1
|
Weselake RJ, Fell DA, Wang X, Scofield S, Chen G, Harwood JL. Increasing oil content in Brassica oilseed species. Prog Lipid Res 2024; 96:101306. [PMID: 39566857 DOI: 10.1016/j.plipres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Brassica oilseed species are the third most important in the world, providing approximately 15 % of the total vegetable oils. Three species (Brassica rapa, B. juncea, B. napus) dominate with B. napus being the most common in Canada, China and Europe. Originally, B. napus was a crop producing seed with high erucic acid content, which still persists today, to some extent, and is used for industrial purposes. In contrast, cultivars which produce seed used for food and feed are low erucic acid cultivars which also have reduced glucosinolate content. Because of the limit to agricultural land, recent efforts have been made to increase productivity of oil crops, including Brassica oilseed species. In this article, we have detailed research in this regard. We have covered modern genetic, genomic and metabolic control analysis approaches to identifying potential targets for the manipulation of seed oil content. Details of work on the use of quantitative trait loci, genome-wide association and comparative functional genomics to highlight factors influencing seed oil accumulation are given and functional proteins which can affect this process are discussed. In summary, a wide variety of inputs are proving useful for the improvement of Brassica oilseed species, as major sources of global vegetable oil.
Collapse
Affiliation(s)
- Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - David A Fell
- Department of Biological and Molecular Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Xiaoyu Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
2
|
Fu Y, Yao M, Qiu P, Song M, Ni X, Niu E, Shi J, Wang T, Zhang Y, Yu H, Qian L. Identification of transcription factor BnHDG4-A08 as a novel candidate associated with the accumulation of oleic, linoleic, linolenic, and erucic acid in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:243. [PMID: 39352575 DOI: 10.1007/s00122-024-04733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/24/2024] [Indexed: 10/03/2024]
Abstract
KEY MESSAGE We screened 47 significantly associated haplotype blocks for oleic, linoleic, linolenic, and erucic acid, with 17 blocks influencing multiple traits. A novel candidate of transcription factor BnHDG4 A08 influencing oleic, linoleic, linolenic, and erucic acid was identified, by a joint strategy of haplotype-based genome-wide association study, genomic resequencing, gene cloning, and co-expression network Fatty acid (FA) composition determines the quality and economic value of rapeseed oil (Brassica napus). However, the molecular network of FAs is unclear. In the current study, multi-strategies of haplotype-based genome-wide association study (GWAS), genomic resequencing, gene cloning, and co-expression network were joint to reveal novel genetic factors influencing FA accumulation in rapeseed. We identified 47 significantly associated haplotype blocks for oleic, linoleic, linolenic, and erucic acid, with 17 blocks influencing multiple traits, using a haplotype-based GWAS with phenotype data from 203 Chinese semi-winter accessions. A total of 61 rapeseed orthologs involved in acyl-lipid metabolism, carbohydrate metabolism, or photosynthesis were identified in these 17 blocks. Among these genes, BnHDG4-A08, encoding a class IV homeodomain leucine-zipper transcription factor, exhibited two single-nucleotide polymorphisms (SNPs) in the exon and intron, with significant associations with oleic, linoleic, linolenic, and erucic acid. Gene cloning further validated two SNPs in the exon of BnHDG4-A08 in a population with 75 accessions, leading to two amino acid changes (T372A and P366L) and significant variation of oleic, linoleic, linolenic, and erucic acid. A competitive allele-specific PCR (KASP) marker based on the SNPs was successfully developed and validated. Moreover, 98 genes exhibiting direct interconnections and high weight values with BnHDG4-A08 were identified through co-expression network analysis using transcriptome data from 13 accessions. Our study identified a novel FA candidate of transcription factor BnHDG4-A08 influencing oleic, linoleic, linolenic, and erucic acid. This gene provides a potential promising gene resource for the novel mechanistic understanding of transcription factors regulating FA accumulation.
Collapse
Affiliation(s)
- Ying Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Min Yao
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Ping Qiu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Maolin Song
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Xiyuan Ni
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Erli Niu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianghua Shi
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tanliu Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaofeng Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huasheng Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Lunwen Qian
- College of Agronomy, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
3
|
Tan Q, Han B, Haque ME, Li YL, Wang Y, Wu D, Wu SB, Liu AZ. The molecular mechanism of WRINKLED1 transcription factor regulating oil accumulation in developing seeds of castor bean. PLANT DIVERSITY 2023; 45:469-478. [PMID: 37601547 PMCID: PMC10435909 DOI: 10.1016/j.pld.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 08/22/2023]
Abstract
The transcription factor WRINKLED1 (WRI1), a member of AP2 gene family that contain typical AP2 domains, has been considered as a master regulator regulating oil biosynthesis in oilseeds. However, the regulatory mechanism of RcWRI1 in regulating oil accumulation during seed development has not been clearly addressed. Castor bean (Ricinus communis) is one of the most important non-edible oil crops and its seed oils are rich in hydroxy fatty acids, widely applied in industry. In this study, based on castor bean reference genome, three RcWRIs genes (RcWRI1, RcWRI2 and RcWRI3) were identified and the expressed association of RcWRI1 with oil accumulation were determined. Heterologous transformation of RcWRI1 significantly increased oil content in tobacco leaf, confirming that RcWRI1 activate lipid biosynthesis pathway. Using DNA Affinity Purification sequencing (DAP-seq) technology, we confirmed RcWRI1 binding with Transcription Start Site of genes and identified 7961 WRI1-binding candidate genes. Functionally, these identified genes were mainly involved in diverse metabolism pathways (including lipid biosynthesis). Three cis-elements AW-box ([CnTnG](n)7[CG]) and AW-boxes like ([GnAnC](n)6[GC]/[GnAnC](n)7[G]) bound with RcWRI1 were identified. Co-expression network analysis of RcWRI1 further found that RcWRI1 might be widely involved in biosynthesis of storage materials during seed development. In particular, yeast one hybrid experiments found that both AP2 domains within RcWRI1 were required in binding targeted genes. These results not only provide new evidence to understand the regulatory mechanism of RcWRI1 in regulation of oil accumulation during castor bean seed development, but also give candidate gene resource for subsequent genetic improvement toward increasing oil content in oilseed crops.
Collapse
Affiliation(s)
- Qing Tan
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Han
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Mohammad Enamul Haque
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Ye-Lan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yue Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Di Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Shi-Bo Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Ai-Zhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
4
|
Kong Y, Liu C, Zhang X, Liu X, Li W, Li F, Wang X, Yue X. Characterization of fatty acid compositions in longissimus thoracis muscle and identification of candidate gene and SNPs related to polyunsaturated fatty acid in Hu sheep. J Anim Sci 2023; 101:skac382. [PMID: 36394948 PMCID: PMC9833039 DOI: 10.1093/jas/skac382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Fatty acid (FA) composition contributes greatly to the quality and nutritional value of lamb meat. In the present study, FA was measured in longissimus thoracis (LT) muscles of 1,085 Hu sheep using gas chromatography. Comparative transcriptomic analysis was conducted in LT muscles to identify differentially expressed genes (DEGs) between six individuals with high polyunsaturated fatty acids (H-PUFA, 15.27% ± 0.42%) and six with low PUFA (L-PUFA, 5.22% ± 0.25%). Subsequently, the single nucleotide polymorphisms (SNPs) in a candidate gene PLIN2 were correlated with FA traits. The results showed a total of 29 FA compositions and 8 FA groups were identified, with the highest content of monounsaturated fatty acids (MUFA, 46.54%, mainly C18:1n9c), followed by saturated fatty acids (SFA, 44.32%, mainly C16:0), and PUFA (8.72%, mainly C18:2n6c), and significant correlations were observed among the most of FA traits. Transcriptomic analyses identified 110 upregulated and 302 downregulated DEGs between H-PUFA and L-PUFA groups. The functional enrichment analysis revealed three significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and 17 gene ontology (GO) terms, in which regulation of lipolysis in adipocytes, the AMPK signaling pathway, and the PPAR signaling pathway may play important roles in FA metabolism and biosynthesis. In addition, weighted gene co-expression network analysis (WGCNA) identified 37 module genes associated with PUFA-related traits. In general, PLIN1, LIPE, FABP4, LEP, ACACA, ADIPOQ, SCD, PCK2, FASN, PLIN2, LPL, FABP3, THRSP, and ACADVL may have a great impact on PUFA metabolism and lipid deposition. Four SNPs within PLIN2 were significantly associated with FA. Of those, SNP1 (g.287 G>A) was significantly associated with C18:1n9c and MUFA, and SNP4 (g.7807 T>C) was significantly correlated with PUFA (C18:3n3). In addition, the combined genotype of SNP1 (g.287 G>A), SNP3 (g.7664 T>C), and SNP4 (g.7807 T>C) were significantly correlated with C16:1, C17:0, C18:1C6, PUFA (C18:3n3, C22:6n3), and n-6/n-3 PUFA. These results contribute to the knowledge of the biological mechanisms and genetic markers involved in the composition of FA in Hu sheep.
