1
|
Sallam A, Awadalla RA, Elshamy MM, Börner A, Heikal YM. Genome-wide analysis for root and leaf architecture traits associated with drought tolerance at the seedling stage in a highly ecologically diverse wheat population. Comput Struct Biotechnol J 2024; 23:870-882. [PMID: 38356657 PMCID: PMC10864764 DOI: 10.1016/j.csbj.2024.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Drought stress occurred at early growth stages in wheat affecting the following growth stages. Therefore, selecting promising drought-tolerant genotypes with highly adapted traits at the seedling stage is an important task for wheat breeders and geneticists. Few research efforts were conducted on the genetic control for drought-adaptive traits at the seedling stage in wheat. In this study, a set of 146 highly diverse spring wheat core collections representing 28 different countries was evaluated under drought stress at the seedling stage. All genotypes were exposed to drought stress for 13 days by water withholding. Leaf traits including seedling length, leaf wilting, days to wilting, leaf area, and leaf rolling were scored. Moreover, root traits such as root length, maximum width, emergence angle, tip angle, and number of roots were scored. Considerable significant genetic variation was found among all genotypes tested in these experiments. The heritability estimates ranged from 0.74 (leaf witling) to 0.99 (root tip angle). A set of nine genotypes were selected and considered drought-tolerant genotypes. Among all leaf traits, shoot length had significant correlations with all root traits under drought stress. The 146 genotypes were genotyped using the Infinium Wheat 15 K single nucleotide polymorphism (SNP) array and diversity arrays technology (DArT) marker platform. The result of genotyping revealed 12,999 SNPs and 2150 DArT markers which were used to run a genome-wide association study (GWAS). The results of GWAS revealed 169 markers associated with leaf and root traits under drought stress. Out of the 169 markers, 82 were considered major quantitative trait loci (QTL). The GWAS revealed 95 candidate genes were identified with 53 genes showing evidence for drought tolerance in wheat, while the remaining candidate genes were considered novel. No shared markers were found between leaf and root traits. The results of the study provided mapping novel markers associated with new root traits at the seedling stage. Also, the selected genotypes from different countries could be employed in future wheat breeding programs not only for improving adaptive drought-tolerant traits but also for expanding genetic diversity.
Collapse
Affiliation(s)
- Ahmed Sallam
- Resources Genetics and Reproduction, Department GenBank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D-06466 Stadt Seeland, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt
| | - Rawan A. Awadalla
- Botany Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Maha M. Elshamy
- Botany Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Andreas Börner
- Resources Genetics and Reproduction, Department GenBank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D-06466 Stadt Seeland, Germany
| | - Yasmin M. Heikal
- Botany Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
2
|
Wang L, Yeo S, Lee M, Endah S, Alhuda NA, Yue GH. Combination of GWAS and F ST-based approaches identified loci associated with economic traits in sugarcane. Mol Genet Genomics 2023:10.1007/s00438-023-02040-2. [PMID: 37289230 DOI: 10.1007/s00438-023-02040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
Sugarcane is a globally important plant for both sugar and biofuel production. Although conventional breeding has played an important role in increasing the productivity of sugarcane, it takes a long time to achieve breeding goals such as high yield and resistant to diseases. Molecular breeding, including marker-assisted breeding and genomic selection, can accelerate genetic improvement by selecting elites at the seedling stage with DNA markers. However, only a few DNA markers associated with important traits were identified in sugarcane. The purpose of this study was to identify DNA markers associated with sugar content, stalk diameter, and sugarcane top borer resistance. The sugarcane samples with trait records were genotyped using the restriction site-associated DNA sequencing (RADseq) technology. Using FST analysis and genome-wide association study (GWAS), a total of 9, 23 and 9 DNA variants (single nucleotide polymorphisms (SNPs)/insertions and deletions (indels)) were associated with sugar content, stalk diameter, and sugarcane top borer resistance, respectively. The identified genetic variants were on different chromosomes, suggesting that these traits are complex and determined by multiple genetic factors. These DNA markers identified by both approaches have the potential to be used in selecting elite clones at the seeding stage in our sugarcane breeding program to accelerate genetic improvement. Certainly, it is essential to verify the reliability of the identified DNA markers associated with traits before they are used in molecular breeding in other populations.
Collapse
Affiliation(s)
- Le Wang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Shadame Yeo
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - May Lee
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - S Endah
- Research and Development, PT Gunung Madu Plantations, KM 90 Terusan Nunyai, Central Lampung, Lampung, 34167, Indonesia
| | - N A Alhuda
- Research and Development, PT Gunung Madu Plantations, KM 90 Terusan Nunyai, Central Lampung, Lampung, 34167, Indonesia
| | - G H Yue
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore.
