1
|
Luo Z, Zhang L, Hu W, Wang Y, Tao J, Jia Y, Miao R, Chen LS, Guo J. Excessive boron fertilization-induced toxicity is related to boron transport in field-grown pomelo trees. FRONTIERS IN PLANT SCIENCE 2024; 15:1438664. [PMID: 39319002 PMCID: PMC11420558 DOI: 10.3389/fpls.2024.1438664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
Boron (B) is an essential micronutrient for plant growth and development; however, the process of B toxicity in citrus production is still poorly understood. We proposed a hypothesis that B toxicity in citrus trees is related to the characteristics of B transport from soil to leaf or fruit. For this, a field experiment was conducted for two treatments, control (B free or without B) and B fertilizer treatment (100 g Na2B4O7·10H2O plant-1), to investigate the effects on plant growth, nutrient uptake, fruit yield and quality, and B transport in 10-year-old pomelo trees [Citrus grandis (L.) Osbeck cv. Guanximiyou]. Our results showed that excess B fertilization directly led to B toxicity in pomelo trees by dramatically increasing soil total B and water-soluble B contents. B toxicity induced interveinal chlorosis in leaves and decreased leaf biomass and function, resulting in a decreased 45.3% fruit yield by reducing 30.6% fruit load and 21.4% single fruit weight. Also, B toxicity induced changes in mineral elements between leaf positions and fruit parts, in which the concentrations of B, potassium, and magnesium were increased while those of nitrogen and iron were decreased. Under B toxicity conditions, fruit quality parameters of total soluble solids (TSS), TSS/titratable acidity (TA), total soluble sugar, sucrose, pH, vitamin C, and total phenol contents decreased, which were regulated by the lower carbohydrate production in new leaves and the lower transport capacity in old leaves. Moreover, B toxicity significantly increased the transfer factor and bio-concentration factor of B in pomelo plants, with higher levels in leaf organs than in fruit organs. Taken together, excess B fertilization-induced B toxicity in pomelo trees, with induced growth inhibition and nutrient disorder, results in reduced fruit yield and quality, which are related to B transport from soil to organs. The findings of this study highlight the understanding of B toxicity in citrus plants and strengthen B management in pomelo production for high yield and high quality.
Collapse
Affiliation(s)
- Ziwei Luo
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijun Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agriculture, Guangxi University, Nanning, China
| | - Wenlang Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuwen Wang
- Forestry Science and Technology Test Center of Fujian Province, Zhangzhou, China
| | - Jingxia Tao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yamin Jia
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Guangxi University, Nanning, China
| | - Ruizhen Miao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Song Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiuxin Guo
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Li X, Kamran M, Saleem MH, Al-Ghamdi AA, Al-Hemaid FM, Elshikh MS, Zhao S, Riaz M. Potential application of melatonin in reducing boron toxicity in rice seedlings through improved growth, cell wall composition, proline, and defense mechanisms. CHEMOSPHERE 2023:139068. [PMID: 37257660 DOI: 10.1016/j.chemosphere.2023.139068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
Melatonin (MT) has been demonstrated to provide defense against both biotic and abiotic stressors. Boron toxicity (BT) can significantly limit the growth and production of plants. However, few studies have been conducted on whether MT is effective in attenuating B toxicity in different plants. In order to evaluate the efficacy of exogenous MT treatment in reducing the negative impact of BT on rice seedlings, this study examined the influence of MT on growth, antioxidant capacity, cell wall composition, and proline metabolism in rice seedlings under hydroponics. Four treatments were established: MT (50 μM), MT + BT (50 μM MT + 800 μM B), BT (800 μM), and CK (control) in a completely randomized design. The results indicate that BT had a significant detrimental effect on the shoot length, root length, and root and shoot fresh weights of rice seedlings by 11.96%, 27.77%, 25.69%, and 18.67%, respectively as compared to the control treatment. However, exogenous MT application increased these parameters and reduced B accumulation in aboveground parts (14.05%) of the plant. Exogenous MT also increased the endogenous melatonin content and antioxidant enzyme activities (64.45%, 71.61%, 237.64%, and 55.42% increase in superoxide dismutase, ascorbate peroxidase, and peroxidase activities, respectively), while decreasing reactive oxygen species levels and oxidized forms of glutathione and ascorbic acid. Additionally, MT enhanced the biosynthesis of proline by decreasing proline dehydrogenase (ProDH) and increasing the GSH (glutathione) and ASA (ascorbic acid) contents. Exogenous MT also increased cell wall components that can increase B adsorption to the cell wall. Overall, these findings suggest that MT application can be a potential solution for strengthening the stress tolerance of rice seedlings, particularly under conditions of B toxicity. In regions where soil contains high levels of boron, the use of MT could enhance rice crop yields and quality.
