biological Process Group, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA, 99352, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA.
- Interdisciplinary Life Sciences, The University of Texas at Austin, 100 East 24th St., Austin, TX, 78712, USA.
| |
Collapse
|
14
|
Zaghen S, Konzock O, Fu J, Kerkhoven EJ. Abolishing storage lipids induces protein misfolding and stress responses in Yarrowia lipolytica. J Ind Microbiol Biotechnol 2023; 50:kuad031. [PMID: 37742215 PMCID: PMC10563384 DOI: 10.1093/jimb/kuad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Yarrowia lipolytica naturally saves excess carbon as storage lipids. Engineering efforts allow redirecting the high precursor flux required for lipid synthesis toward added-value chemicals such as polyketides, flavonoids, and terpenoids. To redirect precursor flux from storage lipids to other products, four genes involved in triacylglycerol and sterol ester synthesis (DGA1, DGA2, LRO1, and ARE1) can be deleted. To elucidate the effect of the deletions on cell physiology and regulation, we performed chemostat cultivations under carbon and nitrogen limitations, followed by transcriptome analysis. We found that storage lipid-free cells show an enrichment of the unfolded protein response, and several biological processes related to protein refolding and degradation are enriched. Additionally, storage lipid-free cells show an altered lipid class distribution with an abundance of potentially cytotoxic free fatty acids under nitrogen limitation. Our findings not only highlight the importance of lipid metabolism on cell physiology and proteostasis, but can also aid the development of improved chassy strains of Y. lipolytica for commodity chemical production.
Collapse
Affiliation(s)
- Simone Zaghen
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Oliver Konzock
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Jing Fu
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Eduard J Kerkhoven
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
- SciLifeLab, Chalmers University of Technology, Göteborg 412 96, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800Lyngby, Denmark
| |
Collapse
|
15
|
Advances in the Application of the Non-Conventional Yeast Pichia kudriavzevii in Food and Biotechnology Industries. J Fungi (Basel) 2023; 9:jof9020170. [PMID: 36836285 PMCID: PMC9961021 DOI: 10.3390/jof9020170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Pichia kudriavzevii is an emerging non-conventional yeast which has attracted increased attention for its application in food and biotechnology areas. It is widespread in various habitats and often occurs in the spontaneous fermentation process of traditional fermented foods and beverages. The contributions of P. kudriavzevii in degrading organic acid, releasing various hydrolase and flavor compounds, and displaying probiotic properties make it a promising starter culture in the food and feed industry. Moreover, its inherent characteristics, including high tolerance to extreme pH, high temperature, hyperosmotic stress and fermentation inhibitors, allow it the potential to address technical challenges in industrial applications. With the development of advanced genetic engineering tools and system biology techniques, P. kudriavzevii is becoming one of the most promising non-conventional yeasts. This paper systematically reviews the recent progress in the application of P. kudriavzevii to food fermentation, the feed industry, chemical biosynthesis, biocontrol and environmental engineering. In addition, safety issues and current challenges to its use are discussed.