| |
Collapse
|
3
|
Hennet L, Berger A, Trabanco N, Ricciuti E, Dufayard JF, Bocs S, Bastianelli D, Bonnal L, Roques S, Rossini L, Luquet D, Terrier N, Pot D. Transcriptional Regulation of Sorghum Stem Composition: Key Players Identified Through Co-expression Gene Network and Comparative Genomics Analyses. FRONTIERS IN PLANT SCIENCE 2020; 11:224. [PMID: 32194601 PMCID: PMC7064007 DOI: 10.3389/fpls.2020.00224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Most sorghum biomass accumulates in stem secondary cell walls (SCW). As sorghum stems are used as raw materials for various purposes such as feed, energy and fiber reinforced polymers, identifying the genes responsible for SCW establishment is highly important. Taking advantage of studies performed in model species, most of the structural genes contributing at the molecular level to the SCW biosynthesis in sorghum have been proposed while their regulatory factors have mostly not been determined. Validation of the role of several MYB and NAC transcription factors in SCW regulation in Arabidopsis and a few other species has been provided. In this study, we contributed to the recent efforts made in grasses to uncover the mechanisms underlying SCW establishment. We reported updated phylogenies of NAC and MYB in 9 different species and exploited findings from other species to highlight candidate regulators of SCW in sorghum. We acquired expression data during sorghum internode development and used co-expression analyses to determine groups of co-expressed genes that are likely to be involved in SCW establishment. We were able to identify two groups of co-expressed genes presenting multiple evidences of involvement in SCW building. Gene enrichment analysis of MYB and NAC genes provided evidence that while NAC SECONDARY WALL THICKENING PROMOTING FACTOR NST genes and SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN gene functions appear to be conserved in sorghum, NAC master regulators of SCW in sorghum may not be as tissue compartmentalized as in Arabidopsis. We showed that for every homolog of the key SCW MYB in Arabidopsis, a similar role is expected for sorghum. In addition, we unveiled sorghum MYB and NAC that have not been identified to date as being involved in cell wall regulation. Although specific validation of the MYB and NAC genes uncovered in this study is needed, we provide a network of sorghum genes involved in SCW both at the structural and regulatory levels.
Collapse
Affiliation(s)
- Lauriane Hennet
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Angélique Berger
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Noemi Trabanco
- Parco Tecnologico Padano, Lodi, Italy
- Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Emeline Ricciuti
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Jean-François Dufayard
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Stéphanie Bocs
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Denis Bastianelli
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
- CIRAD, UMR SELMET, Montpellier, France
| | - Laurent Bonnal
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
- CIRAD, UMR SELMET, Montpellier, France
| | - Sandrine Roques
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Laura Rossini
- Parco Tecnologico Padano, Lodi, Italy
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Delphine Luquet
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Nancy Terrier
- AGAP, CIRAD, INRAE, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - David Pot
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| |
Collapse
|
4
|
Xu L, Liu H, Kilian A, Bhoite R, Liu G, Si P, Wang J, Zhou W, Yan G. QTL Mapping Using a High-Density Genetic Map to Identify Candidate Genes Associated With Metribuzin Tolerance in Hexaploid Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2020; 11:573439. [PMID: 33042190 PMCID: PMC7527527 DOI: 10.3389/fpls.2020.573439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/31/2020] [Indexed: 05/16/2023]
Abstract
Tolerance to metribuzin, a broad-spectrum herbicide, is an important trait for weed control in wheat breeding. However, the genetics of metribuzin tolerance in relation to the underlying quantitative trait loci (QTL) and genes is limited. This study developed F8 recombinant inbred lines (RILs) from a cross between a highly resistant genotype (Chuan Mai 25) and highly susceptible genotype (Ritchie), which were used for QTL mapping of metribuzin tolerance. Genotyping was done using a diversity arrays technology sequencing (DArTseq) platform, and phenotyping was done in controlled environments. Herbicide tolerance was measured using three traits, visual score (VS), reduction of chlorophyll content (RCC), and mean value of chlorophyll content for metribuzin-treated plants (MCC). A high-density genetic linkage map was constructed using 2,129 DArTseq markers. Inclusive composite interval mapping (ICIM) identified seven QTL, one each on chromosomes 2A, 2D, 3A, 3B, 4A, 5A, and 6A. Three major QTL-Qrcc.uwa.2AS, Qrcc.uwa.5AL, and Qrcc.uwa.6AL-explained 11.39%, 11.06%, and 11.45% of the phenotypic variation, respectively. The 5A QTL was further validated using kompetitive allele-specific PCR (KASP) assays in an F3 validation population developed from Chuan Mai 25 × Dagger. Blasting the single-nucleotide polymorphisms (SNPs) flanking the QTL in the wheat reference genome RefV1.0 revealed SNP markers within or very close to annotated genes which could be candidate genes responsible for metribuzin tolerance. Most of the candidate genes were related to metabolic detoxification, especially those of P450 pathway and xenobiotic transmembrane transporter activity, which are reportedly key molecules responsible for herbicide tolerance. This study is the first to use specially developed populations to conduct QTL mapping on the metribuzin tolerance trait. The three major QTL and candidate genes identified in this study could facilitate marker-assisted metribuzin breeding in wheat. The QTL could be fine-mapped to locate the genes responsible for metribuzin tolerance, which could be introgressed into elite wheat cultivars.