Collapse
Affiliation(s)
- Xinyu Li
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Muhammad Kamran
- School of Agriculture, Food, and Wine, The University of Adelaide, South Australia 5005, Australia
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Fahad M Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Shaopeng Zhao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China.
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China.
| |
Collapse
|
3
|
Huang J, Zhang L, Lin X, Gao Y, Zhang J, Huang W, Zhao D, Ferrarezi RS, Fan G, Chen L. CsiLAC4 modulates boron flow in Arabidopsis and Citrus via high-boron-dependent lignification of cell walls. THE NEW PHYTOLOGIST 2022; 233:1257-1273. [PMID: 34775618 PMCID: PMC9299972 DOI: 10.1111/nph.17861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
The mechanisms underlying plant tolerance to boron (B) excess are far from fully understood. Here we characterized the role of the miR397-CsiLAC4/CsiLAC17 (from Citrus sinensis) module in regulation of B flow. Live-cell imaging techniques were used in localization studies. A tobacco transient expression system tested modulations of CsiLAC4 and CsiLAC17 by miR397. Transgenic Arabidopsis were generated to analyze the biological functions of CsiLAC4 and CsiLAC17. CsiLAC4's role in xylem lignification was determined by mRNA hybridization and cytochemistry. In situ B distribution was analyzed by laser ablation inductively coupled plasma mass spectrometry. CsiLAC4 and CsiLAC17 are predominantly localized in the apoplast of tobacco epidermal cells. Overexpression of CsiLAC4 in Arabidopsis improves the plants' tolerance to boric acid excess by triggering high-B-dependent lignification of the vascular system's cell wall and reducing free B content in roots and shoots. In Citrus, CsiLAC4 is expressed explicitly in the xylem parenchyma and is modulated by B-responsive miR397. Upregulation of CsiLAC4 in Citrus results in lignification of the xylem cell walls, restricting B flow from xylem vessels to the phloem. CsiLAC4 contributes to plant tolerance to boric acid excess via high-B-dependent lignification of cell walls, which set up a 'physical barrier' preventing B flow.
Collapse
Affiliation(s)
- Jing‐Hao Huang
- Pomological InstituteFujian Academy of Agricultural SciencesFuzhou350013China
- Institute of Plant Nutritional Physiology and Molecular BiologyCollege of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Ling‐Yuan Zhang
- Fujian University of Traditional Chinese MedicineFuzhou350122China
| | - Xiong‐Jie Lin
- Pomological InstituteFujian Academy of Agricultural SciencesFuzhou350013China
| | - Yuan Gao
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Jiang Zhang
- Institute of Plant Nutritional Physiology and Molecular BiologyCollege of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Wei‐Lin Huang
- Pomological InstituteFujian Academy of Agricultural SciencesFuzhou350013China
| | - Daqiu Zhao
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225009China
| | | | - Guo‐Cheng Fan
- Pomological InstituteFujian Academy of Agricultural SciencesFuzhou350013China
- Institute of Plant ProtectionFujian Academy of Agricultural SciencesFuzhou350013China
| | - Li‐Song Chen
- Institute of Plant Nutritional Physiology and Molecular BiologyCollege of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhou350002China
- Fujian Provincial Key Laboratory of Soil Environmental Health and RegulationCollege of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhou350002China
| |
Collapse
|
4
|
Yang LT, Pan JF, Hu NJ, Chen HH, Jiang HX, Lu YB, Chen LS. Citrus Physiological and Molecular Response to Boron Stresses. PLANTS (BASEL, SWITZERLAND) 2021; 11:40. [PMID: 35009043 PMCID: PMC8747704 DOI: 10.3390/plants11010040] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Since the essentiality of boron (B) to plant growth was reported nearly one century ago, the implication of B in physiological performance, productivity and quality of agricultural products, and the morphogenesis of apical meristem in plants has widely been studied. B stresses (B deficiency and toxicity), which lead to atrophy of canopy and deterioration of Citrus fruits, have long been discovered in citrus orchards. This paper reviews the research progress of B stresses on Citrus growth, photosynthesis, light use efficiency, nutrient absorption, organic acid metabolism, sugar metabolism and relocation, and antioxidant system. Moreover, the beneficial effects of B on plant stress tolerance and further research in this area were also discussed.