Collapse
|
16
|
Otoupal PB, Geiselman GM, Oka AM, Barcelos CA, Choudhary H, Dinh D, Zhong W, Hwang H, Keasling JD, Mukhopadhyay A, Sundstrom E, Haushalter RW, Sun N, Simmons BA, Gladden JM. Advanced one-pot deconstruction and valorization of lignocellulosic biomass into triacetic acid lactone using Rhodosporidium toruloides. Microb Cell Fact 2022; 21:254. [PMID: 36482295 PMCID: PMC9733078 DOI: 10.1186/s12934-022-01977-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rhodosporidium toruloides is capable of co-utilization of complex carbon sources and robust growth from lignocellulosic hydrolysates. This oleaginous yeast is therefore an attractive host for heterologous production of valuable bioproducts at high titers from low-cost, deconstructed biomass in an economically and environmentally sustainable manner. Here we demonstrate this by engineering R. toruloides to produce the polyketide triacetic acid lactone (TAL) directly from unfiltered hydrolysate deconstructed from biomass with minimal unit process operations. RESULTS Introduction of the 2-pyrone synthase gene into R. toruloides enabled the organism to produce 2.4 g/L TAL from simple media or 2.0 g/L from hydrolysate produced from sorghum biomass. Both of these titers are on par with titers from other better-studied microbial hosts after they had been heavily engineered. We next demonstrate that filtered hydrolysates produced from ensiled sorghum are superior to those derived from dried sorghum for TAL production, likely due to the substantial organic acids produced during ensiling. We also demonstrate that the organic acids found in ensiled biomass can be used for direct synthesis of ionic liquids within the biomass pretreatment process, enabling consolidation of unit operations of in-situ ionic liquid synthesis, pretreatment, saccharification, and fermentation into a one-pot, separations-free process. Finally, we demonstrate this consolidation in a 2 L bioreactor using unfiltered hydrolysate, producing 3.9 g/L TAL. CONCLUSION Many steps involved in deconstructing biomass into fermentable substrate can be combined into a distinct operation, and directly fed to cultures of engineered R. toruloides cultures for subsequent valorization into gram per liter titers of TAL in a cost-effective manner.
Collapse
Affiliation(s)
- Peter B Otoupal
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA
- DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA
| | - Gina M Geiselman
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA
- DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA
| | - Asun M Oka
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Carolina A Barcelos
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hemant Choudhary
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA
- DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Duy Dinh
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wenqing Zhong
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - HeeJin Hwang
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA
| | - Jay D Keasling
- DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Center for Biosustainability, Danish Technical University, Lyngby, Denmark
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Aindrila Mukhopadhyay
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eric Sundstrom
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert W Haushalter
- DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ning Sun
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Blake A Simmons
- DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John M Gladden
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA.
- DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA.
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA.
| |
Collapse
|
17
|
Liu F, Liu SC, Qi YK, Liu Z, Chen J, Wei LJ, Hua Q. Enhancing Trans-Nerolidol Productivity in Yarrowia lipolytica by Improving Precursor Supply and Optimizing Nerolidol Synthase Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15157-15165. [PMID: 36444843 DOI: 10.1021/acs.jafc.2c05847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The low enzymatic capability of terpene synthases and the limited availability of precursors often hinder the productivity of terpenes in microbial hosts. Herein, a systematic approach combining protein engineering and pathway compartmentation was exploited in Yarrowia lipolytica for the high-efficient production of trans-nerolidol, a sesquiterpene with various commercial applications. Through the single-gene overexpression, the reaction catalyzed by nerolidol synthase (FaNES1) was identified as another rate-limiting step. An optimized FaNES1G498Q was then designed by rational protein engineering using homology modeling and docking studies. Additionally, further improvement of trans-nerolidol production was observed as enhancing the expression of an endogenous carnitine acetyltransferase (CAT2) putatively responsible for acetyl-CoA shuttling between peroxisome and cytosol. To harness the peroxisomal acetyl-CoA pool, a parallel peroxisomal pathway starting with acetyl-CoA to trans-nerolidol was engineered. Finally, the highest reported titer of 11.1 g/L trans-nerolidol in the Y. lipolytica platform was achieved in 5 L fed-batch fermentation with the carbon restriction approach.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shun-Cheng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yi-Ke Qi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
18
|
Konzock O, Zaghen S, Fu J, Kerkhoven EJ. Urea is a drop-in nitrogen source alternative to ammonium sulphate in Yarrowia lipolytica. iScience 2022; 25:105703. [PMID: 36567708 PMCID: PMC9772842 DOI: 10.1016/j.isci.2022.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Media components, including the nitrogen source, are significant cost factors in cultivation processes. The nitrogen source also influences cell behavior and production performance. Ammonium sulfate is a widely used nitrogen source for microorganisms' cultivation. Urea is a sustainable and cheap alternative nitrogen source. We investigated the influence of urea as a nitrogen source compared to ammonium sulfate by cultivating phenotypically different Yarrowia lipolytica strains in chemostats under carbon or nitrogen limitation. We found no significant coherent changes in growth and lipid production. RNA sequencing revealed no significant concerted changes in the transcriptome. The genes involved in urea uptake and degradation are not upregulated on a transcriptional level. Our findings support urea usage, indicating that previous metabolic engineering efforts where ammonium sulfate was used are likely translatable to the usage of urea and can ease the way for urea as a cheap and sustainable nitrogen source in more applications.