Collapse
Affiliation(s)
- Ling Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Hui Liu
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Andrzej Kilian
- Faculty of Science and Technology, Diversity Arrays Technology Pty Ltd., University of Canberra, Bruce, ACT, Australia
| | - Roopali Bhoite
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Guannan Liu
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Ping Si
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jian Wang
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Guijun Yan
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- *Correspondence: Guijun Yan,
| |
Collapse
|
5
|
Flow cytometric characterisation of the complex polyploid genome of Saccharum officinarum and modern sugarcane cultivars. Sci Rep 2019; 9:19362. [PMID: 31852940 PMCID: PMC6920420 DOI: 10.1038/s41598-019-55652-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Sugarcane (Saccharum spp.) is a globally important crop for sugar and bioenergy production. Its highly polyploid, complex genome has hindered progress in understanding its molecular structure. Flow cytometric sorting and analysis has been used in other important crops with large genomes to dissect the genome into component chromosomes. Here we present for the first time a method to prepare suspensions of intact sugarcane chromosomes for flow cytometric analysis and sorting. Flow karyotypes were generated for two S. officinarum and three hybrid cultivars. Five main peaks were identified and each genotype had a distinct flow karyotype profile. The flow karyotypes of S. officinarum were sharper and with more discrete peaks than the hybrids, this difference is probably due to the double genome structure of the hybrids. Simple Sequence Repeat (SSR) markers were used to determine that at least one allelic copy of each of the 10 basic chromosomes could be found in each peak for every genotype, except R570, suggesting that the peaks may represent ancestral Saccharum sub genomes. The ability to flow sort Saccharum chromosomes will allow us to isolate and analyse chromosomes of interest and further examine the structure and evolution of the sugarcane genome.
Collapse
|
6
|
Salvato F, Loziuk P, Kiyota E, Daneluzzi GS, Araújo P, Muddiman DC, Mazzafera P. Label-Free Quantitative Proteomics of Enriched Nuclei from Sugarcane (Saccharum ssp) Stems in Response to Drought Stress. Proteomics 2019; 19:e1900004. [PMID: 31172662 DOI: 10.1002/pmic.201900004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/31/2019] [Indexed: 11/09/2022]
Abstract
Drought is considered the major abiotic stress limiting crop productivity. This study seeks to identify proteins involved in the drought response in sugarcane stems submitted to drought stress. The integration of nuclei enrichment sample preparation with the shotgun proteomic approach results in great coverage of the sugarcane stem proteome with 5381 protein groups identified. A total of 1204 differentially accumulated proteins are detected in response to drought, among which 586 and 618 are increased and reduced in abundance, respectively. A total of 115 exclusive proteins are detected, being 41 exclusives of drought-stressed plants and 74 exclusives of control plants. In the control plants, most of these proteins are related to cell wall metabolism, indicating that drought affects negatively the cell wall metabolism. Also, 37 transcription factors (TFs) are identified, which are low abundant nuclear proteins and are differentially accumulated in response to drought stress. These TFs are associated to protein domains such as leucine-rich (bZIP), C2H2, NAC, C3H, LIM, Myb-related, heat shock factor (HSF) and auxin response factor (ARF). Increased abundance of chromatin remodeling and RNA processing proteins are also observed. It is suggested that these variations result from an imbalance of protein synthesis and degradation processes induced by drought.
Collapse
Affiliation(s)
- Fernanda Salvato
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, 13081, Brazil
| | - Philip Loziuk
- W.M. Keck FTMS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Eduardo Kiyota
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, 13081, Brazil
| | - Gabriel Silva Daneluzzi
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418, Brazil
| | - Pedro Araújo
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, 13081, Brazil
| | - David C Muddiman
- W.M. Keck FTMS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Paulo Mazzafera
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, 13081, Brazil.,Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418, Brazil
| |
Collapse
|
7
|
Fickett N, Gutierrez A, Verma M, Pontif M, Hale A, Kimbeng C, Baisakh N. Genome-wide association mapping identifies markers associated with cane yield components and sucrose traits in the Louisiana sugarcane core collection. Genomics 2018; 111:1794-1801. [PMID: 30529701 DOI: 10.1016/j.ygeno.2018.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
Sugarcane is an economically important crop for both food and biofuel industries. Marker-assisted breeding in sugarcane is becoming a reality with the recent development and deployment of markers linked with disease resistance genes. Large linkage disequilibrium in sugarcane makes genome-wide association studies (GWAS) a better alternative to biparental mapping to identify markers associated with agronomic traits. GWAS was conducted on a Louisiana core collection to identify marker-trait associations (MTA) for 11 cane yield and sucrose traits using single nucleotide polymorphism (SNP) and insertion-deletion (Indel) markers. Significant (P < .05) MTAs were identified for all traits where the top ranked markers explained up to 15% of the total phenotypic variation. High correlations (0.732 to 0.999) were observed between sucrose traits and 56 markers were found consistent across multiple traits. These markers following validation in more diverse populations could be used in marker-assisted selection of clones in sugarcane breeding program in Louisiana and elsewhere.
