1
|
St-Germain MW, Veillette M, Létourneau V, Martínez ADL, Godbout S, Boulianne M, Duchaine C. Characterization of airborne bacterial diversity in conventional hen houses, enriched colonies and aviaries, and link between possible bioaerosol sources. Poult Sci 2025; 104:105217. [PMID: 40373622 DOI: 10.1016/j.psj.2025.105217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/17/2025] Open
Abstract
BACKGROUND Canada's transition toward alternative housing systems for laying hens may have an impact on bioaerosol content and concentrations in those environments. This project aimed to characterize the airborne bacterial diversity in six conventional hen houses, six enriched colonies and six aviaries. The bacterial diversity found in bioaerosols was also compared to the diversity found in feces or litter samples from each corresponding housing type to investigate similarities between possible bioaerosol sources and bioaerosols. RESULTS Specific richness (Sobs) and CHAO1 indexes were higher in air samples from conventional hen houses and enriched colonies, compared to their corresponding fecal or litter samples, which was not the case for aviaries samples. No significant differences were found between the Shannon and inverse Simpson (InvSimpson) indexes of air samples, compared to their corresponding fecal or litter samples. Firmicutes were the dominant phyla in all samples, followed by Actinobacteria. Dominant genera were Lactobacillus, unclassified Lanchnospiraceae, unclassified Actinomycetales, unclassified Clostridales and unclassified Ruminococcaceae. OTUs (Operational Taxonomic Units) were associated with hen microbiota and gut microbiota, and soil. Homogeneity of molecular variance analyses (HOMOVA) revealed significant differences between air samples from aviaries, compared to air samples from conventional and enriched cage houses. Significant differences were found between air and fecal or litter samples from conventional hen houses and enriched colonies, but not among aviary samples. CONCLUSIONS Findings highlight the effects of housing types on airborne bacterial diversity, and similarities in bacterial diversity between air and fecal or litter samples from three types of husbandry. Most dominant OTUs were shared across all samples, but were different in proportions, which may account for the differences in alpha and beta diversities. The overlap in bacterial diversities between air and litter samples collected in aviaries brings out the contribution of litter to ambient bioaerosols.
Collapse
Affiliation(s)
- M-W St-Germain
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Canada
| | - M Veillette
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - V Létourneau
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - A D Larios Martínez
- Research and Development Institute for the Agri-Environment (IRDA), Québec, Canada
| | - S Godbout
- Research and Development Institute for the Agri-Environment (IRDA), Québec, Canada
| | - M Boulianne
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Canada; Chaire en recherche avicole de l'Université de Montréal, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Canada
| | - C Duchaine
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Canada; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada; Canada Research Chair on Bioaerosols, Québec, Canada.
| |
Collapse
|
2
|
Wei YJ, Shang KM, Elsheikha HM, Yan JC, Zhao JX, Ma H, Geng HL, Meng JX, Li WD, Liu R, Zhang XX, Ni HB. Characteristics of fecal mycobiota and bacteriota in laying hens during different laying periods. Microb Pathog 2025; 200:107304. [PMID: 39814111 DOI: 10.1016/j.micpath.2025.107304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Mycobiota represents an important component of the gut microbiome in poultry and plays important roles in host nutrition and metabolism. However, the understanding of gut mycobiota in laying hens during the production cycle is limited. The present study aimed to characterize the structure and diversity of fecal mycobiota and bacteriota and examine the interplays between both microbial communities in laying hens during different laying periods. Sequencing of the internal transcribed spacer 1 (ITS1) and 16S rRNA gene amplicon was performed on 50 fecal samples of laying hens at 5 different time points during the laying cycle. The analysis yielded 1314 and 3840 amplicon sequence variants (ASVs), respectively. The results showed that Ascomycota and Basidiomycota were the most predominant. The statistical analysis of fecal flora composition succession in laying hens showed that different laying periods were one of the main factors affecting the fecal flora of laying hens. Mycobiota displayed greater variability across different laying periods compared to the bacterial community, in terms of taxonomic structure and community diversity. Co-occurrence analysis revealed varying degrees of interaction between the mycobiota and bacteriota during different laying periods. The present study aimed to improve the understanding of the fecal mycobiota and bacterial community of laying hens across different laying periods and has provided basic data support for further research into the complex fecal microbiota of laying hens.