Collapse
Affiliation(s)
- Oliver Konzock
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Simone Zaghen
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Jing Fu
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Eduard J. Kerkhoven
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden,Corresponding author
| |
Collapse
|
19
|
Chen S, Lu Y, Wang W, Hu Y, Wang J, Tang S, Lin CSK, Yang X. Efficient production of the β-ionone aroma compound from organic waste hydrolysates using an engineered Yarrowia lipolytica strain. Front Microbiol 2022; 13:960558. [PMID: 36212878 PMCID: PMC9532697 DOI: 10.3389/fmicb.2022.960558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
This study demonstrates the feasibility of establishing a natural compound supply chain in a biorefinery. The process starts with the biological or chemical hydrolysis of food and agricultural waste into simple and fermentative sugars, followed by their fermentation into more complex molecules. The yeast strain, Yarrowia lipolytica, was modified by introducing high membrane affinity variants of the carotenoid cleavage dioxygenase enzyme, PhCCD1, to increase the production of the aroma compound, β-ionone. The initial hydrolysis process converted food waste or sugarcane bagasse into nutrient-rich hydrolysates containing 78.4 g/L glucose and 8.3 g/L fructose, or 34.7 g/L glucose and 20.1 g/L xylose, respectively. During the next step, engineered Y. lipolytica strains were used to produce β-ionone from these feedstocks. The yeast strain YLBI3120, carrying a modified PhCCD1 gene was able to produce 4 g/L of β-ionone with a productivity of 13.9 mg/L/h from food waste hydrolysate. This is the highest yield reported for the fermentation of this compound to date. The integrated process described in this study could be scaled up to achieve economical large-scale conversion of inedible food and agricultural waste into valuable aroma compounds for a wide range of potential applications.
Collapse
Affiliation(s)
- Shuyi Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanping Lu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Technology Research Center, Wuliangye Yibin Company Limited, Yibin, Sichuan, China
- Postdoctoral Research Workstation, Sichuan Yibin Wuliangye Group Company Limited, Yibin, Sichuan, China
| | - Wen Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
| | - Yunzi Hu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Shixing Tang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Poorinmohammad N, Fu J, Wabeke B, Kerkhoven EJ. Validated Growth Rate-Dependent Regulation of Lipid Metabolism in Yarrowia lipolytica. Int J Mol Sci 2022; 23:ijms23158517. [PMID: 35955650 PMCID: PMC9369070 DOI: 10.3390/ijms23158517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Given the strong potential of Yarrowia lipolytica to produce lipids for use as renewable fuels and oleochemicals, it is important to gain in-depth understanding of the molecular mechanism underlying its lipid accumulation. As cellular growth rate affects biomass lipid content, we performed a comparative proteomic analysis of Y. lipolytica grown in nitrogen-limited chemostat cultures at different dilution rates. After confirming the correlation between growth rate and lipid accumulation, we were able to identify various cellular functions and biological mechanisms involved in oleaginousness. Inspection of significantly up- and downregulated proteins revealed nonintuitive processes associated with lipid accumulation in this yeast. This included proteins related to endoplasmic reticulum (ER) stress, ER–plasma membrane tether proteins, and arginase. Genetic engineering of selected targets validated that some genes indeed affected lipid accumulation. They were able to increase lipid content and were complementary to other genetic engineering strategies to optimize lipid yield.
Collapse
Affiliation(s)
- Naghmeh Poorinmohammad
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (N.P.); (J.F.); (B.W.)
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Jing Fu
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (N.P.); (J.F.); (B.W.)
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Bob Wabeke
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (N.P.); (J.F.); (B.W.)
| | - Eduard J. Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (N.P.); (J.F.); (B.W.)