Collapse
Affiliation(s)
- Nathanael Fickett
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Andres Gutierrez
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Mohit Verma
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Michael Pontif
- Sugar Research Station, Louisiana State University Agricultural Center, St. Gabriel, LA, United States
| | - Anna Hale
- Sugarcane Research Unit, USDA-ARS, Houma, LA, United States
| | - Collins Kimbeng
- Sugar Research Station, Louisiana State University Agricultural Center, St. Gabriel, LA, United States
| | - Niranjan Baisakh
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States.
| |
Collapse
|
8
|
A High-Density EST-SSR-Based Genetic Map and QTL Analysis of Dwarf Trait in Cucurbita pepo L. Int J Mol Sci 2018; 19:ijms19103140. [PMID: 30322052 PMCID: PMC6213718 DOI: 10.3390/ijms19103140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022] Open
Abstract
As one of the earliest domesticated species, Cucurbita pepo (including squash and pumpkin) is rich in phenotypic polymorphism and has huge economic value. In this research, using 1660 expressed sequence tags-simple sequence repeats (EST-SSRs) and 632 genomic simple sequence repeats (gSSRs), we constructed the highest-density EST-SSR-based genetic map in Cucurbita genus, which spanned 2199.1 cM in total and harbored 623 loci distributed in 20 linkage groups. Using this map as a bridge, the two previous gSSR maps were integrated by common gSSRs and the corresponding relationships around chromosomes in three sets of genomes were also collated. Meanwhile, one large segmental inversion that existed between our map and the C. pepo genome was detected. Furthermore, three Quantitative Trait Loci (QTLs) of the dwarf trait (gibberellin-sensitive dwarf type) in C. pepo were located, and the candidate region that covered the major QTL spanned 1.39 Mb, which harbored a predicted gibberellin 2-β-oxidase gene. Considering the rich phenotypic polymorphism, the important economic value in the Cucurbita genus species and several advantages of the SSR marker were identified; thus, this high-density EST-SSR-based genetic map will be useful in Pumpkin and Squash breeding work in the future.
Collapse
|
9
|
Dong G, Shen J, Zhang Q, Wang J, Yu Q, Ming R, Wang K, Zhang J. Development and Applications of Chromosome-Specific Cytogenetic BAC-FISH Probes in S. spontaneum. FRONTIERS IN PLANT SCIENCE 2018; 9:218. [PMID: 29535742 PMCID: PMC5834487 DOI: 10.3389/fpls.2018.00218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Saccharum spontaneum is a major Saccharum species that contributed to the origin of modern sugarcane cultivars, and due to a high degree of polyploidy is considered to be a plant species with one of the most complex genetics. Fluorescence in situ hybridization (FISH) is a powerful and widely used tool in genome studies. Here, we demonstrated that FISH based on bacterial artificial chromosome (BAC) clones can be used as a specific cytological marker to identify S. spontaneum individual chromosomes and study the relationship between S. spontaneum and other related species. We screened low-copy BACs as probes from the sequences of a high coverage of S. spontaneum BAC library based on BLAST search of the sorghum genome. In total, we isolated 49 positive BAC clones, and identified 27 BAC clones that can give specific signals on the S. spontaneum chromosomes. Of the 27 BAC probes, 18 were confirmed to be able to discriminate the eight basic chromosomes of S. spontaneum. Moreover, BAC-24, BAC-66, BAC-78, BAC-69, BAC-71, BAC-73, and BAC-77 probes were used to construct physical maps of chromosome 1 and chromosome 2 of S. spontaneum, which indicated synteny in Sb01 between S. spontaneum and sorghum. Furthermore, we found that BAC-14 and BAC-19 probes, corresponding to the sorghum chromosomes 2 and 8, respectively, localized to different arms of the same S. spontaneum chromosome, suggesting that there was an inter-chromosomal rearrangement event between S. spontaneum and sorghum. Our study provides the first set of chromosome-specific cytogenetic markers in Saccharum and is critical for future advances in cytogenetics and genome sequencing studies in Saccharum.
Collapse
Affiliation(s)
- Guangrui Dong
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiao Shen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Qing Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianping Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Qingyi Yu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ray Ming
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Texas A&M AgriLife Research Center, Department of Plant Pathology and Microbiology, Texas A&M University System, Dallas, TX, United States
| | - Kai Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jisen Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- *Correspondence: Jisen Zhang,
| |
Collapse
|
10
|
Vilela MDM, Del Bem LE, Van Sluys MA, de Setta N, Kitajima JP, Cruz GMQ, Sforça DA, de Souza AP, Ferreira PCG, Grativol C, Cardoso-Silva CB, Vicentini R, Vincentz M. Analysis of Three Sugarcane Homo/Homeologous Regions Suggests Independent Polyploidization Events of Saccharum officinarum and Saccharum spontaneum. Genome Biol Evol 2017; 9:266-278. [PMID: 28082603 PMCID: PMC5381655 DOI: 10.1093/gbe/evw293] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2016] [Indexed: 12/23/2022] Open
Abstract
Whole genome duplication has played an important role in plant evolution and diversification. Sugarcane is an important crop with a complex hybrid polyploid genome, for which the process of adaptation to polyploidy is still poorly understood. In order to improve our knowledge about sugarcane genome evolution and the homo/homeologous gene expression balance, we sequenced and analyzed 27 BACs (Bacterial Artificial Chromosome) of sugarcane R570 cultivar, containing the putative single-copy genes LFY (seven haplotypes), PHYC (four haplotypes), and TOR (seven haplotypes). Comparative genomic approaches showed that these sugarcane loci presented a high degree of conservation of gene content and collinearity (synteny) with sorghum and rice orthologous regions, but were invaded by transposable elements (TE). All the homo/homeologous haplotypes of LFY, PHYC, and TOR are likely to be functional, because they are all under purifying selection (dN/dS ≪ 1). However, they were found to participate in a nonequivalently manner to the overall expression of the corresponding gene. SNPs, indels, and amino acid substitutions allowed inferring the S. officinarum or S. spontaneum origin of the TOR haplotypes, which further led to the estimation that these two sugarcane ancestral species diverged between 2.5 and 3.5 Ma. In addition, analysis of shared TE insertions in TOR haplotypes suggested that two autopolyploidization may have occurred in the lineage that gave rise to S. officinarum, after its divergence from S. spontaneum.