Collapse
Affiliation(s)
- Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.-T.Y.); (J.-F.P.); (N.-J.H.); (H.-H.C.); (Y.-B.L.)
| | - Jun-Feng Pan
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.-T.Y.); (J.-F.P.); (N.-J.H.); (H.-H.C.); (Y.-B.L.)
| | - Neng-Jing Hu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.-T.Y.); (J.-F.P.); (N.-J.H.); (H.-H.C.); (Y.-B.L.)
| | - Huan-Huan Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.-T.Y.); (J.-F.P.); (N.-J.H.); (H.-H.C.); (Y.-B.L.)
| | - Huan-Xin Jiang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yi-Bin Lu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.-T.Y.); (J.-F.P.); (N.-J.H.); (H.-H.C.); (Y.-B.L.)
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.-T.Y.); (J.-F.P.); (N.-J.H.); (H.-H.C.); (Y.-B.L.)
| |
Collapse
|
5
|
Landi M, Margaritopoulou T, Papadakis IE, Araniti F. Boron toxicity in higher plants: an update. PLANTA 2019; 250:1011-1032. [PMID: 31236697 DOI: 10.1007/s00425-019-03220-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/18/2019] [Indexed: 05/24/2023]
Abstract
In this review, emphasis is given to the most recent updates about morpho-anatomical, physiological, biochemical and molecular responses adopted by plants to cope with B excess. Boron (B) is a unique micronutrient for plants given that the range of B concentration from its essentiality to toxicity is extremely narrow, and also because it occurs as an uncharged molecule (boric acid) which can pass lipid bilayers without any degree of controls, as occurs for other ionic nutrients. Boron frequently exceeds the plant's requirement in arid and semiarid environments due to poor drainage, and in agricultural soils close to coastal areas due to the intrusion of B-rich seawater in fresh aquifer or because of dispersion of seawater aerosol. Global releases of elemental B through weathering, volcanic and geothermal processes are also relevant in enriching B concentration in some areas. Considerable progress has been made in understanding how plants react to B toxicity and relevant efforts have been made to investigate: (I) B uptake and in planta partitioning, (II) physiological, biochemical, and molecular changes induced by B excess, with particular emphasis to the effects on the photosynthetic process, the B-triggered oxidative stress and responses of the antioxidant apparatus to B toxicity, and finally (III) mechanisms of B tolerance. Recent findings addressing the effects of B toxicity are reviewed here, intending to clarify the effect of B excess and to propose new perspectives aimed at driving future researches on the topic.
Collapse
Affiliation(s)
- Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Theoni Margaritopoulou
- Laboratory of Mycology, Department of Phytopathology, Benaki Phytopathological Institute, St. Delta 8, 14561, Kifisia, Greece
| | - Ioannis E Papadakis
- Laboratory of Pomology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece.
| | - Fabrizio Araniti
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC, 89124, Reggio Calabria, RC, Italy
| |
Collapse
|
6
|
MicroRNA Sequencing Revealed Citrus Adaptation to Long-Term Boron Toxicity through Modulation of Root Development by miR319 and miR171. Int J Mol Sci 2019; 20:ijms20061422. [PMID: 30901819 PMCID: PMC6470687 DOI: 10.3390/ijms20061422] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 11/17/2022] Open
Abstract
Boron (B) toxicity in Citrus is a common physiological disorder leading to reductions in both productivity and quality. Studies on how Citrus roots evade B toxicity may provide new insight into plant tolerance to B toxicity. Here, using Illumina sequencing, differentially expressed microRNAs (miRNAs) were identified in B toxicity-treated Citrus sinensis (tolerant) and C. grandis (intolerant) roots. The results showed that 37 miRNAs in C. grandis and 11 miRNAs in C. sinensis were differentially expressed when exposed to B toxicity. Among them, miR319, miR171, and miR396g-5p were confirmed via 5'-RACE and qRT-PCR to target a myeloblastosis (MYB) transcription factor gene, a SCARECROW-like protein gene, and a cation transporting ATPase gene, respectively. Maintenance of SCARECROW expression in B treated Citrus roots might fulfill stem cell maintenance, quiescent center, and endodermis specification, thus allowing regular root elongation under B-toxic stress. Down-regulation of MYB due to up-regulation of miR319 in B toxicity-treated C. grandis roots might decrease the number of root tips, thereby dramatically changing root system architecture. Our findings suggested that miR319 and miR171 play a pivotal role in Citrus adaptation to long-term B toxicity by targeting MYB and SCARECROW, respectively, both of which are responsible for root growth and development.