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
21
|
Mota MN, Múgica P, Sá-Correia I. Exploring Yeast Diversity to Produce Lipid-Based Biofuels from Agro-Forestry and Industrial Organic Residues. J Fungi (Basel) 2022; 8:687. [PMID: 35887443 PMCID: PMC9315891 DOI: 10.3390/jof8070687] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Exploration of yeast diversity for the sustainable production of biofuels, in particular biodiesel, is gaining momentum in recent years. However, sustainable, and economically viable bioprocesses require yeast strains exhibiting: (i) high tolerance to multiple bioprocess-related stresses, including the various chemical inhibitors present in hydrolysates from lignocellulosic biomass and residues; (ii) the ability to efficiently consume all the major carbon sources present; (iii) the capacity to produce lipids with adequate composition in high yields. More than 160 non-conventional (non-Saccharomyces) yeast species are described as oleaginous, but only a smaller group are relatively well characterised, including Lipomyces starkeyi, Yarrowia lipolytica, Rhodotorula toruloides, Rhodotorula glutinis, Cutaneotrichosporonoleaginosus and Cutaneotrichosporon cutaneum. This article provides an overview of lipid production by oleaginous yeasts focusing on yeast diversity, metabolism, and other microbiological issues related to the toxicity and tolerance to multiple challenging stresses limiting bioprocess performance. This is essential knowledge to better understand and guide the rational improvement of yeast performance either by genetic manipulation or by exploring yeast physiology and optimal process conditions. Examples gathered from the literature showing the potential of different oleaginous yeasts/process conditions to produce oils for biodiesel from agro-forestry and industrial organic residues are provided.
Collapse
Affiliation(s)
- Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Paula Múgica
- BIOREF—Collaborative Laboratory for Biorefineries, Rua da Amieira, Apartado 1089, São Mamede de Infesta, 4465-901 Matosinhos, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
22
|
Zhang XY, Li B, Huang BC, Wang FB, Zhang YQ, Zhao SG, Li M, Wang HY, Yu XJ, Liu XY, Jiang J, Wang ZP. Production, Biosynthesis, and Commercial Applications of Fatty Acids From Oleaginous Fungi. Front Nutr 2022; 9:873657. [PMID: 35694158 PMCID: PMC9176664 DOI: 10.3389/fnut.2022.873657] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
Oleaginous fungi (including fungus-like protists) are attractive in lipid production due to their short growth cycle, large biomass and high yield of lipids. Some typical oleaginous fungi including Galactomyces geotrichum, Thraustochytrids, Mortierella isabellina, and Mucor circinelloides, have been well studied for the ability to accumulate fatty acids with commercial application. Here, we review recent progress toward fermentation, extraction, of fungal fatty acids. To reduce cost of the fatty acids, fatty acid productions from raw materials were also summarized. Then, the synthesis mechanism of fatty acids was introduced. We also review recent studies of the metabolic engineering strategies have been developed as efficient tools in oleaginous fungi to overcome the biochemical limit and to improve production efficiency of the special fatty acids. It also can be predictable that metabolic engineering can further enhance biosynthesis of fatty acids and change the storage mode of fatty acids.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bei-Chen Huang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Feng-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yue-Qi Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Shao-Geng Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Min Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zhi-Peng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
23
|
Improving Lipid Production of Yarrowia lipolytica by the Aldehyde Dehydrogenase-Mediated Furfural Detoxification. Int J Mol Sci 2022; 23:ijms23094761. [PMID: 35563152 PMCID: PMC9102794 DOI: 10.3390/ijms23094761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Yarrowia lipolytica, the non-conventional yeast capable of high lipogenesis, is a microbial chassis for producing lipid-based biofuels and chemicals from renewable resources such as lignocellulosic biomass. However, the low tolerance of Y. lipolytica against furfural, a major inhibitory furan aldehyde derived from the pretreatment processes of lignocellulosic biomass, has restricted the efficient conversion of lignocellulosic hydrolysates. In this study, the furfural tolerance of Y. lipolytica has been improved by supporting its endogenous detoxification mechanism. Specifically, the endogenous genes encoding the aldehyde dehydrogenase family proteins were overexpressed in Y. lipolytica to support the conversion of furfural to furoic acid. Among them, YALI0E15400p (FALDH2) has shown the highest conversion rate of furfural to furoic acid and resulted in two-fold increased cell growth and lipid production in the presence of 0.4 g/L of furfural. To our knowledge, this is the first report to identify the native furfural detoxification mechanism and increase furfural resistance through rational engineering in Y. lipolytica. Overall, these results will improve the potential of Y. lipolytica to produce lipids and other value-added chemicals from a carbon-neutral feedstock of lignocellulosic biomass.