Collapse
Affiliation(s)
- Yong-Jie Wei
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Kai-Meng Shang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Jin-Chu Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Ji-Xin Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Hong-Li Geng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Jin-Xin Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Wen-Di Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Rui Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China.
| |
Collapse
|
3
|
Hou L, Qiu H, Dong J, Liu H, Gao S, Chen F. Lactiplantibacillus plantarum ameliorated the negative effects of a low-protein diet on growth performance, antioxidant capacity, immune status, and gut microbiota of laying chicks. Front Microbiol 2025; 16:1507752. [PMID: 39973937 PMCID: PMC11835938 DOI: 10.3389/fmicb.2025.1507752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
This experiment was conducted to investigate the effects of adding Lactiplantibacillus plantarum to a low-protein diet on the growth performance, ability immune status, and intestinal microbiota of 0-21-day-old layer chickens. A total of 180 one-day-old healthy Hy-line brown laying chicks were randomly divided into three groups with three replicates each of 20 chicks. The control group was fed a basal diet containing 19% protein, the low-protein (LP) group was fed a diet containing 17% protein, and the probiotic (LPL) group was fed with the 17% protein diet supplemented with L. plantarum (1.0 × 109 CFU/kg). The growth performance, antioxidant capacity, immune status, and gut microbiota of laying chickens were detected. We found that L. plantarum supplementation increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and levels of immunoglobulin (Ig) A, IgG, and interleukin-10 (IL-10) in serum of 17% protein +1.0 × 109 CFU/kg L. plantarum (LPL) compared to the 19% protein group (control). Furthermore, L. plantarum supplementation increased the liver index, GSH-Px and T-AOC activity in serum, and changed the microflora structure, diversity, and polyketose unit bioanabolic metabolism of 17% protein +1.0 × 109 CFU/kg L. plantarum (LPL) compared to the 17% protein group (LP). In conclusion, L. plantarum supplementation could compensate for the adverse effects of low-protein diets in chicks, and the combination of a low-protein diet and L. plantarum is a feasible way to reduce protein in the diet.
Collapse
Affiliation(s)
- Lele Hou
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Huiling Qiu
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, Haidu College, Qingdao Agricultural University, Laiyang, China
| | - Jihong Dong
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Huawei Liu
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Shansong Gao
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fu Chen
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
4
|
Wu L, Zhang T, Luo Z, Xiao H, Wang D, Wu C, Fang X, Li J, Zhou J, Miao J, Tan H, Wang Y, Liu Q, Huang J. Impact of gut microbial diversity on egg production performance in chickens. Microbiol Spectr 2025; 13:e0192724. [PMID: 39807896 PMCID: PMC11792489 DOI: 10.1128/spectrum.01927-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Chickens are one of the most economically important poultry species, and their egg-laying performance is a crucial economic trait. The intestinal microbiome plays a significant role in the egg-laying performance. To clarify the diversity of chicken intestinal microbiota and its connection to egg-laying performance, this study utilized 16S rRNA sequencing technology to characterize the intestinal microbiomes of 101 chickens from 13 breeds with varying levels of egg production. The results reveal significant differences in gut microbiota structure among chicken groups with varying egg production levels. High egg-producing chickens showed significantly higher abundances of Firmicutes, Proteobacteria, and Lactobacillus, while low egg-producing chickens displayed greater microbial α-diversity and more complex community structures. These differences in gut microbiota influence key physiological functions, including nutrient absorption and hormone regulation through metabolic pathways, and directly affect egg production performance. The low and medium production groups partially overlapped on the principal coordinates analysis plot, whereas the high-production group was distinctly separate. This study provides a scientific basis and intestinal microbiome data for selecting probiotics related to high egg production in chickens. IMPORTANCE This study elucidates the critical role of gut microbiota in the egg-laying performance of chickens, a key economic indicator in the poultry industry. By employing 16S rRNA sequencing, we uncovered distinct microbial profiles associated with varying levels of egg production. High egg-producing chickens exhibit a higher abundance of specific bacterial taxa, such as Firmicutes and Proteobacteria, which are linked to enhanced nutrient absorption and metabolic efficiency. Conversely, lower and medium egg-producing chickens display greater microbial diversity, suggesting a more complex but less efficient gut ecosystem. Our findings provide valuable insights into the relationship between gut microbiota and egg production, offering a scientific foundation for the selection of probiotics that could potentially improve the egg-laying performance of chickens. This research not only advances our understanding of avian gut microbiology but also has practical implications for optimizing poultry farming practices and enhancing economic outcomes.