Collapse
|
7
|
Guo P, Qi YP, Huang WL, Yang LT, Huang ZR, Lai NW, Chen LS. Aluminum-responsive genes revealed by RNA-Seq and related physiological responses in leaves of two Citrus species with contrasting aluminum-tolerance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:213-222. [PMID: 29704792 DOI: 10.1016/j.ecoenv.2018.04.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 05/25/2023]
Abstract
Little is known about the physiological and molecular responses of leaves to aluminum (Al)-toxicity. Seedlings of Al-intolerant Citrus grandis and Al-tolerant Citrus sinensis were supplied daily with nutrient solution containing 0 mM (control) and 1.0 mM (Al-toxicity) AlCl3·6H2O for 18 weeks. We found that Al-treatment only decreased CO2 assimilation in C. grandis leaves, and that the Al-induced alterations of gene expression profiles were less in C. sinensis leaves than those in C. grandis leaves, indicating that C. sinensis seedlings were more tolerant to Al-toxicity than C. grandis ones. Al concentration was similar between Al-treated C. sinensis and C. grandis roots, but it was higher in Al-treated C. grandis stems and leaves than that in Al-treated C. sinensis stems and leaves. Al-treated C. sinensis seedlings accumulated relatively more Al in roots and transported relatively little Al to shoots. This might be responsible for the higher Al-tolerance of C. sinensis. Further analysis showed that the following several aspects might account for the higher Al-tolerance of C. sinensis, including: (a) Al-treated C. sinensis leaves had higher capacity to maintain the homeostasis of energy and phosphate, the stability of lipid composition and the integrity of cell wall than did Al-treated C. grandis leaves; (b) Al-triggered production of reactive oxygen species (ROS) and the other cytotoxic compounds was less in Al-treated C. sinensis leaves than that in Al-treated C. grandis leaves, because Al-toxicity decreased CO2 assimilation only in C. grandis leaves; accordingly, more upregulated genes involved in the detoxifications of ROS, aldehydes and methylglyoxal were identified in Al-treated C. grandis leaves; in addition, flavonoid concentration was increased only in Al-treated C. grandis leaves; (c) Al-treated C. sinensis leaves could keep a better balance between protein phosphorylation and dephosphorylation than did Al-treated C. grandis leaves; and (d) both the equilibrium of hormones and hormone-mediated signal transduction were greatly disrupted in Al-treated C. grandis leaves, but less altered in Al-treated C. sinensis leaves. Finally, we discussed the differences in Al-responsive genes between Citrus roots and leaves.
Collapse
Affiliation(s)
- Peng Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Wei-Lin Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeng-Rong Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ning-Wei Lai
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Genome-wide identification of barley MCs (metacaspases) and their possible roles in boron-induced programmed cell death. Mol Biol Rep 2018; 45:211-225. [DOI: 10.1007/s11033-018-4154-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/30/2018] [Indexed: 11/25/2022]
|
9
|
Sang W, Huang ZR, Yang LT, Guo P, Ye X, Chen LS. Effects of High Toxic Boron Concentration on Protein Profiles in Roots of Two Citrus Species Differing in Boron-Tolerance Revealed by a 2-DE Based MS Approach. FRONTIERS IN PLANT SCIENCE 2017; 8:180. [PMID: 28261239 PMCID: PMC5313502 DOI: 10.3389/fpls.2017.00180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/30/2017] [Indexed: 05/02/2023]
Abstract
Citrus are sensitive to boron (B)-toxicity. In China, B-toxicity occurs in some citrus orchards. So far, limited data are available on B-toxicity-responsive proteins in higher plants. Thirteen-week-old seedlings of "Sour pummelo" (Citrus grandis) and "Xuegan" (Citrus sinensis) was fertilized every other day until dripping with nutrient solution containing 10 μM (control) or 400 μM (B-toxicity) H3BO3 for 15 weeks. The typical B-toxic symptom only occurred in 400 μM B-treated C. grandis leaves, and that B-toxicity decreased root dry weight more in C. grandis seedlings than in C. sinensis ones, demonstrating that C. sinensis was more tolerant to B-toxicity than C. grandis. Using a 2-dimensional electrophoresis (2-DE) based MS approach, we identified 27 up- and four down-accumulated, and 28 up- and 13 down-accumulated proteins in B-toxic C. sinensis and C. grandis roots, respectively. Most of these proteins were isolated only from B-toxic C. sinensis or C. grandis roots, only nine B-toxicity-responsive proteins were shared by the two citrus species. Great differences existed in B-toxicity-induced alterations of protein profiles between C. sinensis and C. grandis roots. More proteins related to detoxification were up-accumulated in B-toxic C. grandis roots than in B-toxic C. sinensis roots to meet the increased requirement for the detoxification of the more reactive oxygen species and other toxic compounds such as aldehydes in the former. For the first time, we demonstrated that the active methyl cycle was induced and repressed in B-toxic C. sinensis and C. grandis roots, respectively, and that C. sinensis roots had a better capacity to keep cell wall and cytoskeleton integrity than C. grandis roots in response to B-toxicity, which might be responsible for the higher B-tolerance of C. sinensis. In addition, proteins involved in nucleic acid metabolism, biological regulation and signal transduction might play a role in the higher B-tolerance of C. sinensis.