Collapse
Affiliation(s)
- Yuanyuan Kong
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Chongyang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xueying Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xing Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Wenqiao Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xinji Wang
- Extension Station of Animal Husbandry and Veterinary Medicine in Minqin, Minqin County 733300, China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
5
|
Shen B, Schmidt MA, Collet KH, Liu ZB, Coy M, Abbitt S, Molloy L, Frank M, Everard JD, Booth R, Samadar PP, He Y, Kinney A, Herman EM. RNAi and CRISPR-Cas silencing E3-RING ubiquitin ligase AIP2 enhances soybean seed protein content. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7285-7297. [PMID: 36112496 DOI: 10.1093/jxb/erac376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
The majority of plant protein in the world's food supply is derived from soybean (Glycine max). Soybean is a key protein source for global animal feed and is incorporated into plant-based foods for people, including meat alternatives. Soybean protein content is genetically variable and is usually inversely related to seed oil content. ABI3-interacting protein 2 (AIP2) is an E3-RING ubiquitin ligase that targets the seed-specific transcription factor ABI3. Silencing both soybean AIP2 genes (AIP2a and AIP2b) by RNAi enhanced seed protein content by up to seven percentage points, with no significant decrease in seed oil content. The protein content enhancement did not alter the composition of the seed storage proteins. Inactivation of either AIP2a or AIP2b by a CRISPR-Cas9-mediated mutation increased seed protein content, and this effect was greater when both genes were inactivated. Transactivation assays in transfected soybean hypocotyl protoplasts indicated that ABI3 changes the expression of glycinin, conglycinin, 2S albumin, and oleosin genes, indicating that AIP2 depletion increased seed protein content by regulating activity of the ABI3 transcription factor protein. These results provide an example of a gene-editing prototype directed to improve global food security and protein availability in soybean that may also be applicable to other protein-source crops.
Collapse
Affiliation(s)
- Bo Shen
- Corteva Agriscience, 7250 NW 62nd Ave, PO Box 552, Johnston, IA 50131, USA
| | - Monica A Schmidt
- School of Plant Sciences and Bio5 Institute, 1657 E Helen St, University of Arizona, Tucson, AZ, USA
| | | | - Zhan-Bin Liu
- Corteva Agriscience, 7250 NW 62nd Ave, PO Box 552, Johnston, IA 50131, USA
| | - Monique Coy
- Corteva Agriscience, 7250 NW 62nd Ave, PO Box 552, Johnston, IA 50131, USA
| | - Shane Abbitt
- Corteva Agriscience, 7250 NW 62nd Ave, PO Box 552, Johnston, IA 50131, USA
| | - Lynda Molloy
- Corteva Agriscience, 7250 NW 62nd Ave, PO Box 552, Johnston, IA 50131, USA
| | - Mary Frank
- Corteva Agriscience, 7250 NW 62nd Ave, PO Box 552, Johnston, IA 50131, USA
| | - John D Everard
- Corteva Agriscience, 7250 NW 62nd Ave, PO Box 552, Johnston, IA 50131, USA
| | - Russ Booth
- Corteva Agriscience, 7250 NW 62nd Ave, PO Box 552, Johnston, IA 50131, USA
| | - Partha P Samadar
- School of Plant Sciences and Bio5 Institute, 1657 E Helen St, University of Arizona, Tucson, AZ, USA
| | - Yonghua He
- School of Plant Sciences and Bio5 Institute, 1657 E Helen St, University of Arizona, Tucson, AZ, USA
| | - Anthony Kinney
- Corteva Agriscience, 7250 NW 62nd Ave, PO Box 552, Johnston, IA 50131, USA
| | - Eliot M Herman
- School of Plant Sciences and Bio5 Institute, 1657 E Helen St, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
6
|
Zhang K, He J, Yin Y, Chen K, Deng X, Yu P, Li H, Zhao W, Yan S, Li M. Lysophosphatidic acid acyltransferase 2 and 5 commonly, but differently, promote seed oil accumulation in Brassica napus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:83. [PMID: 35962411 PMCID: PMC9375321 DOI: 10.1186/s13068-022-02182-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
Abstract
Background Increasing seed oil content (SOC) of Brassica napus has become one of the main plant breeding goals over the past decades. Lysophosphatidic acid acyltransferase (LPAT) performs an important molecular function by regulating the production of phosphatidic acid (PA), a key intermediate in the synthesis of membrane and storage lipids. However, the mechanism underlying the effect of LPAT on the SOC of B. napus remains unclear. Results In the present study, significant elevation of SOC was achieved by overexpressing BnLPAT2 and BnLPAT5 in B. napus. RNAi and CRISPR–Cas9 were also successfully used to knock down and knock out these two genes in B. napus where SOC significantly decreased. Meanwhile, we found an accumulation of lipid droplets and oil bodies in seeds of BnLPAT2 and BnLPAT5 overexpression lines, whereas an increase of sugar and protein in Bnlpat2 and Bnlpat5 mutant seeds. Sequential transcriptome analysis was further performed on the developing seeds of the BnLPAT2 and BnLPAT5 overexpression, knockdown, and knockout rapeseed lines. Most differentially expressed genes (DEGs) that were expressed in the middle and late stages of seed development were enriched in photosynthesis and lipid metabolism, respectively. The DEGs involved in fatty acid and lipid biosynthesis were active in the overexpression lines but were relatively inactive in the knockdown and knockout lines. Further analysis revealed that the biological pathways related to fatty acid/lipid anabolism and carbohydrate metabolism were specifically enriched in the BnLPAT2 overexpression lines. Conclusions BnLPAT2 and BnLPAT5 are essential for seed oil accumulation. BnLPAT2 preferentially promoted diacylglycerol synthesis to increase SOC, whereas BnLPAT5 tended to boost PA synthesis for membrane lipid generation. Taken together, BnLPAT2 and BnLPAT5 can jointly but differently promote seed oil accumulation in B. napus. This study provides new insights into the potential mechanisms governing the promotion of SOC by BnLPAT2 and BnLPAT5 in the seeds of B. napus. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02182-2.
Collapse
|
7
|
Niu E, Gao S, Hu W, Zhang C, Liu D, Shen G, Zhu S. Genome-Wide Identification and Functional Differentiation of Fatty Acid Desaturase Genes in Olea europaea L. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111415. [PMID: 35684188 PMCID: PMC9182961 DOI: 10.3390/plants11111415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 05/26/2023]
Abstract
Olive (Olea europaea L.) is a world-famous woody oil tree and popular for redundant unsaturated fatty acids. Fatty acid desaturase (FAD) genes are responsible for fatty acid desaturation and stress regulation but have not yet been identified in olive at the whole genome level. This study identified 40 and 27 FAD genes in the cultivated olive O. europaea cv. Farga and the wild olive O. europaea var. Sylvestris, respectively. Phylogenetic analysis showed that all the FAD genes could be classified into the soluble FAB2/SAD clade and membrane-bound clade, including ADS/FAD5, DES, FAD4, SLD, ω-6 and ω-3, with the high consistency of subcellular localization, motif composition and exon-intron organization in each group. FAD genes in olive showed the diverse functional differentiation in morphology of different tissues, fruit development and stress responses. Among them, OeFAB2.8 and OeFAD2.3 were up-regulated and OeADS.1, OeFAD4.1 and OeFAD8.2 were down-regulated under the wound, Verticillium dahliae and cold stresses. This study presents a comprehensive analysis of the FAD genes at the whole-genome level in olives and will provide guidance for the improvement of oil quality or stress tolerance of olive trees.
Collapse
Affiliation(s)
- Erli Niu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (E.N.); (S.G.); (W.H.); (C.Z.); (D.L.); (G.S.)
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Hangzhou 310021, China
| | - Song Gao
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (E.N.); (S.G.); (W.H.); (C.Z.); (D.L.); (G.S.)
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Hangzhou 310021, China
| | - Wenjun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (E.N.); (S.G.); (W.H.); (C.Z.); (D.L.); (G.S.)
| | - Chengcheng Zhang
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (E.N.); (S.G.); (W.H.); (C.Z.); (D.L.); (G.S.)
| | - Daqun Liu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (E.N.); (S.G.); (W.H.); (C.Z.); (D.L.); (G.S.)
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (E.N.); (S.G.); (W.H.); (C.Z.); (D.L.); (G.S.)
| | - Shenlong Zhu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (E.N.); (S.G.); (W.H.); (C.Z.); (D.L.); (G.S.)
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Hangzhou 310021, China
| |
Collapse
|
8
|
Raboanatahiry N, Chao H, He J, Li H, Yin Y, Li M. Construction of a Quantitative Genomic Map, Identification and Expression Analysis of Candidate Genes for Agronomic and Disease-Related Traits in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:862363. [PMID: 35360294 PMCID: PMC8963808 DOI: 10.3389/fpls.2022.862363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 06/12/2023]
Abstract
Rapeseed is the second most important oil crop in the world. Improving seed yield and seed oil content are the two main highlights of the research. Unfortunately, rapeseed development is frequently affected by different diseases. Extensive research has been made through many years to develop elite cultivars with high oil, high yield, and/or disease resistance. Quantitative trait locus (QTL) analysis has been one of the most important strategies in the genetic deciphering of agronomic characteristics. To comprehend the distribution of these QTLs and to uncover the key regions that could simultaneously control multiple traits, 4,555 QTLs that have been identified during the last 25 years were aligned in one unique map, and a quantitative genomic map which involved 128 traits from 79 populations developed in 12 countries was constructed. The present study revealed 517 regions of overlapping QTLs which harbored 2,744 candidate genes and might affect multiple traits, simultaneously. They could be selected to customize super-rapeseed cultivars. The gene ontology and the interaction network of those candidates revealed genes that highly interacted with the other genes and might have a strong influence on them. The expression and structure of these candidate genes were compared in eight rapeseed accessions and revealed genes of similar structures which were expressed differently. The present study enriches our knowledge of rapeseed genome characteristics and diversity, and it also provided indications for rapeseed molecular breeding improvement in the future.