Collapse
Affiliation(s)
- Liping Wu
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Tao Zhang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhihua Luo
- Forestry Bureau of Yushui District, Xinyu City, Nanchang, China
| | - Huiyuan Xiao
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, Nanchang, China
| | - Di Wang
- Tonggu County, Jiangxi Province Agriculture Rural Water Resources Bureau, Yichun, China
| | - Cailong Wu
- Jinxian Hengrong Ecological Agriculture Development Co. Ltd., Nanchang, China
| | - Xinyan Fang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jiawei Li
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jing Zhou
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Junjie Miao
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Hongli Tan
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yanan Wang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Qing Liu
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jianhua Huang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
5
|
Li W, Yang M, Luo Y, Liu W, Wang Z, Ning Z. Effects of dietary rosemary ultrafine powder supplementation on aged hen health and productivity: a randomized controlled trial. Poult Sci 2024; 103:104133. [PMID: 39180778 PMCID: PMC11385426 DOI: 10.1016/j.psj.2024.104133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/26/2024] Open
Abstract
Recently, poultry industry has been seeking antibiotic residue-free poultry products and safe nutritious feed additives. Whether rosemary ultrafine powder (RUP) affects productive performance by regulating the intestinal microbiome of aged layers remains unclear. Here, we investigated the effects of dietary RUP supplementation on the production performance, egg quality, antioxidant capacity, intestinal microbial structure, and metabolome of aged hens. The results indicate that RUP had no significant effect on production performance but significantly enhanced Thick albumen height, Haugh unit, yolk color (P < 0.05), daily feed intake, and qualified egg rate. Serum content of non-esterified fatty acids, catalase, and glutathione peroxidase increased significantly (P < 0.05). Furthermore, the liver total protein content was significantly increased (P < 0.05). 16S rRNA sequence analysis revealed that RUP significantly impacted both α- and β-diversity of the caecum microbiota. Linear discriminant analysis of effect size and random forest identified Bacteroides, Muribaculum, Butyricimonas, Odoribacter, and Prevotella as biomarkers in groups A and B. In comparing groups A and C, Barnesiella, Turicibacter, and Acholeplasma were critical bacteria, while comparing groups A and D highlighted Barnesiella and Candidatus Saccharimonas as differential bacteria. FAPROTAX analysis of the caecum microbiota revealed that the functional genes associated with harmful substance biodegradation were significantly increased in the RUP-fed group. Based on Spearman correlation analysis, alterations in microbial genera were associated with divergent metabolites. In summary, dietary RUP can improve egg quality and antioxidant capacity and regulate the intestinal microbiome and metabolome in aged breeders. Therefore, RUP can potentially be used as a feed additive to extend breeder service life at an appropriate level of 1.0 g/kg.
Collapse
Affiliation(s)
- Wen Li
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Meixue Yang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuxing Luo
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Liu
- Zhuozhou Mufeng Poultry Company Limited, Zhuozhou 072750, China
| | - Zhong Wang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
St-Germain MW, Létourneau V, Cruaud P, Lemaille C, Robitaille K, Denis É, Boulianne M, Duchaine C. Longitudinal survey of total airborne bacterial and archaeal concentrations and bacterial diversity in enriched colony housing and aviaries for laying hens. Poult Sci 2024; 103:104119. [PMID: 39154606 PMCID: PMC11471094 DOI: 10.1016/j.psj.2024.104119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
Conventional cages for laying hens will be banned in Canada as of 2036, and the egg industry is transitioning toward enriched colony housing and aviaries. While higher concentrations of particulate matter have been previously reported in aviaries and other cage-free housing systems, concentrations of total bacteria and archaea suspended in the air are still uncharacterized in Canadian enriched colonies and aviaries. The aim of the present study was to conduct a longitudinal survey of airborne total bacteria and of airborne total archaea in twelve enriched colonies and twelve aviaries in Eastern Canada during a whole laying period. High-throughput sequencing of 16S rRNA gene amplicons was used to reveal and compare bacterial diversity at the start and the end of the production cycle, and during the cold and the warm seasons. Total bacterial and archaeal concentrations were significantly higher in aviaries (p < 0.05) versus enriched colonies, and in the cold season for both housing types (p < 0.05). While flock age did not have a significant effect on total bacterial and archaeal concentrations, it did on bacterial diversity in both enriched colony houses and aviaries (p < 0.05). The 2 housing systems were significantly different in their diversity of bacteria.