Collapse
Affiliation(s)
- Wen Sang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Agriculture, Forestry and Water Conservancy Bureau of Xinzhou DistrictShangrao, China
| | - Zeng-Rong Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Peng Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry UniversityFuzhou, China
- *Correspondence: Li-Song Chen
| |
Collapse
|
10
|
Ruiz M, Quiñones A, Martínez-Alcántara B, Aleza P, Morillon R, Navarro L, Primo-Millo E, Martínez-Cuenca MR. Tetraploidy Enhances Boron-Excess Tolerance in Carrizo Citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.). FRONTIERS IN PLANT SCIENCE 2016; 7:701. [PMID: 27252717 PMCID: PMC4879134 DOI: 10.3389/fpls.2016.00701] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/06/2016] [Indexed: 05/20/2023]
Abstract
UNLABELLED Tetraploidy modifies root anatomy which may lead to differentiated capacity to uptake and transport mineral elements. This work provides insights into physiological and molecular characters involved in boron (B) toxicity responses in diploid (2x) and tetraploid (4x) plants of Carrizo citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.), a widely used citrus rootstock. With B excess, 2x plants accumulated more B in leaves than 4x plants, which accounted for their higher B uptake and root-to-shoot transport rates. Ploidy did not modify the expression of membrane transporters NIP5 and BOR1 in roots. The cellular allocation of B excess differed between ploidy levels in the soluble fraction, which was lower in 4x leaves, while cell wall-linked B was similar in 2x and 4x genotypes. This correlates with the increased damage and stunted growth recorded in the 2x plants. The 4x roots were found to have fewer root tips, shorter specific root length, longer diameter, thicker exodermis and earlier tissue maturation in root tips, where the Casparian strip was detected at a shorter distance from the root apex than in the 2x roots. The results presented herein suggest that the root anatomical characters of the 4x plants play a key role in their lower B uptake capacity and root-to-shoot transport. HIGHLIGHTS Tetraploidy enhances B excess tolerance in citrange CarrizoExpression of NIP5 and BOR1 transporters and cell wall-bounded B are similar between ploidiesB tolerance is attributed to root anatomical modifications induced by genome duplicationThe rootstock 4x citrange carrizo may prevent citrus trees from B excess.