Collapse
Affiliation(s)
- Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Cui Y, Zeng X, Xiong Q, Wei D, Liao J, Xu Y, Chen G, Zhou Y, Dong H, Wan H, Liu Z, Li J, Guo L, Jung C, He Y, Qian W. Combining quantitative trait locus and co-expression analysis allowed identification of new candidates for oil accumulation in rapeseed. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1649-1660. [PMID: 33249500 DOI: 10.1093/jxb/eraa563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
In crops there are quantitative trait loci (QTLs) in which some of the causal quantitative trait genes (QTGs) have not been functionally characterized even in the model plant Arabidopsis. We propose an approach to delineate QTGs in rapeseed by coordinating expression of genes located within QTLs and known orthologs related to traits from Arabidopsis. Using this method in developing siliques 15 d after pollination in 71 lines of rapeseed, we established an acyl-lipid metabolism co-expression network with 21 modules composed of 270 known acyl-lipid genes and 3503 new genes. The core module harbored 76 known genes involved in fatty acid and triacylglycerol biosynthesis and 671 new genes involved in sucrose transport, carbon metabolism, amino acid metabolism, seed storage protein processes, seed maturation, and phytohormone metabolism. Moreover, the core module closely associated with the modules of photosynthesis and carbon metabolism. From the co-expression network, we selected 12 hub genes to identify their putative Arabidopsis orthologs. These putative orthologs were functionally analysed using Arabidopsis knockout and overexpression lines. Four knockout mutants exhibited lower seed oil content, while the seed oil content in 10 overexpression lines was significantly increased. Therefore, combining gene co-expression network analysis and QTL mapping, this study provides new insights into the detection of QTGs and into acyl-lipid metabolism in rapeseed.
Collapse
Affiliation(s)
- Yixin Cui
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiao Zeng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Qing Xiong
- School of Computer and Information Science, Southwest University, Chongqing, China
| | - Dayong Wei
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jinghang Liao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Yonghong Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Hongli Dong
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Huafang Wan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zhi Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, China
| | - Christian Jung
- Plant Breeding Institute, Christian Albrechts University of Kiel, Olshausenstr., Kiel, Germany
| | - Yajun He
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Gill KS, Kaur G, Kaur G, Kaur J, Kaur Sra S, Kaur K, Gurpreet K, Sharma M, Bansal M, Chhuneja P, Banga SS. Development and Validation of Kompetitive Allele-Specific PCR Assays for Erucic Acid Content in Indian Mustard [ Brassica juncea (L.) Czern and Coss.]. FRONTIERS IN PLANT SCIENCE 2021; 12:738805. [PMID: 34975937 PMCID: PMC8714676 DOI: 10.3389/fpls.2021.738805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/20/2021] [Indexed: 05/10/2023]
Abstract
Brassica juncea L. is the most widely cultivated oilseed crop in Indian subcontinent. Its seeds contain oil with very high concentration of erucic acid (≈50%). Of late, there is increasing emphasis on the development of low erucic acid varieties because of reported association of the consumption of high erucic acid oil with cardiac lipidosis. Erucic acid is synthesized from oleic acid by an elongation process involving two cycles of four sequential steps. Of which, the first step is catalyzed by β-ketoacyl-CoA synthase (KCS) encoded by the fatty acid elongase 1 (FAE1) gene in Brassica. Mutations in the coding region of the FAE1 lead to the loss of KCS activity and consequently a drastic reduction of erucic acid in the seeds. Molecular markers have been developed on the basis of variation available in the coding or promoter region(s) of the FAE1. However, majority of these markers are not breeder friendly and are rarely used in the breeding programs. Present studies were planned to develop robust kompetitive allele-specific PCR (KASPar) assays with high throughput and economics of scale. We first cloned and sequenced FAE1.1 and FAE1.2 from high and low erucic acid (<2%) genotypes of B. juncea (AABB) and its progenitor species, B. rapa (AA) and B. nigra (BB). Sequence comparisons of FAE1.1 and FAE1.2 genes for low and high erucic acid genotypes revealed single nucleotide polymorphisms (SNPs) at 8 and 3 positions. Of these, three SNPs for FAE1.1 and one SNPs for FAE1.2 produced missense mutations, leading to amino acid modifications and inactivation of KCS enzyme. We used SNPs at positions 735 and 1,476 for genes FAE1.1 and FAE1.2, respectively, to develop KASPar assays. These markers were validated on a collection of diverse genotypes and a segregating backcross progeny. KASPar assays developed in this study will be useful for marker-assisted breeding, as these can track recessive alleles in their heterozygous state with high reproducibility.
Collapse
Affiliation(s)
- Karanjot Singh Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Gurpreet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Gurpreet Kaur, ; orcid.org/0000-0002-0660-9592
| | - Gurdeep Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Jasmeet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Simarjeet Kaur Sra
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Kawalpreet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Kaur Gurpreet
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Meha Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Mitaly Bansal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Surinder S. Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
11
|
Gaikwad KB, Rani S, Kumar M, Gupta V, Babu PH, Bainsla NK, Yadav R. Enhancing the Nutritional Quality of Major Food Crops Through Conventional and Genomics-Assisted Breeding. Front Nutr 2020; 7:533453. [PMID: 33324668 PMCID: PMC7725794 DOI: 10.3389/fnut.2020.533453] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/03/2020] [Indexed: 01/14/2023] Open
Abstract
Nutritional stress is making over two billion world population malnourished. Either our commercially cultivated varieties of cereals, pulses, and oilseed crops are deficient in essential nutrients or the soils in which these crops grow are becoming devoid of minerals. Unfortunately, our major food crops are poor sources of micronutrients required for normal human growth. To overcome the problem of nutritional deficiency, greater emphasis should be laid on the identification of genes/quantitative trait loci (QTLs) pertaining to essential nutrients and their successful deployment in elite breeding lines through marker-assisted breeding. The manuscript deals with information on identified QTLs for protein content, vitamins, macronutrients, micro-nutrients, minerals, oil content, and essential amino acids in major food crops. These QTLs can be utilized in the development of nutrient-rich crop varieties. Genome editing technologies that can rapidly modify genomes in a precise way and will directly enrich the nutritional status of elite varieties could hold a bright future to address the challenge of malnutrition.
Collapse
Affiliation(s)
- Kiran B. Gaikwad
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Sushma Rani
- Indian Council of Agricultural Research (ICAR)-National Institute for Plant Biotechnology, New Delhi, India
| | - Manjeet Kumar
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Vikas Gupta
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Prashanth H. Babu
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Naresh Kumar Bainsla
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Rajbir Yadav
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
12
|
Akhatar J, Singh MP, Sharma A, Kaur H, Kaur N, Sharma S, Bharti B, Sardana VK, Banga SS. Association Mapping of Seed Quality Traits Under Varying Conditions of Nitrogen Application in Brassica juncea L. Czern & Coss. Front Genet 2020; 11:744. [PMID: 33088279 PMCID: PMC7490339 DOI: 10.3389/fgene.2020.00744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/22/2020] [Indexed: 12/02/2022] Open
Abstract
Indian mustard (Brassica juncea) is a major source of vegetable oil in the Indian subcontinent. The seed cake left after the oil extraction is used as livestock feed. We examined the genetic architecture of oil, protein, and glucosinolates by conducting a genome-wide association study (GWAS), using an association panel comprising 92 diverse genotypes. We conducted trait phenotyping over 2 years at two levels of nitrogen (N) application. Genotyping by sequencing was used to identify 66,835 loci, covering 18 chromosomes. Genetic diversity and phenotypic variations were high for the studied traits. Trait performances were stable when averaged over years and N levels. However, individual performances differed. General and mixed linear models were used to estimate the association between the SNP markers and the seed quality traits. Population structure, principal components (PCs) analysis, and discriminant analysis of principal components (DAPCs) were included as covariates to overcome the bias due to the population stratification. We identified 16, 23, and 27 loci associated with oil, protein, and glucosinolates, respectively. We also established LD patterns and haplotype structures for the candidate genes. The average block sizes were larger on A-genome chromosomes as compared to the B- genome chromosomes. Genetic associations differed over N levels. However, meta-analysis of GWAS datasets not only improved the power to recognize associations but also helped to identify common SNPs for oil and protein contents. Annotation of the genomic region around the identified SNPs led to the prediction of 21 orthologs of the functional candidate genes related to the biosynthesis of oil, protein, and glucosinolates. Notable among these are: LACS5 (A09), FAD6 (B05), ASN1 (A06), GTR2 (A06), CYP81G1 (B06), and MYB44 (B06). The identified loci will be very useful for marker-aided breeding for seed quality modifications in B. juncea.
Collapse
Affiliation(s)
- Javed Akhatar
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Mohini Prabha Singh
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Anju Sharma
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Harjeevan Kaur
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Navneet Kaur
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Sanjula Sharma
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Baudh Bharti
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - V K Sardana
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Surinder S Banga
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
13
|
Yao M, Guan M, Zhang Z, Zhang Q, Cui Y, Chen H, Liu W, Jan HU, Voss-Fels KP, Werner CR, He X, Liu Z, Guan C, Snowdon RJ, Hua W, Qian L. GWAS and co-expression network combination uncovers multigenes with close linkage effects on the oleic acid content accumulation in Brassica napus. BMC Genomics 2020; 21:320. [PMID: 32326904 PMCID: PMC7181522 DOI: 10.1186/s12864-020-6711-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 03/31/2020] [Indexed: 11/19/2022] Open
Abstract
Background Strong artificial and natural selection causes the formation of highly conserved haplotypes that harbor agronomically important genes. GWAS combination with haplotype analysis has evolved as an effective method to dissect the genetic architecture of complex traits in crop species. Results We used the 60 K Brassica Infinium SNP array to perform a genome-wide analysis of haplotype blocks associated with oleic acid (C18:1) in rapeseed. Six haplotype regions were identified as significantly associated with oleic acid (C18:1) that mapped to chromosomes A02, A07, A08, C01, C02, and C03. Additionally, whole-genome sequencing of 50 rapeseed accessions revealed three genes (BnmtACP2-A02, BnABCI13-A02 and BnECI1-A02) in the A02 chromosome haplotype region and two genes (BnFAD8-C02 and BnSDP1-C02) in the C02 chromosome haplotype region that were closely linked to oleic acid content phenotypic variation. Moreover, the co-expression network analysis uncovered candidate genes from these two different haplotype regions with potential regulatory interrelationships with oleic acid content accumulation. Conclusions Our results suggest that several candidate genes are closely linked, which provides us with an opportunity to develop functional haplotype markers for the improvement of the oleic acid content in rapeseed.