Collapse
Affiliation(s)
- Mariane de Mendonça Vilela
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Luiz Eduardo Del Bem
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marie-Anne Van Sluys
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, SP, Brazil
| | - Nathalia de Setta
- Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | | | | | - Danilo Augusto Sforça
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Anete Pereira de Souza
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | - Clícia Grativol
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Parque Califórnia, Campos dos Goytacazes, RJ, Brazil
| | - Claudio Benicio Cardoso-Silva
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Renato Vicentini
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Michel Vincentz
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
11
|
Salvato F, Wilson R, Portilla Llerena JP, Kiyota E, Lima Reis K, Boaretto LF, Balbuena TS, Azevedo RA, Thelen JJ, Mazzafera P. Luxurious Nitrogen Fertilization of Two Sugar Cane Genotypes Contrasting for Lignin Composition Causes Changes in the Stem Proteome Related to Carbon, Nitrogen, and Oxidant Metabolism but Does Not Alter Lignin Content. J Proteome Res 2017; 16:3688-3703. [PMID: 28836437 DOI: 10.1021/acs.jproteome.7b00397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sugar cane is an important crop for sugar and biofuel production. Its lignocellulosic biomass represents a promising option as feedstock for second-generation ethanol production. Nitrogen fertilization can affect differently tissues and its biopolymers, including the cell-wall polysaccharides and lignin. Lignin content and composition are the most important factors associated with biomass recalcitrance to convert cell-wall polysaccharides into fermentable sugars. Thus it is important to understand the metabolic relationship between nitrogen fertilization and lignin in this feedstock. In this study, a large-scale proteomics approach based on GeLC-MS/MS was employed to identify and relatively quantify proteins differently accumulated in two contrasting genotypes for lignin composition after excessive nitrogen fertilization. From the ∼1000 nonredundant proteins identified, 28 and 177 were differentially accumulated in response to nitrogen from IACSP04-065 and IACSP04-627 lines, respectively. These proteins were associated with several functional categories, including carbon metabolism, amino acid metabolism, protein turnover, and oxidative stress. Although nitrogen fertilization has not changed lignin content, phenolic acids and lignin composition were changed in both species but not in the same way. Sucrose and reducing sugars increased in plants of the genotype IACSP04-065 receiving nitrogen.
Collapse
Affiliation(s)
- Fernanda Salvato
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, São Paulo 13083-862, Brazil.,Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| | - Rashaun Wilson
- Department of Biochemistry, University of Missouri Columbia, Missouri 65201, United States
| | - Juan Pablo Portilla Llerena
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, São Paulo 13083-862, Brazil
| | - Eduardo Kiyota
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, São Paulo 13083-862, Brazil
| | - Karina Lima Reis
- Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| | - Luis Felipe Boaretto
- Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| | - Tiago S Balbuena
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho" , Jaboticabal, São Paulo 14884-900, Brazil
| | - Ricardo A Azevedo
- Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri Columbia, Missouri 65201, United States
| | - Paulo Mazzafera
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, São Paulo 13083-862, Brazil.,Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| |
Collapse
|
12
|
Butler JB, Vaillancourt RE, Potts BM, Lee DJ, King GJ, Baten A, Shepherd M, Freeman JS. Comparative genomics of Eucalyptus and Corymbia reveals low rates of genome structural rearrangement. BMC Genomics 2017; 18:397. [PMID: 28532390 PMCID: PMC5441008 DOI: 10.1186/s12864-017-3782-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/10/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Previous studies suggest genome structure is largely conserved between Eucalyptus species. However, it is unknown if this conservation extends to more divergent eucalypt taxa. We performed comparative genomics between the eucalypt genera Eucalyptus and Corymbia. Our results will facilitate transfer of genomic information between these important taxa and provide further insights into the rate of structural change in tree genomes. RESULTS We constructed three high density linkage maps for two Corymbia species (Corymbia citriodora subsp. variegata and Corymbia torelliana) which were used to compare genome structure between both species and Eucalyptus grandis. Genome structure was highly conserved between the Corymbia species. However, the comparison of Corymbia and E. grandis suggests large (from 1-13 MB) intra-chromosomal rearrangements have occurred on seven of the 11 chromosomes. Most rearrangements were supported through comparisons of the three independent Corymbia maps to the E. grandis genome sequence, and to other independently constructed Eucalyptus linkage maps. CONCLUSIONS These are the first large scale chromosomal rearrangements discovered between eucalypts. Nonetheless, in the general context of plants, the genomic structure of the two genera was remarkably conserved; adding to a growing body of evidence that conservation of genome structure is common amongst woody angiosperms.