Collapse
Affiliation(s)
- Marta Ruiz
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones AgrariasMoncada, Spain
| | - Ana Quiñones
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Spain
| | - Belén Martínez-Alcántara
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Spain
| | - Pablo Aleza
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones AgrariasMoncada, Spain
| | - Raphaël Morillon
- UMR AGAP, Centre de Coopération Internationale en Recherche Agronomique Pour le DéveloppementMontpellier, France
| | - Luis Navarro
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones AgrariasMoncada, Spain
| | - Eduardo Primo-Millo
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Spain
| | - Mary-Rus Martínez-Cuenca
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Spain
| |
Collapse
|
11
|
Huang JH, Qi YP, Wen SX, Guo P, Chen XM, Chen LS. Illumina microRNA profiles reveal the involvement of miR397a in Citrus adaptation to long-term boron toxicity via modulating secondary cell-wall biosynthesis. Sci Rep 2016; 6:22900. [PMID: 26962011 PMCID: PMC4790630 DOI: 10.1038/srep22900] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/24/2016] [Indexed: 12/25/2022] Open
Abstract
The mechanisms underlying tolerance to B-toxicity in plants are still controversial. Our previous studies indicated that B-toxicity is mainly limited to leaves in Citrus and that alternations of cell-wall structure in vascular bundles are involved in tolerance to B-toxicity. Here, miRNAs and their expression patterns were first identified in B-treated Citrus sinensis (tolerant) and C. grandis (intolerant) leaves via high-throughput sequencing. Candidate miRNAs were then verified with molecular and anatomical approaches. The results showed that 51 miRNAs in C. grandis and 20 miRNAs in C. sinensis were differentially expressed after B-toxic treatment. MiR395a and miR397a were the most significantly up-regulated miRNAs in B-toxic C. grandis leaves, but both were down-regulated in B-toxic C. sinensis leaves. Four auxin response factor genes and two laccase (LAC) genes were confirmed through 5′-RACE to be real targets of miR160a and miR397a, respectively. Up-regulation of LAC4 resulted in secondary deposition of cell-wall polysaccharides in vessel elements of C. sinensis, whereas down-regulation of both LAC17 and LAC4, led to poorly developed vessel elements in C. grandis. Our findings demonstrated that miR397a plays a pivotal role in woody Citrus tolerance to B-toxicity by targeting LAC17 and LAC4, both of which are responsible for secondary cell-wall synthesis.
Collapse
Affiliation(s)
- Jing-Hao Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Shou-Xing Wen
- Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Peng Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Resource and Environmental Science, Fujian Agriculture and Forestry University,Fuzhou 350002, China
| | - Xiao-Min Chen
- Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Resource and Environmental Science, Fujian Agriculture and Forestry University,Fuzhou 350002, China.,Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
12
|
Fang K, Zhang W, Xing Y, Zhang Q, Yang L, Cao Q, Qin L. Boron Toxicity Causes Multiple Effects on Malus domestica Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2016; 7:208. [PMID: 26955377 PMCID: PMC4768074 DOI: 10.3389/fpls.2016.00208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/06/2016] [Indexed: 05/02/2023]
Abstract
Boron is an important micronutrient for plants. However, boron is also toxic to cells at high concentrations, although the mechanism of this toxicity is not known. This study aimed to evaluate the effect of boron toxicity on Malus domestica pollen tube growth and its possible regulatory pathway. Our results showed that a high concentration of boron inhibited pollen germination and tube growth and led to the morphological abnormality of pollen tubes. Fluorescent labeling coupled with a scanning ion-selective electrode technique detected that boron toxicity could decrease [Ca(2+)]c and induce the disappearance of the [Ca(2+)]c gradient, which are critical for pollen tube polar growth. Actin filaments were therefore altered by boron toxicity. Immuno-localization and fluorescence labeling, together with fourier-transform infrared analysis, suggested that boron toxicity influenced the accumulation and distribution of callose, de-esterified pectins, esterified pectins, and arabinogalactan proteins in pollen tubes. All of the above results provide new insights into the regulatory role of boron in pollen tube development. In summary, boron likely plays a structural and regulatory role in relation to [Ca(2+)]c, actin cytoskeleton and cell wall components and thus regulates Malus domestica pollen germination and tube polar growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ling Qin
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of AgricultureBeijing, China
| |
Collapse
|
13
|
Guo P, Qi YP, Yang LT, Ye X, Huang JH, Chen LS. Long-Term Boron-Excess-Induced Alterations of Gene Profiles in Roots of Two Citrus Species Differing in Boron-Tolerance Revealed by cDNA-AFLP. FRONTIERS IN PLANT SCIENCE 2016; 7:898. [PMID: 27446128 PMCID: PMC4919357 DOI: 10.3389/fpls.2016.00898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 06/07/2016] [Indexed: 05/18/2023]
Abstract
Boron (B) toxicity is observed in some citrus orchards in China. However, limited data are available on the molecular mechanisms of citrus B-toxicity and B-tolerance. Using cDNA-AFLP, we identified 20 up- and 52 down-regulated genes, and 44 up- and 66 down-regulated genes from excess B-treated Citrus sinensis and Citrus grandis roots, respectively, thereby demonstrating that gene expression profiles were more affected in the latter. In addition, phosphorus and total soluble protein concentrations were lowered only in excess B-treated C. grandis roots. Apparently, C. sinensis had higher B-tolerance than C. grandis. Our results suggested that the following several aspects were responsible for the difference in the B-tolerance between the two citrus species including: (a) B-excess induced Root Hair Defective 3 expression in C. sinensis roots, and repressed villin4 expression in C. grandis roots; accordingly, root growth was less inhibited by B-excess in the former; (b) antioxidant systems were impaired in excess B-treated C. grandis roots, hence accelerating root senescence; (c) genes related to Ca(2+) signals were inhibited (induced) by B-excess in C. grandis (C. sinensis) roots. B-excess-responsive genes related to energy (i.e., alternative oxidase and cytochrome P450), lipid (i.e., Glycerol-3-phosphate acyltransferase 9 and citrus dioxygenase), and nucleic acid (i.e., HDA19, histone 4, and ribonucleotide reductase RNR1 like protein) metabolisms also possibly accounted for the difference in the B-tolerance between the two citrus species. These data increased our understanding of the mechanisms on citrus B-toxicity and B-tolerance at transcriptional level.