Collapse
Affiliation(s)
- Min Yao
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Mei Guan
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Zhenqian Zhang
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Qiuping Zhang
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Yixin Cui
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Hao Chen
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Liu
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Habib U Jan
- Precision Medicine Lab, Rehman Medical Institute (RMI), Phase 5, Hayatabad, Peshawar, 25000, Pakistan
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Christian R Werner
- The Roslin Institute University of Edinburgh Easter Bush Research Centre Midlothian, Edinburgh, EH25 9RG, UK
| | - Xin He
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Zhongsong Liu
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Chunyun Guan
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Wei Hua
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China. .,Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.
| | - Lunwen Qian
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
14
|
Qu C, Yin N, Chen S, Wang S, Chen X, Zhao H, Shen S, Fu F, Zhou B, Xu X, Liu L, Lu K, Li J. Comparative Analysis of the Metabolic Profiles of Yellow- versus Black-Seeded Rapeseed Using UPLC-HESI-MS/MS and Transcriptome Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3033-3049. [PMID: 32052629 DOI: 10.1021/acs.jafc.9b07173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The high levels of secondary metabolites in rapeseed play important roles in determining the oil quality and feeding value. Here, we characterized the metabolic profiles in seeds of various yellow- and black-seeded rapeseed accessions. Two hundred and forty-eight features were characterized, including 31 phenolic acids, 54 flavonoids, 24 glucosinolates, 65 lipid compounds, and 74 other polar compounds. The most abundant phenolic acids and various flavonoids (epicatechin, isorhamnetin, kaempferol, quercetin, and their derivatives) were widely detected and showed significant differences in distribution between the yellow- and black-seeded rapeseed. Furthermore, the related genes (e.g., BnTT3, BnTT18, BnTT10, BnTT12, and BnBAN) involved in the proanthocyanidin pathway had lower expression levels in yellow-seeded rapeseed, strongly suggesting that the seed coat color could be mainly determined by the levels of epicatechin and their derivatives. These results improve our understanding of the primary constituents of rapeseed and lay the foundation for breeding novel varieties with a high nutritional value.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Nengwen Yin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Si Chen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Shuxian Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Xingyu Chen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Shulin Shen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Fuyou Fu
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan S7N02X, Canada
| | - Baojin Zhou
- Deepxomics-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Liezhao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
15
|
Chen K, Yin Y, Liu S, Guo Z, Zhang K, Liang Y, Zhang L, Zhao W, Chao H, Li M. Genome-wide identification and functional analysis of oleosin genes in Brassica napus L. BMC PLANT BIOLOGY 2019; 19:294. [PMID: 31272381 PMCID: PMC6610931 DOI: 10.1186/s12870-019-1891-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/18/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rapeseed is the third largest oil seed crop in the world. The seeds of this plant store lipids in oil bodies, and oleosin is the most important structural protein in oil bodies. However, the function of oleosin in oil crops has received little attention. RESULTS In the present study, 48 oleosin sequences from the Brassica napus genome were identified and divided into four lineages (T, U, SH, SL). Synteny analysis revealed that most of the oleosin genes were conserved, and all of these genes experienced purifying selection during evolution. Three and four important oleosin genes from Arabidopsis and B. napus, respectively, were cloned and analyzed for function in Arabidopsis. Overexpression of these oleosin genes in Arabidopsis increased the seed oil content slightly, except for BnaOLE3. Further analysis revealed that the average oil body size of the transgenic seeds was slightly larger than that of the wild type (WT), except for BnaOLE1. The fatty acid profiles showed that the linoleic acid content (13.3% at most) increased and the peanut acid content (11% at most) decreased in the transgenic lines. In addition, the seed size and thousand-seed weight (TSW) also increased in the transgenic lines, which could lead to increased total lipid production. CONCLUSION We identified oleosin genes in the B. napus genome, and overexpression of oleosin in Arabidopsis seeds increased the seed weight and linoleic acid content (13.3% at most).
Collapse
Affiliation(s)
- Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Si Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Zhenyi Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yu Liang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Lina Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Weiguo Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| |
Collapse
|
16
|
Lin CW, Fu SF, Liu YJ, Chen CC, Chang CH, Yang YW, Huang HJ. Analysis of ambient temperature-responsive transcriptome in shoot apical meristem of heat-tolerant and heat-sensitive broccoli inbred lines during floral head formation. BMC PLANT BIOLOGY 2019; 19:3. [PMID: 30606114 PMCID: PMC6318969 DOI: 10.1186/s12870-018-1613-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/20/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Head formation of broccoli (Brassica oleracea var. italica) is greatly reduced under high temperature (22 °C and 27 °C). Broccoli inbred lines that are capable of producing heads at high temperatures in summer are varieties that are unique to Taiwan. However, knowledge of the early-activated pathways of broccoli head formation under high temperature is limited. RESULTS We compared heat-tolerant (HT) and heat-sensitive (HS) transcriptome of broccoli under different temperatures. Weighted gene correlation network analysis (WGCNA) revealed that genes involved in calcium signaling pathways, mitogen-activated protein kinase (MAPK) cascades, leucine-rich repeat receptor-like kinases (LRR-RLKs), and genes coding for heat-shock proteins and reactive oxygen species homeostasis shared a similar expression pattern to BoFLC1, which was highly expressed at high temperature (27 °C). Of note, these genes were less expressed in HT than HS broccoli at 22 °C. Co-expression analysis identified a model for LRR-RLKs in survival-reproduction tradeoffs by modulating MAPK- versus phytohormones-signaling during head formation. The difference in head-forming ability in response to heat stress between HT and HS broccoli may result from their differential transcriptome profiles of LRR-RLK genes. High temperature induced JA- as well as suppressed auxin- and cytokinin-related pathways may facilitate a balancing act to ensure fitness at 27 °C. BoFLC1 was less expressed in HT than HS at 22 °C, whereas other FLC homologues were not. Promoter analysis of BoFLC1 showed fewer AT dinucleotide repeats in HT broccoli. These results provide insight into the early activation of stress- or development-related pathways during head formation in broccoli. The identification of the BoFLC1 DNA biomarker may facilitate breeding of HT broccoli. CONCLUSIONS In this study, HT and HS broccoli genotypes were used to determine the effect of temperature on head formation by transcriptome profiling. On the basis of the expression pattern of high temperature-associated signaling genes, the HS transcriptome may be involved in stress defense instead of transition to the reproductive phase in response to heat stress. Transcriptome profiling of HT and HS broccoli helps in understanding the molecular mechanisms underlying head-forming capacity and in promoting functional marker-assisted breeding.