Collapse
Affiliation(s)
- J B Butler
- School of Biological Science, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - R E Vaillancourt
- School of Biological Science and ARC Training Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - B M Potts
- School of Biological Science and ARC Training Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - D J Lee
- Forest Industries Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, QLD, 4558, Australia
| | - G J King
- Southern Cross Plant Science, Southern Cross University, Military Rd, Lismore, NSW, 2480, Australia
| | - A Baten
- Southern Cross Plant Science, Southern Cross University, Military Rd, Lismore, NSW, 2480, Australia
| | - M Shepherd
- Southern Cross Plant Science, Southern Cross University, Military Rd, Lismore, NSW, 2480, Australia
| | - J S Freeman
- School of Biological Science, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.
| |
Collapse
|
13
|
Balsalobre TWA, da Silva Pereira G, Margarido GRA, Gazaffi R, Barreto FZ, Anoni CO, Cardoso-Silva CB, Costa EA, Mancini MC, Hoffmann HP, de Souza AP, Garcia AAF, Carneiro MS. GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane. BMC Genomics 2017; 18:72. [PMID: 28077090 PMCID: PMC5225503 DOI: 10.1186/s12864-016-3383-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Sugarcane (Saccharum spp.) is predominantly an autopolyploid plant with a variable ploidy level, frequent aneuploidy and a large genome that hampers investigation of its organization. Genetic architecture studies are important for identifying genomic regions associated with traits of interest. However, due to the genetic complexity of sugarcane, the practical applications of genomic tools have been notably delayed in this crop, in contrast to other crops that have already advanced to marker-assisted selection (MAS) and genomic selection. High-throughput next-generation sequencing (NGS) technologies have opened new opportunities for discovering molecular markers, especially single nucleotide polymorphisms (SNPs) and insertion-deletion (indels), at the genome-wide level. The objectives of this study were to (i) establish a pipeline for identifying variants from genotyping-by-sequencing (GBS) data in sugarcane, (ii) construct an integrated genetic map with GBS-based markers plus target region amplification polymorphisms and microsatellites, (iii) detect QTLs related to yield component traits, and (iv) perform annotation of the sequences that originated the associated markers with mapped QTLs to search putative candidate genes. RESULTS We used four pseudo-references to align the GBS reads. Depending on the reference, from 3,433 to 15,906 high-quality markers were discovered, and half of them segregated as single-dose markers (SDMs) on average. In addition to 7,049 non-redundant SDMs from GBS, 629 gel-based markers were used in a subsequent linkage analysis. Of 7,678 SDMs, 993 were mapped. These markers were distributed throughout 223 linkage groups, which were clustered in 18 homo(eo)logous groups (HGs), with a cumulative map length of 3,682.04 cM and an average marker density of 3.70 cM. We performed QTL mapping of four traits and found seven QTLs. Our results suggest the presence of a stable QTL across locations. Furthermore, QTLs to soluble solid content (BRIX) and fiber content (FIB) traits had markers linked to putative candidate genes. CONCLUSIONS This study is the first to report the use of GBS for large-scale variant discovery and genotyping of a mapping population in sugarcane, providing several insights regarding the use of NGS data in a polyploid, non-model species. The use of GBS generated a large number of markers and still enabled ploidy and allelic dosage estimation. Moreover, we were able to identify seven QTLs, two of which had great potential for validation and future use for molecular breeding in sugarcane.
