1
|
Durán-Alonso MB, Petković H. Induced Pluripotent Stem Cells, a Stepping Stone to In Vitro Human Models of Hearing Loss. Cells 2022; 11:3331. [PMID: 36291196 PMCID: PMC9600035 DOI: 10.3390/cells11203331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Hearing loss is the most prevalent sensorineural impairment in humans. Yet despite very active research, no effective therapy other than the cochlear implant has reached the clinic. Main reasons for this failure are the multifactorial nature of the disorder, its heterogeneity, and a late onset that hinders the identification of etiological factors. Another problem is the lack of human samples such that practically all the work has been conducted on animals. Although highly valuable data have been obtained from such models, there is the risk that inter-species differences exist that may compromise the relevance of the gathered data. Human-based models are therefore direly needed. The irruption of human induced pluripotent stem cell technologies in the field of hearing research offers the possibility to generate an array of otic cell models of human origin; these may enable the identification of guiding signalling cues during inner ear development and of the mechanisms that lead from genetic alterations to pathology. These models will also be extremely valuable when conducting ototoxicity analyses and when exploring new avenues towards regeneration in the inner ear. This review summarises some of the work that has already been conducted with these cells and contemplates future possibilities.
Collapse
Affiliation(s)
- María Beatriz Durán-Alonso
- Unit of Excellence, Institute of Biology and Molecular Genetics (IBGM), University of Valladolid-CSIC, 47003 Valladolid, Spain
| | - Hrvoje Petković
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Nacher-Soler G, Garrido JM, Rodríguez-Serrano F. Hearing regeneration and regenerative medicine: present and future approaches. Arch Med Sci 2019; 15:957-967. [PMID: 31360190 PMCID: PMC6657260 DOI: 10.5114/aoms.2019.86062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/28/2017] [Indexed: 01/04/2023] Open
Abstract
More than 5% of the world population lives with a hearing impairment. The main factors responsible for hearing degeneration are ototoxic drugs, aging, continued exposure to excessive noise and infections. The pool of adult stem cells in the inner ear drops dramatically after birth, and therefore an endogenous cellular source for regeneration is absent. Hearing loss can emerge after the degeneration of different cochlear components, so there are multiple targets to be reached, such as hair cells (HCs), spiral ganglion neurons (SGNs), supporting cells (SCs) and ribbon synapses. Important discoveries in the hearing regeneration field have been reported regarding stem cell transplantation, migration and survival; genetic systems for cell fate monitoring; and stem cell differentiation to HCs, SGNs and SCs using adult stem cells, embryonic stem cells and induced pluripotent stem cells. Moreover, some molecular mediators that affect the establishment of functional synapses have been identified. In this review, we will focus on reporting the state of the art in the regenerative medicine field for hearing recovery. Stem cell research has enabled remarkable advances in regeneration, particularly in neuronal cells and synapses. Despite the progress achieved, there are certain issues that need a deeper development to improve the results already obtained, or to develop new approaches aiming for the clinical application.
Collapse
Affiliation(s)
- German Nacher-Soler
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain
| | - José Manuel Garrido
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain
- Department of Cardiovascular Surgery, Virgen de las Nieves University Hospital, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Fernando Rodríguez-Serrano
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Human Anatomy and Embryology, University of Granada, Granada, Spain
| |
Collapse
|
3
|
Czajkowski A, Mounier A, Delacroix L, Malgrange B. Pluripotent stem cell-derived cochlear cells: a challenge in constant progress. Cell Mol Life Sci 2019; 76:627-635. [PMID: 30341460 PMCID: PMC11105202 DOI: 10.1007/s00018-018-2950-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022]
Abstract
Hearing loss is a common affection mainly resulting from irreversible loss of the sensory hair cells of the cochlea; therefore, developing therapies to replace missing hair cells is essential. Understanding the mechanisms that drive their formation will not only help to unravel the molecular basis of deafness, but also give a roadmap for recapitulating hair cells development from cultured pluripotent stem cells. In this review, we provide an overview of the molecular mechanisms involved in hair cell production from both human and mouse embryonic stem cells. We then provide insights how this knowledge has been applied to differentiate induced pluripotent stem cells into otic progenitors and hair cells. Finally, we discuss the current limitations for properly obtaining functional hair cell in a Petri dish, as well as the difficulties that have to be overcome prior to consider stem cell therapy as a potential treatment for hearing loss.