Collapse
Affiliation(s)
- Peng Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical SciencesFuzhou, China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jing-Hao Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
- Pomological Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry UniversityFuzhou, China
- *Correspondence: Li-Song Chen
| |
Collapse
|
14
|
Wang LQ, Yang LT, Guo P, Zhou XX, Ye X, Chen EJ, Chen LS. Leaf cDNA-AFLP analysis reveals novel mechanisms for boron-induced alleviation of aluminum-toxicity in Citrus grandis seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:349-59. [PMID: 26099466 DOI: 10.1016/j.ecoenv.2015.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/24/2015] [Accepted: 06/05/2015] [Indexed: 05/18/2023]
Abstract
Little information is available on the molecular mechanisms of boron (B)-induced alleviation of aluminum (Al)-toxicity. 'Sour pummelo' (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing different concentrations of B (2.5 or 20μM H3BO3) and Al (0 or 1.2mM AlCl3·6H2O). B alleviated Al-induced inhibition in plant growth accompanied by lower leaf Al. We used cDNA-AFLP to isolate 127 differentially expressed genes from leaves subjected to B and Al interactions. These genes were related to signal transduction, transport, cell wall modification, carbohydrate and energy metabolism, nucleic acid metabolism, amino acid and protein metabolism, lipid metabolism and stress responses. The ameliorative mechanisms of B on Al-toxicity might be related to: (a) triggering multiple signal transduction pathways; (b) improving the expression levels of genes related to transport; (c) activating genes involved in energy production; and (d) increasing amino acid accumulation and protein degradation. Also, genes involved in nucleic acid metabolism, cell wall modification and stress responses might play a role in B-induced alleviation of Al-toxicity. To conclude, our findings reveal some novel mechanisms on B-induced alleviation of Al-toxicity at the transcriptional level in C. grandis leaves.
Collapse
Affiliation(s)
- Liu-Qing Wang
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Guo
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin-Xing Zhou
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Ye
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - En-Jun Chen
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
15
|
Sang W, Huang ZR, Qi YP, Yang LT, Guo P, Chen LS. Two-dimensional gel electrophoresis data in support of leaf comparative proteomics of two citrus species differing in boron-tolerance. Data Brief 2015. [PMID: 26217760 PMCID: PMC4510397 DOI: 10.1016/j.dib.2015.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Here, we provide the data from a comparative proteomics approach used to investigate the response of boron (B)-tolerant 'Xuegan' (Citrus sinensis) and B-intolerant 'Sour pummelo' (Citrus grandis) leaves to B-toxicity. Using two-dimensional gel electrophoresis (2-DE) technique, we identified 50 and 45 protein species with a fold change of more than 1.5 and a P-value of less than 0.05 from B-toxic C. sinensis and C. grandis leaves. These B-toxicity-responsive protein species were mainly involved in carbohydrate and energy metabolism, antioxidation and detoxification, stress responses, coenzyme biosynthesis, protein and amino acid metabolism, signal transduction, cell transport, cytoskeleton, nucleotide metabolism, and cell cycle and DNA processing. A detailed analysis of this data may be obtained from Sang et al. (J. Proteomics 114 (2015))[1].