Collapse
Affiliation(s)
- Thiago Willian Almeida Balsalobre
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Anhanguera, Km 174, Araras, CEP 13600-970 São Paulo Brazil
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Avenida Monteiro Lobato 255, Campinas, CEP 13083-862 São Paulo Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Avenida Candido Rondon 400, Campinas, CEP 13083-875 São Paulo Brazil
| | - Guilherme da Silva Pereira
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias 11, Piracicaba, CEP 13418-900 São Paulo Brazil
| | - Gabriel Rodrigues Alves Margarido
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias 11, Piracicaba, CEP 13418-900 São Paulo Brazil
| | - Rodrigo Gazaffi
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Anhanguera, Km 174, Araras, CEP 13600-970 São Paulo Brazil
| | - Fernanda Zatti Barreto
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Anhanguera, Km 174, Araras, CEP 13600-970 São Paulo Brazil
| | - Carina Oliveira Anoni
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias 11, Piracicaba, CEP 13418-900 São Paulo Brazil
| | - Cláudio Benício Cardoso-Silva
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Avenida Monteiro Lobato 255, Campinas, CEP 13083-862 São Paulo Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Avenida Candido Rondon 400, Campinas, CEP 13083-875 São Paulo Brazil
| | - Estela Araújo Costa
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Avenida Monteiro Lobato 255, Campinas, CEP 13083-862 São Paulo Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Avenida Candido Rondon 400, Campinas, CEP 13083-875 São Paulo Brazil
| | - Melina Cristina Mancini
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Avenida Monteiro Lobato 255, Campinas, CEP 13083-862 São Paulo Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Avenida Candido Rondon 400, Campinas, CEP 13083-875 São Paulo Brazil
| | - Hermann Paulo Hoffmann
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Anhanguera, Km 174, Araras, CEP 13600-970 São Paulo Brazil
| | - Anete Pereira de Souza
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Avenida Monteiro Lobato 255, Campinas, CEP 13083-862 São Paulo Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Avenida Candido Rondon 400, Campinas, CEP 13083-875 São Paulo Brazil
| | - Antonio Augusto Franco Garcia
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias 11, Piracicaba, CEP 13418-900 São Paulo Brazil
| | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Anhanguera, Km 174, Araras, CEP 13600-970 São Paulo Brazil
| |
Collapse
|
14
|
Gawroński P, Pawełkowicz M, Tofil K, Uszyński G, Sharifova S, Ahluwalia S, Tyrka M, Wędzony M, Kilian A, Bolibok-Brągoszewska H. DArT Markers Effectively Target Gene Space in the Rye Genome. FRONTIERS IN PLANT SCIENCE 2016; 7:1600. [PMID: 27833625 PMCID: PMC5080361 DOI: 10.3389/fpls.2016.01600] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/10/2016] [Indexed: 05/02/2023]
Abstract
Large genome size and complexity hamper considerably the genomics research in relevant species. Rye (Secale cereale L.) has one of the largest genomes among cereal crops and repetitive sequences account for over 90% of its length. Diversity Arrays Technology is a high-throughput genotyping method, in which a preferential sampling of gene-rich regions is achieved through the use of methylation sensitive restriction enzymes. We obtained sequences of 6,177 rye DArT markers and following a redundancy analysis assembled them into 3,737 non-redundant sequences, which were then used in homology searches against five Pooideae sequence sets. In total 515 DArT sequences could be incorporated into publicly available rye genome zippers providing a starting point for the integration of DArT- and transcript-based genomics resources in rye. Using Blast2Go pipeline we attributed putative gene functions to 1101 (29.4%) of the non-redundant DArT marker sequences, including 132 sequences with putative disease resistance-related functions, which were found to be preferentially located in the 4RL and 6RL chromosomes. Comparative analysis based on the DArT sequences revealed obvious inconsistencies between two recently published high density consensus maps of rye. Furthermore we demonstrated that DArT marker sequences can be a source of SSR polymorphisms. Obtained data demonstrate that DArT markers effectively target gene space in the large, complex, and repetitive rye genome. Through the annotation of putative gene functions and the alignment of DArT sequences relative to reference genomes we obtained information, that will complement the results of the studies, where DArT genotyping was deployed, by simplifying the gene ontology and microcolinearity based identification of candidate genes.
Collapse
Affiliation(s)
- Piotr Gawroński
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGWWarsaw, Poland
| | - Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGWWarsaw, Poland
| | - Katarzyna Tofil
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGWWarsaw, Poland
| | | | - Saida Sharifova
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGWWarsaw, Poland
- Department of Biotechnology, Genetic Resources Institute of Azerbaijan National Academy of SciencesBaku, Azerbaijan
| | - Shivaksh Ahluwalia
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGWWarsaw, Poland
- Kusuma School of Biological Sciences, Indian Institute of TechnologyNew Delhi, India
| | - Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Rzeszow University of TechnologyRzeszow, Poland
| | - Maria Wędzony
- Department of Genetics and Cytology, Pedagogical University of CracowCracow, Poland
| | | | - Hanna Bolibok-Brągoszewska
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGWWarsaw, Poland
- *Correspondence: Hanna Bolibok-Brągoszewska,
| |
Collapse
|
15
|
Mattiello L, Riaño-Pachón DM, Martins MCM, da Cruz LP, Bassi D, Marchiori PER, Ribeiro RV, Labate MTV, Labate CA, Menossi M. Physiological and transcriptional analyses of developmental stages along sugarcane leaf. BMC PLANT BIOLOGY 2015; 15:300. [PMID: 26714767 PMCID: PMC4696237 DOI: 10.1186/s12870-015-0694-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/17/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Sugarcane is one of the major crops worldwide. It is cultivated in over 100 countries on 22 million ha. The complex genetic architecture and the lack of a complete genomic sequence in sugarcane hamper the adoption of molecular approaches to study its physiology and to develop new varieties. Investments on the development of new sugarcane varieties have been made to maximize sucrose yield, a trait dependent on photosynthetic capacity. However, detailed studies on sugarcane leaves are scarce. In this work, we report the first molecular and physiological characterization of events taking place along a leaf developmental gradient in sugarcane. RESULTS Photosynthetic response to CO2 indicated divergence in photosynthetic capacity based on PEPcase activity, corroborated by activity quantification (both in vivo and in vitro) and distinct levels of carbon discrimination on different segments along leaf length. Additionally, leaf segments had contrasting amount of chlorophyll, nitrogen and sugars. RNA-Seq data indicated a plethora of biochemical pathways differentially expressed along the leaf. Some transcription factors families were enriched on each segment and their putative functions corroborate with the distinct developmental stages. Several genes with higher expression in the middle segment, the one with the highest photosynthetic rates, were identified and their role in sugarcane productivity is discussed. Interestingly, sugarcane leaf segments had a different transcriptional behavior compared to previously published data from maize. CONCLUSION This is the first report of leaf developmental analysis in sugarcane. Our data on sugarcane is another source of information for further studies aiming to understand and/or improve C4 photosynthesis. The segments used in this work were distinct in their physiological status allowing deeper molecular analysis. Although limited in some aspects, the comparison to maize indicates that all data acquired on one C4 species cannot always be easily extrapolated to other species. However, our data indicates that some transcriptional factors were segment-specific and the sugarcane leaf undergoes through the process of suberizarion, photosynthesis establishment and senescence.