Collapse
Affiliation(s)
- Amandine Czajkowski
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium
| | - Anaïs Mounier
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium.
| |
Collapse
|
4
|
Taura A, Nakashima N, Ohnishi H, Nakagawa T, Funabiki K, Ito J, Omori K. Regenerative therapy for vestibular disorders using human induced pluripotent stem cells (iPSCs): neural differentiation of human iPSC-derived neural stem cells after in vitro transplantation into mouse vestibular epithelia. Acta Otolaryngol 2016; 136:999-1005. [PMID: 27196942 DOI: 10.1080/00016489.2016.1183169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Vestibular ganglion cells, which convey sense of motion from vestibular hair cells to the brainstem, are known to degenerate with aging and after vestibular neuritis. Thus, regeneration of vestibular ganglion cells is important to aid in the recovery of balance for associated disorders. METHODS The present study derived hNSCs from induced pluripotent stem cells (iPSCs) and transplanted these cells into mouse utricle tissues. After a 7-day co-culture period, histological and electrophysiological examinations of transplanted hNSCs were performed. RESULTS Injected hNSC-derived cells produced elongated axon-like structures within the utricle tissue that made contact with vestibular hair cells. A proportion of hNSC-derived cells showed spontaneous firing activities, similar to those observed in cultured mouse vestibular ganglion cells. However, hNSC-derived cells around the mouse utricle persisted as immature neurons or occasionally differentiated into putative astrocytes. Moreover, electrophysiological examination showed hNSC-derived cells around utricles did not exhibit any obvious spontaneous firing activities. CONCLUSIONS Injected human neural stem cells (hNSCs) showed signs of morphological maturation including reconnection to denervated hair cells and partial physiological maturation, suggesting hNSC-derived cells possibly differentiated into neurons.
Collapse
Affiliation(s)
- Akiko Taura
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Hospital/Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noriyuki Nakashima
- Department of Physiology, Kurume University Hospital/Graduate School of Medicine, Kurume University, Kurume, Japan
| | - Hiroe Ohnishi
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Hospital/Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Hospital/Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuo Funabiki
- Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Juichi Ito
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Hospital/Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Shiga Medical Center Research Institute, Shiga, Japan
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Hospital/Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Zhou YS, Xu J, Peng J, Li P, Wen XJ, Liu Y, Chen KZ, Liu JQ, Wang Y, Peng QH. Research progress of stem cells on glaucomatous optic nerve injury. Int J Ophthalmol 2016; 9:1226-9. [PMID: 27588279 DOI: 10.18240/ijo.2016.08.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 03/03/2016] [Indexed: 11/23/2022] Open
Abstract
Glaucoma, the second leading cause of blindness, is an irreversible optic neuropathy. The mechanism of optic nerve injury caused by glaucoma is undefined at present. There is no effective treatment method for the injury. Stem cells have the capacity of self-renewal and differentiation. These two features have made them become the research focus on improving the injury at present. This paper reviews the application progress on different types of stem cells therapy for optic nerve injury caused by glaucoma.
Collapse
Affiliation(s)
- Ya-Sha Zhou
- Ophthalmology of Integration of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Jian Xu
- Department of Ophthalmology, the No.1 People's Hospital of Ningbo, Ningbo 315010, Zhejiang Province, China
| | - Jun Peng
- Ophthalmology of Integration of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Ping Li
- Ophthalmology of Integration of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Xiao-Juan Wen
- Ophthalmology of Integration of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Yue Liu
- Ophthalmology of Integration of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Ke-Zhu Chen
- Ophthalmology of Integration of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Jia-Qi Liu
- Ophthalmology of Integration of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Ying Wang
- Ophthalmology of Integration of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Qing-Hua Peng
- Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan Province, China; Department of Ophthalmology, the First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, China
| |
Collapse
|
6
|
Ohnishi H, Skerleva D, Kitajiri SI, Sakamoto T, Yamamoto N, Ito J, Nakagawa T. Limited hair cell induction from human induced pluripotent stem cells using a simple stepwise method. Neurosci Lett 2015; 599:49-54. [PMID: 26003451 DOI: 10.1016/j.neulet.2015.05.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 12/23/2022]
Abstract
Disease-specific induced pluripotent stem cells (iPS) cells are expected to contribute to exploring useful tools for studying the pathophysiology of inner ear diseases and to drug discovery for treating inner ear diseases. For this purpose, stable induction methods for the differentiation of human iPS cells into inner ear hair cells are required. In the present study, we examined the efficacy of a simple induction method for inducing the differentiation of human iPS cells into hair cells. The induction of inner ear hair cell-like cells was performed using a stepwise method mimicking inner ear development. Human iPS cells were sequentially transformed into the preplacodal ectoderm, otic placode, and hair cell-like cells. As a first step, preplacodal ectoderm induction, human iPS cells were seeded on a Matrigel-coated plate and cultured in a serum free N2/B27 medium for 8 days according to a previous study that demonstrated spontaneous differentiation of human ES cells into the preplacodal ectoderm. As the second step, the cells after preplacodal ectoderm induction were treated with basic fibroblast growth factor (bFGF) for induction of differentiation into otic-placode-like cells for 15 days. As the final step, cultured cells were incubated in a serum free medium containing Matrigel for 48 days. After preplacodal ectoderm induction, over 90% of cultured cells expressed the genes that express in preplacodal ectoderm. By culture with bFGF, otic placode marker-positive cells were obtained, although their number was limited. Further 48-day culture in serum free media resulted in the induction of hair cell-like cells, which expressed a hair cell marker and had stereocilia bundle-like constructions on their apical surface. Our results indicate that hair cell-like cells are induced from human iPS cells using a simple stepwise method with only bFGF, without the use of xenogeneic cells.
Collapse
Affiliation(s)
- Hiroe Ohnishi
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Desislava Skerleva
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shin-ichiro Kitajiri
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsunori Sakamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Juichi Ito
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|