Collapse
Affiliation(s)
- Wen Sang
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeng-Rong Huang
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Lin-Tong Yang
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China ; College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Guo
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China ; College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China ; College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China ; The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, China ; Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Sang W, Huang ZR, Qi YP, Yang LT, Guo P, Chen LS. An investigation of boron-toxicity in leaves of two citrus species differing in boron-tolerance using comparative proteomics. J Proteomics 2015; 123:128-46. [PMID: 25892131 DOI: 10.1016/j.jprot.2015.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/02/2015] [Accepted: 04/09/2015] [Indexed: 01/01/2023]
Abstract
UNLABELLED Limited data are available on boron (B)-toxicity-responsive proteins in plants. We first applied 2-dimensional electrophoresis (2-DE) to compare the effects of B-toxicity on leaf protein profiles in B-tolerant Citrus sinensis and B-intolerant Citrus grandis seedlings, and identified 27 (20) protein species with increased abundances and 23 (25) protein species with decreased abundances from the former (latter). Generally speaking, B-toxicity increased the abundances of protein species involved in antioxidation and detoxification, proteolysis, cell transport, and decreased the abundances of protein species involved in protein biosynthesis in the two citrus species. The higher B-tolerance of C. sinensis might include following several aspects: (a) protein species related to photosynthesis and energy metabolism in C. sinensis leaves were more adaptive to B-toxicity than in C. grandis ones, which was responsible for the higher photosynthesis and for the better maintenance of energy homeostasis in the former; and (b) the increased requirement for detoxification of reactive oxygen species and cytotoxic compounds due to decreased photosynthesis was less in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. B-toxicity-responsive protein species involved in coenzyme biosynthesis differed between the two species, which might also contribute to the higher B-tolerance of C. sinensis. BIOLOGICAL SIGNIFICANCE B-toxicity occurs in many regions all over the world, especially in arid and semiarid regions due to the raising of B-rich water tables with high B accumulated in topsoil. In China, B-toxicity often occurs in some citrus orchards. However, the mechanisms of citrus B-tolerance are still not fully understood. Here, we first used 2-DE to identify some new B-toxicity-responsive-proteins involved in carbohydrate and energy metabolism, antioxidation and detoxification, signal transduction and nucleotide metabolism. Our results showed that proteins involved in photosynthesis and energy metabolism displayed more adaptive to B-toxicity in B-tolerant C. sinensis than in B-intolerant C. grandis, which might play a key role in citrus B-tolerance. Therefore, our results reveal some new mechanisms on plant B-response and tolerance.
Collapse
Affiliation(s)
- Wen Sang
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeng-Rong Huang
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Lin-Tong Yang
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Guo
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
17
|
Lu YB, Qi YP, Yang LT, Lee J, Guo P, Ye X, Jia MY, Li ML, Chen LS. Long-term boron-deficiency-responsive genes revealed by cDNA-AFLP differ between Citrus sinensis roots and leaves. FRONTIERS IN PLANT SCIENCE 2015; 6:585. [PMID: 26284101 PMCID: PMC4517394 DOI: 10.3389/fpls.2015.00585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/13/2015] [Indexed: 05/20/2023]
Abstract
Seedlings of Citrus sinensis (L.) Osbeck were supplied with boron (B)-deficient (without H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. We identified 54 (38) and 38 (45) up (down)-regulated cDNA-AFLP bands (transcript-derived fragments, TDFs) from B-deficient leaves and roots, respectively. These TDFs were mainly involved in protein and amino acid metabolism, carbohydrate and energy metabolism, nucleic acid metabolism, cell transport, signal transduction, and stress response and defense. The majority of the differentially expressed TDFs were isolated only from B-deficient roots or leaves, only seven TDFs with the same GenBank ID were isolated from the both. In addition, ATP biosynthesis-related TDFs were induced in B-deficient roots, but unaffected in B-deficient leaves. Most of the differentially expressed TDFs associated with signal transduction and stress defense were down-regulated in roots, but up-regulated in leaves. TDFs related to protein ubiquitination and proteolysis were induced in B-deficient leaves except for one TDF, while only two down-regulated TDFs associated with ubiquitination were detected in B-deficient roots. Thus, many differences existed in long-term B-deficiency-responsive genes between roots and leaves. In conclusion, our findings provided a global picture of the differential responses occurring in B-deficient roots and leaves and revealed new insight into the different adaptive mechanisms of C. sinensis roots and leaves to B-deficiency at the transcriptional level.
Collapse
Affiliation(s)
- Yi-Bin Lu
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical SciencesFuzhou, China
| | - Lin-Tong Yang
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jinwook Lee
- Department of Horticultural Science, Kyungpook National UniversityDaegu, South Korea
| | - Peng Guo
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xin Ye
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Meng-Yang Jia
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Mei-Li Li
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Li-Song Chen
- Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry UniversityFuzhou, China
- *Correspondence: Li-Song Chen, Department of Resource and Environment, College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Boxue Building, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| |
Collapse
|