Collapse
Affiliation(s)
- Chung-Wen Lin
- Department of Life Sciences, National Cheng Kung University, No. 1, University Rd, Tainan City, 701 Taiwan
| | - Shih-Feng Fu
- Department of Biology, National Changhua University of Education, Changhua, 500 Taiwan
| | - Yu-Ju Liu
- Department of Life Sciences, National Cheng Kung University, No. 1, University Rd, Tainan City, 701 Taiwan
| | - Chi-Chien Chen
- Department of Life Sciences, National Cheng Kung University, No. 1, University Rd, Tainan City, 701 Taiwan
| | - Ching-Han Chang
- Department of Life Sciences, National Cheng Kung University, No. 1, University Rd, Tainan City, 701 Taiwan
| | - Yau-Wen Yang
- Kale Biotech. Co, No.218, Fudong St., East Dist, Tainan City, 701 Taiwan
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, No. 1, University Rd, Tainan City, 701 Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, No. 1, University Rd, Tainan City, 701 Taiwan
| |
Collapse
|
17
|
Zhang K, Nie L, Cheng Q, Yin Y, Chen K, Qi F, Zou D, Liu H, Zhao W, Wang B, Li M. Effective editing for lysophosphatidic acid acyltransferase 2/5 in allotetraploid rapeseed ( Brassica napus L.) using CRISPR-Cas9 system. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:225. [PMID: 31548867 PMCID: PMC6753616 DOI: 10.1186/s13068-019-1567-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/11/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Brassica napus is one of the most important oilseed crops, and can supply considerable amounts of edible oil as well as provide raw materials for the production of biodiesel in the biotechnology industry. Lysophosphatidic acid acyltransferase (LPAT), a key enzyme in the Kennedy pathway, catalyses fatty acid chains into 3-phosphoglycerate and promotes further production of oil in the form of triacylglycerol. However, because B. napus is an allotetraploid with two subgenomes, the precise genes which involved in oil production remain unclear due to the intractability of efficiently knocking out all copies with high genetic redundancy. Therefore, a robust gene editing technology is necessary for gene function analysis. RESULTS An efficient gene editing technology was developed for the allotetraploid plant B. napus using the CRISPR-Cas9 system. Previous studies showed poor results in either on-target or off-target activity in B. napus. In the present study, four single-gRNAs and two multi-gRNAs were deliberately designed from the conserved coding regions of BnLPAT2 which has seven homologous genes, and BnLPAT5, which has four homologous genes. The mutation frequency was found to range from 17 to 68%, while no mutation was observed in the putative off-target sites. The seeds of the Bnlpat2/Bnlpat5 mutant were wizened and showed enlarged oil bodies, disrupted distribution of protein bodies and increased accumulation of starch in mature seeds. The oil content decreased, with an average decrease of 32% for Bnlpat2 lines and 29% for Bnlpat5 lines in single-gRNA knockout lines, and a decline of 24% for Bnlpat2 mutant lines (i.e., g123) and 39% for Bnlpat2/Bnlpat5 double mutant lines (i.e., g134) in multi-gRNA knockout lines. CONCLUSIONS Seven BnLPAT2 homologous genes and four BnLPAT5 homologous genes were cleaved completely using the CRISPR-Cas9 system, which indicated that it is effective for editing all homologous genes in allotetraploid rapeseed, despite the relatively low sequence identities of both gene families. The size of the oil bodies increased significantly while the oil content decreased, confirming that BnLPAT2 and BnLPAT5 play a role in oil biosynthesis. The present study lays a foundation for further oil production improvement in oilseed crop species.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| | - Liluo Nie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiqi Cheng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fuyu Qi
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Dashan Zou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haohao Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Weiguo Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Baoshan Wang
- College of Life Science, Shandong Normal University, Jinan, 250000 China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| |
Collapse
|
18
|
Long W, Hu M, Gao J, Chen S, Zhang J, Cheng L, Pu H. Identification and Functional Analysis of Two New Mutant BnFAD2 Alleles That Confer Elevated Oleic Acid Content in Rapeseed. Front Genet 2018; 9:399. [PMID: 30294343 PMCID: PMC6158388 DOI: 10.3389/fgene.2018.00399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/31/2018] [Indexed: 01/23/2023] Open
Abstract
Rapeseed (Brassica napus L.) is a vital oil crop worldwide. High oleic acid content is a desirable quality trait for rapeseed oil, which makes it more beneficial to human health. However, many germplasm resources with high oleic acid content in rapeseed have not been evaluated with regard to their genotypes, making it difficult to select the best strains with this trait for the breeding of high oleic acid rapeseed variety. This work was to explore the gene-regulation mechanism of this trait using a new super-high oleic acid content (∼85%) line N1379T as genetic material. In this study, the sequences of four homologous fatty acid desaturase (BnFAD2) genes were compared between super-high (∼85%, N1379T) and normal (∼63%) oleic acid content lines. Results showed that there were two single-nucleotide polymorphisms (SNPs) in BnFAD2-1 and BnFAD2-2, respectively, which led to the amino acid changes (E106K and G303E) in the corresponding proteins. Functional analysis of both genes in yeast confirmed that these SNPs were loss-of-function mutations, thus limiting the conversion of oleic acid to linoleic acid and resulting in the considerable accumulation of oleic acid. Moreover, two specific cleaved amplified polymorphic sequences (CAPS) markers for the two SNPs were developed to identify genotypes of each line in the F2 and BC1 populations. Furthermore, these two mutant loci of BnFAD2-1 and BnFAD2-2 genes were positively associated with elevated oleic acid levels and had a similar effect with regard to the increase of oleic acid content. Taken together, these two novel SNPs in two different BnFAD2 genes jointly regulated the high oleic acid trait in this special germplasm. The study provided insight into the genetic regulation involved in oleic acid accumulation and highlighted the use of new alleles of BnFAD2-1 and BnFAD2-2 in breeding high oleic acid rapeseed varieties.
Collapse
Affiliation(s)
- Weihua Long
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Maolong Hu
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Jianqin Gao
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Song Chen
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Jiefu Zhang
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Li Cheng
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Huiming Pu
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| |
Collapse
|
19
|
Chen F, Zhang W, Yu K, Sun L, Gao J, Zhou X, Peng Q, Fu S, Hu M, Long W, Pu H, Chen S, Wang X, Zhang J. Unconditional and conditional QTL analyses of seed fatty acid composition in Brassica napus L. BMC PLANT BIOLOGY 2018; 18:49. [PMID: 29566663 PMCID: PMC5865336 DOI: 10.1186/s12870-018-1268-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 03/15/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND The fatty acid composition of B. napus' seeds determines the oil's nutritional and industrial values, and affects seed germination. Many studies have reported correlations among C16:0, C18:0, C18:1, C18:2 and C18:3 based on phenotypic data; however, the genetic basis of the fatty acid composition in B. napus is still not well understood. RESULTS In this study, unconditional and conditional quantitative trail locus (QTL) mapping analyses were conducted using a recombinant inbred line in six environments. In total, 21 consensus QTLs each for C16:0, C18:0 and C18:2, 16 for C18:1 and 22 for C18:3 were detected by unconditional mapping. The QTLs with overlapping confidence intervals were integrated into 71 pleiotropically unique QTLs by meta-analysis. Two major QTLs, uuqA5-6 and uuqA5-7, simultaneously affected the fatty acids, except C18:0, in most of environments, with the homologous genes fatty acid desaturase 2 (FAD2) and glycerol-3-phosphate sn-2-acyltransferase 5 (GPAT5) occurring in the confidence interval of uuqA5-6, while phosphatidic acid phosphohydrolase 1 (PAH1) was assigned to uuqA5-7. Moreover, 49, 30, 48, 60 and 45 consensus QTLs were detected for C16:0, C18:0, C18:1, C18:2 and C18:3, respectively, by the conditional mapping analysis. In total, 128 unique QTLs were subsequently integrated from the 232 conditional consensus QTLs. A comparative analysis revealed that 63 unique QTLs could be identified by both mapping methodologies, and 65 additional unique QTLs were only identified in conditional mapping. CONCLUSIONS Thus, conditional QTL mapping for fatty acids may uncover numerous additional QTLs that were inhibited by the effects of other traits. These findings provide useful information for better understanding the genetic relationships among fatty acids at the QTL level.
Collapse
Affiliation(s)
- Feng Chen
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wei Zhang
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kunjiang Yu
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lijie Sun
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianqin Gao
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaoying Zhou
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qi Peng
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Sanxiong Fu
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maolong Hu
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Weihua Long
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huiming Pu
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Song Chen
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaodong Wang
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiefu Zhang
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
20
|
Li R, Jeong K, Davis JT, Kim S, Lee S, Michelmore RW, Kim S, Maloof JN. Integrated QTL and eQTL Mapping Provides Insights and Candidate Genes for Fatty Acid Composition, Flowering Time, and Growth Traits in a F 2 Population of a Novel Synthetic Allopolyploid Brassica napus. FRONTIERS IN PLANT SCIENCE 2018; 9:1632. [PMID: 30483289 PMCID: PMC6243938 DOI: 10.3389/fpls.2018.01632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/19/2018] [Indexed: 05/02/2023]
Abstract
Brassica napus (B. napus, AACC), is an economically important allotetraploid crop species that resulted from hybridization between two diploid species, Brassica rapa (AA) and Brassica olereacea (CC). We have created one new synthetic B. napus genotype Da-Ae (AACC) and one introgression line Da-Ol-1 (AACC), which were used to generate an F2 mapping population. Plants in this F2 mapping population varied in fatty acid content, flowering time, and growth-related traits. Using quantitative trait locus (QTL) mapping, we aimed to determine if Da-Ae and Da-Ol-1 provided novel genetic variation beyond what has already been found in B. napus. Making use of the genotyping information generated from RNA-seq data of these two lines and their F2 mapping population of 166 plants, we constructed a genetic map consisting of 2,021 single nucleotide polymorphism markers that spans 2,929 cM across 19 linkage groups. Besides the known major QTL identified, our high resolution genetic map facilitated the identification of several new QTL contributing to the different fatty acid levels, flowering time, and growth-related trait values. These new QTL probably represent novel genetic variation that existed in our new synthetic B. napus strain. By conducting genome-wide expression variation analysis in our F2 mapping population, genetic regions that potentially regulate many genes across the genome were revealed. A FLOWERING LOCUS C gene homolog, which was identified as a candidate regulating flowering time and multiple growth-related traits, was found underlying one of these regions. Integrated QTL and expression QTL analyses also helped us identified candidate causative genes associated with various biological traits through expression level change and/or possible protein function modification.
Collapse
Affiliation(s)
- Ruijuan Li
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | | | - John T. Davis
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Seungmo Kim
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
- FnP Co., Ltd., Jeungpyeong, South Korea
| | | | - Richard W. Michelmore
- The Genome Center and Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Shinje Kim
- FnP Co., Ltd., Jeungpyeong, South Korea
- *Correspondence: Shinje Kim, Julin N. Maloof,
| | - Julin N. Maloof
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
- *Correspondence: Shinje Kim, Julin N. Maloof,
| |
Collapse
|
21
|
Guan M, Huang X, Xiao Z, Jia L, Wang S, Zhu M, Qiao C, Wei L, Xu X, Liang Y, Wang R, Lu K, Li J, Qu C. Association Mapping Analysis of Fatty Acid Content in Different Ecotypic Rapeseed Using mrMLM. FRONTIERS IN PLANT SCIENCE 2018; 9:1872. [PMID: 30662447 PMCID: PMC6328494 DOI: 10.3389/fpls.2018.01872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/04/2018] [Indexed: 05/06/2023]
Abstract
Brassica napus L. is a widely cultivated oil crop and provides important resources of edible vegetable oil, and its quality is determined by fatty acid composition and content. To explain the genetic basis and identify more minor loci for fatty acid content, the multi-locus random-SNP-effect mixed linear model (mrMLM) was used to identify genomic regions associated with fatty acid content in a genetically diverse population of 435 rapeseed accessions, including 77 winter-type, 55 spring-type, and 303 semi-winter-type accessions grown in different environments. A total of 149 quantitative trait nucleotides (QTNs) were found to be associated with fatty acid content and composition, including 34 QTNs that overlapped with the previously reported loci, and 115 novel QTNs. Of these, 35 novel QTNs, located on chromosome A01, A02, A03, A05, A06, A09, A10, and C02, respectively, were repeatedly detected across different environments. Subsequently, we annotated 95 putative candidate genes by BlastP analysis using sequences from Arabidopsis thaliana homologs of the identified regions. The candidate genes included 34 environmentally-insensitive genes (e.g., CER4, DGK2, KCS17, KCS18, MYB4, and TT16) and 61 environment-sensitive genes (e.g., FAB1, FAD6, FAD7, KCR1, KCS9, KCS12, and TT1) as well as genes invloved in the fatty acid biosynthesis. Among these, BnaA08g08280D and BnaC03g60080D differed in genomic sequence between the high- and low-oleic acid lines, and might thus be the novel alleles regulating oleic acid content. Furthermore, RT-qPCR analysis of these genes showed differential expression levels during seed development. Our results highlight the practical and scientific value of mrMLM or QTN detection and the accuracy of linking specific QTNs to fatty acid content, and suggest a useful strategy to improve the fatty acid content of B. napus seeds by molecular marker-assisted breeding.