Collapse
|
24
|
Yi X, Alper HS. Considering Strain Variation and Non-Type Strains for Yeast Metabolic Engineering Applications. Life (Basel) 2022; 12:life12040510. [PMID: 35455001 PMCID: PMC9032683 DOI: 10.3390/life12040510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
A variety of yeast species have been considered ideal hosts for metabolic engineering to produce value-added chemicals, including the model organism Saccharomyces cerevisiae, as well as non-conventional yeasts including Yarrowia lipolytica, Kluyveromyces marxianus, and Pichia pastoris. However, the metabolic capacity of these microbes is not simply dictated or implied by genus or species alone. Within the same species, yeast strains can display distinct variations in their phenotypes and metabolism, which affect the performance of introduced pathways and the production of interesting compounds. Moreover, it is unclear how this metabolic potential corresponds to function upon rewiring these organisms. These reports thus point out a new consideration for successful metabolic engineering, specifically: what are the best strains to utilize and how does one achieve effective metabolic engineering? Understanding such questions will accelerate the host selection and optimization process for generating yeast cell factories. In this review, we survey recent advances in studying yeast strain variations and utilizing non-type strains in pathway production and metabolic engineering applications. Additionally, we highlight the importance of employing portable methods for metabolic rewiring to best access this metabolic diversity. Finally, we conclude by highlighting the importance of considering strain diversity in metabolic engineering applications.
Collapse
Affiliation(s)
- Xiunan Yi
- Interdisciplinary Life Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Hal S. Alper
- Interdisciplinary Life Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Correspondence:
| |
Collapse
|
25
|
Du C, Li Y, Xiang R, Yuan W. Formate Dehydrogenase Improves the Resistance to Formic Acid and Acetic Acid Simultaneously in Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms23063406. [PMID: 35328826 PMCID: PMC8954399 DOI: 10.3390/ijms23063406] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 01/06/2023] Open
Abstract
Bioethanol from lignocellulosic biomass is a promising and sustainable strategy to meet the energy demand and to be carbon neutral. Nevertheless, the damage of lignocellulose-derived inhibitors to microorganisms is still the main bottleneck. Developing robust strains is critical for lignocellulosic ethanol production. An evolved strain with a stronger tolerance to formate and acetate was obtained after adaptive laboratory evolution (ALE) in the formate. Transcriptional analysis was conducted to reveal the possible resistance mechanisms to weak acids, and fdh coding for formate dehydrogenase was selected as the target to verify whether it was related to resistance enhancement in Saccharomyces cerevisiae F3. Engineered S. cerevisiae FA with fdh overexpression exhibited boosted tolerance to both formate and acetate, but the resistance mechanism to formate and acetate was different. When formate exists, it breaks down by formate dehydrogenase into carbon dioxide (CO2) to relieve its inhibition. When there was acetate without formate, FDH1 converted CO2 from glucose fermentation to formate and ATP and enhanced cell viability. Together, fdh overexpression alone can improve the tolerance to both formate and acetate with a higher cell viability and ATP, which provides a novel strategy for robustness strain construction to produce lignocellulosic ethanol.
Collapse
Affiliation(s)
- Cong Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Y.L.); (R.X.)
| | - Yimin Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Y.L.); (R.X.)
| | - Ruijuan Xiang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Y.L.); (R.X.)
| | - Wenjie Yuan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Y.L.); (R.X.)