Collapse
Affiliation(s)
- Magali-Wen St-Germain
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Canada
| | | | | | - Candice Lemaille
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Canada
| | - Kim Robitaille
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Canada
| | - Éloïse Denis
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Canada
| | - Martine Boulianne
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Canada
| | - Caroline Duchaine
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Canada.
| |
Collapse
|
7
|
Popov IV, Belkassem N, Schrijver R, Chebotareva IP, Chikindas ML, Ermakov AM, Venema K. Modulation of Poultry Cecal Microbiota by a Phytogenic Blend and High Concentrations of Casein in a Validated In Vitro Cecal Chicken Alimentary Tract Model. Vet Sci 2024; 11:377. [PMID: 39195831 PMCID: PMC11358970 DOI: 10.3390/vetsci11080377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Phytogenic blends (PBs) consist of various bioactive plant-derived compounds that are used as growth promoters for farm animals. Feed additives based on PBs have beneficial effects on farm animals' production performance, health, and overall well-being, as well as positive modulating effects on gut microbiota. In this study, we used a validated in vitro cecal chicken alimentary tract model (CALIMERO-2) to evaluate the effects of a PB (a mix of components found in rosemary, cinnamon, curcuma, oregano oil, and red pepper), alone or in combination with casein (control), on poultry cecal microbiota. Supplementation with the PB significantly increased the abundance of bacteria associated with energy metabolism (Monoglobus) and growth performance in poultry (Lachnospiraceae UCG-010). The PB also decreased the abundance of opportunistic pathogens (Escherichia-Shigella) and, most importantly, did not promote other opportunistic pathogens, which indicates the safety of this blend for poultry. In conclusion, the results of this study show promising perspectives on using PBs as feed additives for poultry, although further in vivo studies need to prove these data.
Collapse
Affiliation(s)
- Igor V. Popov
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (N.B.); (K.V.)
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Nouhaila Belkassem
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (N.B.); (K.V.)
| | - Ruud Schrijver
- Animal Health Concepts BV, 8141 GN Heino, The Netherlands
| | - Iuliia P. Chebotareva
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Michael L. Chikindas
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ 08901, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Alexey M. Ermakov
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (N.B.); (K.V.)
| |
Collapse
|
8
|
Pires PGS, Oliveira GS, McManus C, Santos VM, Moraes PO. Impact of housing system on intestinal microbiota of laying hens - A systematic review. Res Vet Sci 2024; 170:105184. [PMID: 38382220 DOI: 10.1016/j.rvsc.2024.105184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/23/2024]
Abstract
Studies on the housing system's impact on laying hens' intestinal microbiota were retrieved from the Web of Science, PubMed, and Scopus (between 2017 and 2022). Inclusion criteria were studies that discussed measurable effects related to the topic written in English, Portuguese, and Spanish. Of 3281 articles in the identification stage, 12 studies were used in the systematic review. Asia developed most research relating to the subject. Most studies compared the intestinal microbiota of laying hens from conventional cages versus Cage-Free or Free-Range. However, no study has evaluated the intestinal microbiota of laying hens maintained in an organic system. Greengene and Silva were the most used reference in the studies. According to the results observed in the studies included in the systematic review, there is greater alpha diversity in the alternative system and a high dissimilarity between the conventional and alternative systems. Exposure to environmental factors such as soil, vegetation, natural lighting, access to pastures, and ingesting fibrous foods can lead to changes in the intestinal microbiota. A brief outline of published scientific evidence demonstrates that the housing system can change the gut microbiome of hens. This study summarises the relationship between the housing system and the intestinal microbiome of laying hens and provides a roadmap for future research regarding the gut microbiome of hens.
Collapse
Affiliation(s)
- P G S Pires
- Instituto Federal Catarinense, Campus Concórdia, SC, Brazil.
| | - G S Oliveira
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - C McManus
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - V M Santos
- Laboratory of Poultry Science, Federal Institute of Brasília - Campus Planaltina, Brasília, Brazil
| | - P O Moraes
- Department of Animal Sciences and Rural Development, Universidade Federal de Santa Catarina - Campus Florianópolis, SC, Brazil
| |
Collapse
|