Collapse
Affiliation(s)
- Mingwei Guan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiaohu Huang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhongchun Xiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ledong Jia
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shuxian Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Meichen Zhu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Cailin Qiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ying Liang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- *Correspondence: Jiana Li
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Cunmin Qu
| |
Collapse
|
22
|
Bao B, Chao H, Wang H, Zhao W, Zhang L, Raboanatahiry N, Wang X, Wang B, Jia H, Li M. Stable, Environmental Specific and Novel QTL Identification as Well as Genetic Dissection of Fatty Acid Metabolism in Brassica napus. FRONTIERS IN PLANT SCIENCE 2018; 9:1018. [PMID: 30065738 PMCID: PMC6057442 DOI: 10.3389/fpls.2018.01018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/22/2018] [Indexed: 05/05/2023]
Abstract
Fatty acid (FA) composition is the typical quantitative trait in oil seed crops, of which study is not only closely related to oil content, but is also more critical for the quality improvement of seed oil. The double haploid (DH) population named KN with a high density SNP linkage map was applied for quantitative trait loci (QTL) analysis of FA composition in this study. A total of 406 identified QTL were detected for eight FA components with an average confidence interval (CI) of 2.92 cM, the explained phenotypic variation (PV) value ranged from 1.49 to 45.05%. Totally, 204 consensus and 91 unique QTL were further obtained via meta-analysis method for the purpose of detecting multiple environment expressed and pleiotropic QTL, respectively. Of which, 74 stable expressed and 22 environmental specific QTL were also revealed, respectively. In order to make clear the genetic mechanism of FA metabolism at individual QTL level, conditional QTL analysis was also conducted and more than two thousand conditional QTL which could not be detected under the unconditional mapping were detected, which indicated the complex interrelationship of the QTL controlling FA content in rapeseed. Through comparative genomic analysis and homologous gene annotation, 61 candidates related to acyl lipid metabolism were identified underlying the CI of FA QTL. To further visualize the genetic mechanism of FA metabolism, an intuitive and meticulous network about acyl lipid metabolism was constructed and some closely related candidates were positioned. This study provided a more accurate localization for stable and pleiotropic QTL, and a deeper dissection of the molecular regulatory mechanism of FA metabolism in rapeseed.
Collapse
Affiliation(s)
- Binghao Bao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Weiguo Zhao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Lina Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Nadia Raboanatahiry
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaodong Wang
- Provincial Key Laboratory of Agrobiology, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Baoshan Wang
- College of Life Science, Shandong Normal University, Jinan, China
| | - Haibo Jia
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Haibo Jia
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
- Maoteng Li
| |
Collapse
|
23
|
Hao S, Ma Y, Zhao S, Ji Q, Zhang K, Yang M, Yao Y. McWRI1, a transcription factor of the AP2/SHEN family, regulates the biosynthesis of the cuticular waxes on the apple fruit surface under low temperature. PLoS One 2017; 12:e0186996. [PMID: 29073205 PMCID: PMC5658121 DOI: 10.1371/journal.pone.0186996] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/11/2017] [Indexed: 11/22/2022] Open
Abstract
Cuticular waxes of plant and organ surfaces play an important role in protecting plants from biotic and abiotic stress and extending the freshness, storage time and shelf life in the post-harvest agricultural products. WRI1, a transcription factor of AP2/SHEN families, had been found to trigger the related genes taking part in the biosynthesis of seed oil in many plants. But whether WRI1 is involved in the biosynthesis of the cuticular waxes on the Malus fruits surface has been unclear. We investigated the changes of wax composition and structure, the related genes and WRI1 expression on Malus asiatica Nakai and sieversii fruits with the low temperature treatments, found that low temperature induced the up-regulated expression of McWRI1, which promoted gene expression of McKCS, McLACs and McWAX in very-long-chain fatty acid biosynthesis pathway, resulting in the accumulation of alkanes component and alteration of wax structure on the fruit surface. Corresponding results were verified in McWRI1 silenced by VIGS, and WRI1 silenced down-regulated the related genes on two kinds of fruits, it caused the diversity alteration in content of some alkanes, fatty acid and ester component in two kinds of fruits. We further conducted Y1H assay to find that McWRI1 transcription factor activated the promoter of McKCS, McLAC and McWAX to regulate their expression. These results demonstrated that McWRI1 is involved in regulating the genes related synthesis of very long chain fatty acid on surface of apple fruits in storage process, providing a highlight for improvement of the modified atmosphere storage of apple fruits.
Collapse
Affiliation(s)
- Suxiao Hao
- Beijing Key Laboratory of New Technology in Agriculture Application, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yiyi Ma
- Beijing Key Laboratory of New Technology in Agriculture Application, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Shuang Zhao
- Beijing Key Laboratory of New Technology in Agriculture Application, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Qianlong Ji
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Kezhong Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Mingfeng Yang
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
- * E-mail: (YY); (MY)
| | - Yuncong Yao
- Beijing Key Laboratory of New Technology in Agriculture Application, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
- * E-mail: (YY); (MY)
| |
Collapse
|
24
|
Raboanatahiry N, Chao H, Guo L, Gan J, Xiang J, Yan M, Zhang L, Yu L, Li M. Synteny analysis of genes and distribution of loci controlling oil content and fatty acid profile based on QTL alignment map in Brassica napus. BMC Genomics 2017; 18:776. [PMID: 29025408 PMCID: PMC5639739 DOI: 10.1186/s12864-017-4176-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022] Open
Abstract
Background Deciphering the genetic architecture of a species is a good way to understand its evolutionary history, but also to tailor its profile for breeding elite cultivars with desirable traits. Aligning QTLs from diverse population in one map and utilizing it for comparison, but also as a basis for multiple analyses assure a stronger evidence to understand the genetic system related to a given phenotype. Results In this study, 439 genes involved in fatty acid (FA) and triacylglycerol (TAG) biosyntheses were identified in Brassica napus. B. napus genome showed mixed gene loss and insertion compared to B. rapa and B. oleracea, and C genome had more inserted genes. Identified QTLs for oil (OC-QTLs) and fatty acids (FA-QTLs) from nine reported populations were projected on the physical map of the reference genome “Darmor-bzh” to generate a map. Thus, 335 FA-QTLs and OC-QTLs could be highlighted and 82 QTLs were overlapping. Chromosome C3 contained 22 overlapping QTLs with all trait studied except for C18:3. In total, 218 candidate genes which were potentially involved in FA and TAG were identified in 162 QTLs confidence intervals and some of them might affect many traits. Also, 76 among these candidate genes were found inside 57 overlapping QTLs, and candidate genes for oil content were in majority (61/76 genes). Then, sixteen genes were found in overlapping QTLs involving three populations, and the remaining 60 genes were found in overlapping QTLs of two populations. Interaction network and pathway analysis of these candidate genes indicated ten genes that might have strong influence over the other genes that control fatty acids and oil formation. Conclusion The present results provided new information for genetic basis of FA and TAG formation in B. napus. A map including QTLs from numerous populations was built, which could serve as reference to study the genome profile of B. napus, and new potential genes emerged which might affect seed oil. New useful tracks were showed for the selection of population or/and selection of interesting genes for breeding improvement purpose. Electronic supplementary material The online version of this article (10.1186/s12864-017-4176-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Molecular Biology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 435599, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Molecular Biology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 435599, China
| | - Liangxing Guo
- Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Molecular Biology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 435599, China
| | - Jianping Gan
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 435599, China
| | - Jun Xiang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 435599, China
| | - Mingli Yan
- School of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Libin Zhang
- Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Molecular Biology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Longjiang Yu
- Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Molecular Biology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Molecular Biology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 435599, China.
| |
Collapse
|
25
|
Woodfield HK, Sturtevant D, Borisjuk L, Munz E, Guschina IA, Chapman K, Harwood JL. Spatial and Temporal Mapping of Key Lipid Species in Brassica napus Seeds. PLANT PHYSIOLOGY 2017; 173:1998-2009. [PMID: 28188274 PMCID: PMC5373056 DOI: 10.1104/pp.16.01705] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/07/2017] [Indexed: 05/20/2023]
Abstract
The regulation of lipid synthesis in oil seeds is still not fully understood. Oilseed rape (Brassica napus) is the third most productive vegetable oil crop on the global market; therefore, increasing our understanding of lipid accumulation in oilseed rape seeds is of great economic, as well as intellectual, importance. Matrix-assisted laser/desorption ionization-mass spectrometry imaging (MALDI-MSI) is a technique that allows the mapping of metabolites directly onto intact biological tissues, giving a spatial context to metabolism. We have used MALDI-MSI to study the spatial distribution of two major lipid species, triacylglycerols and phosphatidylcholines. A dramatic, heterogenous landscape of molecular species was revealed, demonstrating significantly different lipid compositions between the various tissue types within the seed. The embryonic axis was found to be particularly enriched in palmitic acid, while the seed coat/aleurone layer accumulated vaccenic, linoleic, and α-linoleic acids. Furthermore, the lipid composition of the inner and outer cotyledons differed from each other, a remarkable discovery given the supposed identical functionality of these two tissues. Triacylglycerol and phosphatidylcholine molecular species distribution was analyzed through a developmental time series covering early seed lipid accumulation to seed maturity. The spatial patterning of lipid molecular species did not vary significantly during seed development. Data gathered using MALDI-MSI was verified through gas chromatography analysis of dissected seeds. The distinct lipid distribution profiles observed imply differential regulation of lipid metabolism between the different tissue types of the seed. Further understanding of this differential regulation will enhance efforts to improve oilseed rape productivity and quality.