Collapse
Affiliation(s)
- Lucia Mattiello
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, 13083-970, Campinas, SP, Brazil.
- Laboratório de Genoma Funcional, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Caixa Postal 6109, Campinas, 13083-862, SP, Brazil.
| | - Diego Mauricio Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, 13083-970, Campinas, SP, Brazil.
| | - Marina Camara Mattos Martins
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, 13083-970, Campinas, SP, Brazil.
| | - Larissa Prado da Cruz
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, 13083-970, Campinas, SP, Brazil.
| | - Denis Bassi
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, 13083-970, Campinas, SP, Brazil.
| | - Paulo Eduardo Ribeiro Marchiori
- Laboratório de Fisiologia de Plantas "Coaracy M. Franco", Centro de Pesquisa e Desenvolvimento em Ecofisiologia e Biofísica, Instituto Agronômico, Caixa Postal 28, Campinas, 13020-902, SP, Brazil.
| | - Rafael Vasconcelos Ribeiro
- Departamento de Biologia de Plantas, Universidade Estadual de Campinas, Caixa Postal 6109, Campinas, 13083-970, SP, Brazil.
| | - Mônica T Veneziano Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Universidade de São Paulo, Caixa Postal 83, Piracicaba, 13400-970, SP, Brazil.
| | - Carlos Alberto Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Universidade de São Paulo, Caixa Postal 83, Piracicaba, 13400-970, SP, Brazil.
| | - Marcelo Menossi
- Laboratório de Genoma Funcional, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Caixa Postal 6109, Campinas, 13083-862, SP, Brazil.
| |
Collapse
|
16
|
Metcalfe CJ, Oliveira SG, Gaiarsa JW, Aitken KS, Carneiro MS, Zatti F, Van Sluys MA. Using quantitative PCR with retrotransposon-based insertion polymorphisms as markers in sugarcane. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4239-50. [PMID: 26093024 PMCID: PMC4493790 DOI: 10.1093/jxb/erv283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Sugarcane is the main source of the world's sugar and is becoming increasingly important as a source of biofuel. The highly polyploid and heterozygous nature of the sugarcane genome has meant that characterization of the genome has lagged behind that of other important crops. Here we developed a method using a combination of quantitative PCR with a transposable marker system to score the relative number of alleles with a transposable element (TE) present at a particular locus. We screened two genera closely related to Saccharum (Miscanthus and Erianthus), wild Saccharum, traditional cultivars, and 127 modern cultivars from Brazilian and Australian breeding programmes. We showed how this method could be used in various ways. First, we showed that the method could be extended to be used as part of a genotyping system. Secondly, the history of insertion and timing of the three TEs examined supports our current understanding of the evolution of the Saccharum complex. Thirdly, all three TEs were found in only one of the two main lineages leading to the modern sugarcane cultivars and are therefore the first TEs identified that could potentially be used as markers for Saccharum spontaneum.
Collapse
Affiliation(s)
- Cushla J Metcalfe
- GaTE-Lab, Departamento de Botânica, IBUSP, Universidade de São Paulo, rua do Matao 277, 05508-090, SP, Brazil
| | - Sarah G Oliveira
- GaTE-Lab, Departamento de Botânica, IBUSP, Universidade de São Paulo, rua do Matao 277, 05508-090, SP, Brazil
| | - Jonas W Gaiarsa
- GaTE-Lab, Departamento de Botânica, IBUSP, Universidade de São Paulo, rua do Matao 277, 05508-090, SP, Brazil
| | - Karen S Aitken
- CSIRO Agriculture Flagship, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, QLD 4072, Australia
| | - Monalisa S Carneiro
- Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras, 13600-970, SP, Brazil
| | - Fernanda Zatti
- Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras, 13600-970, SP, Brazil
| | - Marie-Anne Van Sluys
- GaTE-Lab, Departamento de Botânica, IBUSP, Universidade de São Paulo, rua do Matao 277, 05508-090, SP, Brazil
| |
Collapse
|