- Ningbo Research Institute, Dalian University of Technology, Ningbo 315000, China
- Correspondence:
| |
Collapse
|
26
|
Konzock O, Matsushita Y, Zaghen S, Sako A, Norbeck J. Altering the fatty acid profile of Yarrowia lipolytica to mimic cocoa butter by genetic engineering of desaturases. Microb Cell Fact 2022; 21:25. [PMID: 35183179 PMCID: PMC8857786 DOI: 10.1186/s12934-022-01748-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/25/2022] [Indexed: 11/18/2022] Open
Abstract
Background Demand for Cocoa butter is steadily increasing, but the supply of cocoa beans is naturally limited and under threat from global warming. One route to meeting the future demand for cocoa butter equivalent (CBE) could be to utilize microbial cell factories such as the oleaginous yeast Yarrowia lipolytica. Results The main goal was to achieve triacyl-glycerol (TAG) storage lipids in Y. lipolytica mimicking cocoa butter. This was accomplished by replacing the native Δ9 fatty acid desaturase (Ole1p) with homologs from other species and changing the expression of both Ole1p and the Δ12 fatty acid desaturase (Fad2p). We thereby abolished the palmitoleic acid and reduced the linoleic acid content in TAG, while the oleic acid content was reduced to approximately 40 percent of the total fatty acids. The proportion of fatty acids in TAG changed dramatically over time during growth, and the fatty acid composition of TAG, free fatty acids and phospholipids was found to be very different. Conclusions We show that the fatty acid profile in the TAG of Y. lipolytica can be altered to mimic cocoa butter. We also demonstrate that a wide range of fatty acid profiles can be achieved while maintaining good growth and high lipid accumulation, which, together with the ability of Y. lipolytica to utilize a wide variety of carbon sources, opens up the path toward sustainable production of CBE and other food oils. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01748-x.
Collapse
|
27
|
Strategies to increase tolerance and robustness of industrial microorganisms. Synth Syst Biotechnol 2022; 7:533-540. [PMID: 35024480 PMCID: PMC8718811 DOI: 10.1016/j.synbio.2021.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/06/2023] Open
Abstract
The development of a cost-competitive bioprocess requires that the cell factory converts the feedstock into the product of interest at high rates and yields. However, microbial cell factories are exposed to a variety of different stresses during the fermentation process. These stresses can be derived from feedstocks, metabolism, or industrial production processes, limiting production capacity and diminishing competitiveness. Improving stress tolerance and robustness allows for more efficient production and ultimately makes a process more economically viable. This review summarises general trends and updates the most recent developments in technologies to improve the stress tolerance of microorganisms. We first look at evolutionary, systems biology and computational methods as examples of non-rational approaches. Then we review the (semi-)rational approaches of membrane and transcription factor engineering for improving tolerance phenotypes. We further discuss challenges and perspectives associated with these different approaches.
Collapse
|
28
|
Sun T, Yu Y, Wang K, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: A review. BIORESOURCE TECHNOLOGY 2021; 337:125484. [PMID: 34320765 DOI: 10.1016/j.biortech.2021.125484] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The production of chemicals and fuels from lignocellulosic biomass has great potential industrial applications due to its economic feasibility and environmental attractiveness. However, the utilized microorganisms must be able to use all the sugars present in lignocellulosic hydrolysates, especially xylose, the second most plentiful monosaccharide on earth. Yarrowia lipolytica is a good candidate for producing various valuable products from biomass, but this yeast is unable to catabolize xylose efficiently. The development of metabolic engineering facilitated the application of Y. lipolytica as a platform for the bioconversion of xylose into various value-added products. Here, we reviewed the research progress on natural xylose-utilization pathways and their reconstruction in Y. lipolytica. The progress and emerging trends in metabolic engineering of Y. lipolytica for producing chemicals and fuels are further introduced. Finally, challenges and future perspectives of using lignocellulosic hydrolysate as substrate for Y. lipolytica are discussed.
Collapse
Affiliation(s)
- Tao Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yizi Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kaifeng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|