Collapse
Affiliation(s)
- Helen K Woodfield
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, United Kingdom (H.K.W., I.A.G., J.L.H.)
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203-5017 (D.S., K.C.); and
- Leibniz Institute of Plant Genetics and Crop Research, D-06466 Gatersleben, Germany (L.B., E.M.)
| | - Drew Sturtevant
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, United Kingdom (H.K.W., I.A.G., J.L.H.)
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203-5017 (D.S., K.C.); and
- Leibniz Institute of Plant Genetics and Crop Research, D-06466 Gatersleben, Germany (L.B., E.M.)
| | - Ljudmilla Borisjuk
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, United Kingdom (H.K.W., I.A.G., J.L.H.)
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203-5017 (D.S., K.C.); and
- Leibniz Institute of Plant Genetics and Crop Research, D-06466 Gatersleben, Germany (L.B., E.M.)
| | - Eberhard Munz
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, United Kingdom (H.K.W., I.A.G., J.L.H.)
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203-5017 (D.S., K.C.); and
- Leibniz Institute of Plant Genetics and Crop Research, D-06466 Gatersleben, Germany (L.B., E.M.)
| | - Irina A Guschina
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, United Kingdom (H.K.W., I.A.G., J.L.H.)
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203-5017 (D.S., K.C.); and
- Leibniz Institute of Plant Genetics and Crop Research, D-06466 Gatersleben, Germany (L.B., E.M.)
| | - Kent Chapman
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, United Kingdom (H.K.W., I.A.G., J.L.H.);
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203-5017 (D.S., K.C.); and
- Leibniz Institute of Plant Genetics and Crop Research, D-06466 Gatersleben, Germany (L.B., E.M.)
| | - John L Harwood
- Cardiff School of Bioscience, Cardiff University, Cardiff CF10 3AX, United Kingdom (H.K.W., I.A.G., J.L.H.);
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203-5017 (D.S., K.C.); and
- Leibniz Institute of Plant Genetics and Crop Research, D-06466 Gatersleben, Germany (L.B., E.M.)
| |
Collapse
|
26
|
Mattison CP, Rai R, Settlage RE, Hinchliffe DJ, Madison C, Bland JM, Brashear S, Graham CJ, Tarver MR, Florane C, Bechtel PJ. RNA-Seq Analysis of Developing Pecan (Carya illinoinensis) Embryos Reveals Parallel Expression Patterns among Allergen and Lipid Metabolism Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1443-1455. [PMID: 28121438 DOI: 10.1021/acs.jafc.6b04199] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The pecan nut is a nutrient-rich part of a healthy diet full of beneficial fatty acids and antioxidants, but can also cause allergic reactions in people suffering from food allergy to the nuts. The transcriptome of a developing pecan nut was characterized to identify the gene expression occurring during the process of nut development and to highlight those genes involved in fatty acid metabolism and those that commonly act as food allergens. Pecan samples were collected at several time points during the embryo development process including the water, gel, dough, and mature nut stages. Library preparation and sequencing were performed using Illumina-based mRNA HiSeq with RNA from four time points during the growing season during August and September 2012. Sequence analysis with Trinotate software following the Trinity protocol identified 133,000 unigenes with 52,267 named transcripts and 45,882 annotated genes. A total of 27,312 genes were defined by GO annotation. Gene expression clustering analysis identified 12 different gene expression profiles, each containing a number of genes. Three pecan seed storage proteins that commonly act as allergens, Car i 1, Car i 2, and Car i 4, were significantly up-regulated during the time course. Up-regulated fatty acid metabolism genes that were identified included acyl-[ACP] desaturase and omega-6 desaturase genes involved in oleic and linoleic acid metabolism. Notably, a few of the up-regulated acyl-[ACP] desaturase and omega-6 desaturase genes that were identified have expression patterns similar to the allergen genes based upon gene expression clustering and qPCR analysis. These findings suggest the possibility of coordinated accumulation of lipids and allergens during pecan nut embryogenesis.
Collapse
Affiliation(s)
- Christopher P Mattison
- Southern Regional Research Center, FPSQ, ARS, U.S. Department of Agriculture , 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, United States
| | - Ruhi Rai
- Virginia Bioinformatics Institute , 1015 Life Science Circle, Blacksburg, Virginia 24061, United States
| | - Robert E Settlage
- Virginia Bioinformatics Institute , 1015 Life Science Circle, Blacksburg, Virginia 24061, United States
| | - Doug J Hinchliffe
- Southern Regional Research Center, CCU, ARS, U.S. Department of Agriculture , 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, United States
| | - Crista Madison
- Southern Regional Research Center, CCU, ARS, U.S. Department of Agriculture , 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, United States
| | - John M Bland
- Southern Regional Research Center, FPSQ, ARS, U.S. Department of Agriculture , 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, United States
| | - Suzanne Brashear
- Southern Regional Research Center, FPSQ, ARS, U.S. Department of Agriculture , 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, United States
| | - Charles J Graham
- Pecan Research & Extension Station, Agricultural Experiment Station, Louisiana State University-AgCenter , 10300 Harts Island Road, Shreveport, Louisiana 71115, United States
| | - Matthew R Tarver
- Biologics, Bayer CropScience , 890 Embarcadero Drive, West Sacramento, California 95605, United States
| | - Christopher Florane
- Southern Regional Research Center, CFB, ARS, U.S. Department of Agriculture , 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, United States
| | - Peter J Bechtel
- Southern Regional Research Center, FPSQ, ARS, U.S. Department of Agriculture , 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, United States
| |
Collapse
|
27
|
Gu J, Chao H, Wang H, Li Y, Li D, Xiang J, Gan J, Lu G, Zhang X, Long Y, Li M. Identification of the Relationship between Oil Body Morphology and Oil Content by Microstructure Comparison Combining with QTL Analysis in Brassica napus. FRONTIERS IN PLANT SCIENCE 2017; 7:1989. [PMID: 28111582 PMCID: PMC5216053 DOI: 10.3389/fpls.2016.01989] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/15/2016] [Indexed: 05/25/2023]
Abstract
Oil bodies (OBs) are relatively simple but very important organelles comprising a matrix of triacylglycerol (TAG) surrounded by a phospholipid monolayer embedded and covered with unique proteins. The OB structure in Brassica napus with different oil content and the relationship between the oil content and the OB structure needs to be better understood. In this paper, the characteristics of OBs in the embryo of a series of B. napus materials with different oil content ranging from 34% to over 60% were studied. The results indicated that the OB size was significantly positively correlated with the oil content but was significantly negatively correlated with the glucosinolates and the protein content. Many genes associated with TAG synthesis, OB-membrane proteins, and the cell progress regulatory pathway were identified in the confidence interval of co-located QTLs for oil content, fatty acid (FA) compositions, and protein content. Our results suggested that the morphology of OBs might be directly controlled by the genes associated with OB-membrane proteins and indirectly controlled by the genes associated with TAG synthesis and cell progress regulatory pathway.
Collapse
Affiliation(s)
- Jianwei Gu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic ImprovementYangling, China
| | - Yonghong Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic ImprovementYangling, China
| | - Dianrong Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic ImprovementYangling, China
| | - Jun Xiang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Jianping Gan
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Guangyuan Lu
- Oil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhan, China
| | - Xuekun Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhan, China
| | - Yan Long
- Institute of Biotechnology, Chinese Academy of Agricultural SciencesBeijing, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| |
Collapse
|
28
|
Guo Y, Si P, Wang N, Wen J, Yi B, Ma C, Tu J, Zou J, Fu T, Shen J. Genetic effects and genotype × environment interactions govern seed oil content in Brassica napus L. BMC Genet 2017; 18:1. [PMID: 28056775 PMCID: PMC5217400 DOI: 10.1186/s12863-016-0468-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 12/20/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND As seed oil content (OC) is a key measure of rapeseed quality, better understanding the genetic basis of OC would greatly facilitate the breeding of high-oil cultivars. Here, we investigated the components of genetic effects and genotype × environment interactions (GE) that govern OC using a full diallel set of nine parents, which represented a wide range of the Chinese rapeseed cultivars and pure lines with various OCs. RESULTS Our results from an embryo-cytoplasm-maternal (GoCGm) model for diploid seeds showed that OC was primarily determined by genetic effects (VG) and GE (VGE), which together accounted for 86.19% of the phenotypic variance (VP). GE (VGE) alone accounted for 51.68% of the total genetic variance, indicating the importance of GE interaction for OC. Furthermore, maternal variance explained 75.03% of the total genetic variance, embryo and cytoplasmic effects accounted for 21.02% and 3.95%, respectively. We also found that the OC of F1 seeds was mainly determined by maternal effect and slightly affected by xenia. Thus, the OC of rapeseed was simultaneously affected by various genetic components, including maternal, embryo, cytoplasm, xenia and GE effects. In addition, general combining ability (GCA), specific combining ability (SCA), and maternal variance had significant influence on OC. The lines H2 and H1 were good general combiners, suggesting that they would be the best parental candidates for OC improvement. Crosses H3 × M2 and H1 × M3 exhibited significant SCA, suggesting their potentials in hybrid development. CONCLUSIONS Our study thoroughly investigated and reliably quantified various genetic factors associated with OC of rapeseed by using a full diallel and backcross and reciprocal backcross. This findings lay a foundation for future genetic studies of OC and provide guidance for breeding of high-oil rapeseed cultivars.
Collapse
Affiliation(s)
- Yanli Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ping Si
- Center for Plant Genetics and Breeding, School of Plant Biology, the University of Western Australia (M080), 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Nan Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jitao Zou
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9 Canada
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
29
|
Zou J, Zhao Y, Liu P, Shi L, Wang X, Wang M, Meng J, Reif JC. Seed Quality Traits Can Be Predicted with High Accuracy in Brassica napus Using Genomic Data. PLoS One 2016; 11:e0166624. [PMID: 27880793 PMCID: PMC5120799 DOI: 10.1371/journal.pone.0166624] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/01/2016] [Indexed: 11/19/2022] Open
Abstract
Improving seed oil yield and quality are central targets in rapeseed (Brassica napus) breeding. The primary goal of our study was to examine and compare the potential and the limits of marker-assisted selection and genome-wide prediction of six important seed quality traits of B. napus. Our study is based on a bi-parental population comprising 202 doubled haploid lines and a diverse validation set including 117 B. napus inbred lines derived from interspecific crosses between B. rapa and B. carinata. We used phenotypic data for seed oil, protein, erucic acid, linolenic acid, stearic acid, and glucosinolate content. All lines were genotyped with a 60k SNP array. We performed five-fold cross-validations in combination with linkage mapping and four genome-wide prediction approaches in the bi-parental population. Quantitative trait loci (QTL) with large effects were detected for erucic acid, stearic acid, and glucosinolate content, blazing the trail for marker-assisted selection. Despite substantial differences in the complexity of the genetic architecture of the six traits, genome-wide prediction models had only minor impacts on the prediction accuracies. We evaluated the effects of training population size, marker density and phenotyping intensity on the prediction accuracy. The prediction accuracy in the independent and genetically very distinct validation set still amounted to 0.14 for protein content and 0.17 for oil content reflecting the utility of the developed calibration models even in very diverse backgrounds.
Collapse
Affiliation(s)
- Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Peifa Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaohua Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Meng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jochen Christoph Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
30
|
Fatihi A, Boulard C, Bouyer D, Baud S, Dubreucq B, Lepiniec L. Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:198-204. [PMID: 27457996 DOI: 10.1016/j.plantsci.2016.06.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 05/11/2023]
Abstract
Increasing yield and quality of seed storage compounds in a sustainable way is a key challenge for our societies. Genome-wide analyses conducted in both monocot and dicot angiosperms emphasized drastic transcriptional switches that occur during seed development. In Arabidopsis thaliana, a reference species, genetic and molecular analyses have demonstrated the key role of LAFL (LEC1, ABI3, FUS3, and LEC2) transcription factors (TFs), in controlling gene expression programs essential to accomplish seed maturation and the accumulation of storage compounds. Here, we summarize recent progress obtained in the characterization of these LAFL proteins, their regulation, partners and target genes. Moreover, we illustrate how these evolutionary conserved TFs can be used to engineer new crops with altered seed compositions and point out the current limitations. Last, we discuss about the interest of investigating further the environmental and epigenetic regulation of this network for the coming years.
Collapse
Affiliation(s)
- Abdelhak Fatihi
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France.
| | - Céline Boulard
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Daniel Bouyer
- Institut de Biologie de l'ENS, CNRS UMR8197, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris cedex 05, France
| | - Sébastien Baud
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Bertrand Dubreucq
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Loïc Lepiniec
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France.
| |
Collapse
|
31
|
Kanai M, Mano S, Kondo M, Hayashi M, Nishimura M. Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1241-50. [PMID: 26503031 PMCID: PMC11388987 DOI: 10.1111/pbi.12489] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/03/2015] [Accepted: 09/11/2015] [Indexed: 05/09/2023]
Abstract
Regulation of oil biosynthesis in plant seeds has been extensively studied, and biotechnological approaches have been designed to increase seed oil content. Oil and protein synthesis is negatively correlated in seeds, but the mechanisms controlling interactions between these two pathways are unknown. Here, we identify the molecular mechanism controlling oil and protein content in seeds. We utilized transgenic Arabidopsis thaliana plants overexpressing WRINKLED1 (WRI1), a master transcription factor regulating seed oil biosynthesis, and knockout mutants of major seed storage proteins. Oil and protein biosynthesis in wild-type plants was sequentially activated during early and late seed development, respectively. The negative correlation between oil and protein contents in seeds arises from competition between the pathways. Extension of WRI1 expression during mid-phase of seed development significantly enhanced seed oil content. This study demonstrates that temporal activation of genes involved in oil or storage protein biosynthesis determines the oil/protein ratio in Arabidopsis seeds. These results provide novel insights into potential breeding strategies to generate crops with high oil contents in seeds.
Collapse
Affiliation(s)
- Masatake Kanai
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
- Laboratory of Biological Diversity, Department of Evolutionary and Biodiversity, National Institute for Basic Biology, Okazaki, Japan
| | - Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
- Laboratory of Biological Diversity, Department of Evolutionary and Biodiversity, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Maki Kondo
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Makoto Hayashi
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
32
|
Gacek K, Bayer PE, Bartkowiak-Broda I, Szala L, Bocianowski J, Edwards D, Batley J. Genome-Wide Association Study of Genetic Control of Seed Fatty Acid Biosynthesis in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:2062. [PMID: 28163710 PMCID: PMC5247464 DOI: 10.3389/fpls.2016.02062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/26/2016] [Indexed: 05/03/2023]
Abstract
Fatty acids and their composition in seeds determine oil value for nutritional or industrial purposes and also affect seed germination as well as seedling establishment. To better understand the genetic basis of seed fatty acid biosynthesis in oilseed rape (Brassica napus L.) we applied a genome-wide association study, using 91,205 single nucleotide polymorphisms (SNPs) characterized across a mapping population with high-resolution skim genotyping by sequencing (SkimGBS). We identified a cluster of loci on chromosome A05 associated with oleic and linoleic seed fatty acids. The delineated genomic region contained orthologs of the Arabidopsis thaliana genes known to play a role in regulation of seed fatty acid biosynthesis such as Fatty acyl-ACP thioesterase B (FATB) and Fatty Acid Desaturase (FAD5). This approach allowed us to identify potential functional genes regulating fatty acid composition in this important oil producing crop and demonstrates that this approach can be used as a powerful tool for dissecting complex traits for B. napus improvement programs.
Collapse
Affiliation(s)
- Katarzyna Gacek
- Plant Breeding and Acclimatization Institute—National Research Institute, Oilseed Crops Research CentrePoznan, Poland
| | - Philipp E. Bayer
- School of Plant Biology, University of Western AustraliaPerth, WA, Australia
| | - Iwona Bartkowiak-Broda
- Plant Breeding and Acclimatization Institute—National Research Institute, Oilseed Crops Research CentrePoznan, Poland
| | - Laurencja Szala
- Plant Breeding and Acclimatization Institute—National Research Institute, Oilseed Crops Research CentrePoznan, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznan University of Life SciencesPoznan, Poland
| | - David Edwards
- School of Plant Biology, University of Western AustraliaPerth, WA, Australia
| | - Jacqueline Batley
- School of Plant Biology, University of Western AustraliaPerth, WA, Australia
- *Correspondence: Jacqueline Batley
| |
Collapse
|
33
|
Wang X, Yu K, Li H, Peng Q, Chen F, Zhang W, Chen S, Hu M, Zhang J. High-Density SNP Map Construction and QTL Identification for the Apetalous Character in Brassica napus L. FRONTIERS IN PLANT SCIENCE 2015; 6:1164. [PMID: 26779193 PMCID: PMC4688392 DOI: 10.3389/fpls.2015.01164] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/07/2015] [Indexed: 05/09/2023]
Abstract
The apetalous genotype is a morphological ideotype for increasing seed yield and should be of considerable agricultural use; however, only a few studies have focused on the genetic control of this trait in Brassica napus. In the present study, a recombinant inbred line, the AH population, containing 189 individuals was derived from a cross between an apetalous line 'APL01' and a normally petalled variety 'Holly'. The Brassica 60 K Infinium BeadChip Array harboring 52,157 single nucleotide polymorphism (SNP) markers was used to genotype the AH individuals. A high-density genetic linkage map was constructed based on 2,755 bins involving 11,458 SNPs and 57 simple sequence repeats, and was used to identify loci associated with petalous degree (PDgr). The linkage map covered 2,027.53 cM, with an average marker interval of 0.72 cM. The AH map had good collinearity with the B. napus reference genome, indicating its high quality and accuracy. After phenotypic analyses across five different experiments, a total of 19 identified quantitative trait loci (QTLs) distributed across chromosomes A3, A5, A6, A9 and C8 were obtained, and these QTLs were further integrated into nine consensus QTLs by a meta-analysis. Interestingly, the major QTL qPD.C8-2 was consistently detected in all five experiments, and qPD.A9-2 and qPD.C8-3 were stably expressed in four experiments. Comparative mapping between the AH map and the B. napus reference genome suggested that there were 328 genes underlying the confidence intervals of the three steady QTLs. Based on the Gene Ontology assignments of 52 genes to the regulation of floral development in published studies, 146 genes were considered as potential candidate genes for PDgr. The current study carried out a QTL analysis for PDgr using a high-density SNP map in B. napus, providing novel targets for improving seed yield. These results advanced our understanding of the genetic control of PDgr regulation in B. napus.
Collapse
Affiliation(s)
- Xiaodong Wang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing, China
| | - Kunjiang Yu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Hongge Li
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Qi Peng
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Feng Chen
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Wei Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Song Chen
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Maolong Hu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Jiefu Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing, China
- *Correspondence: Jiefu Zhang,
| |
Collapse
|