1
|
Majeed A, Seth R, Sharma B, Devi A, Sharma S, Masand M, Rahim MS, Verma N, Kumar D, Sharma RK. Deep transcriptome and metabolome analysis to dissect untapped spatial dynamics of specialized metabolism in Saussurea costus (Falc.) Lipsch. Funct Integr Genomics 2025; 25:46. [PMID: 40019562 DOI: 10.1007/s10142-025-01549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Saussurea costus (Falc.) is an endangered medicinal plant possessing diverse phytochemical compounds with clinical significance and used to treat numerous human ailments. Despite the source of enriched phytochemicals, molecular insights into spatialized metabolism are poorly understood in S. costus. This study investigated the dynamics of organ-specific secondary metabolite biosynthesis using deep transcriptome sequencing and high-throughput UHPLC-QTOF based untargeted metabolomic profiling. A de novo assembly from quality reads fetched 59,725 transcripts with structural (53.02%) and functional (66.13%) annotations of non-redundant transcripts. Of the 7,683 predicted gene families, 3,211 were categorized as 'single gene families'. Interestingly, out of the 4,664 core gene families within the Asterids, 4,560 families were captured in S. costus. Organ-specific differential gene expression analysis revealed significant variations between leaves vs. stems (23,102 transcripts), leaves vs. roots (30,590 transcripts), and roots vs. stems (21,759 transcripts). Like-wise, putative metabolites (PMs) were recorded with significant differences in leaves vs. roots (250 PMs), leaves vs. stem (350 PMs), and roots vs. stem (107 PMs). The integrative transcriptomic and metabolomic analysis identified organ-specific differences in the accumulation of important metabolites, including secologanin, menthofuran, taraxerol, lupeol, acetyleugenol, scopoletin, costunolide, and dehydrocostus lactone. Furthermore, a global gene co-expression network (GCN) identified putative regulators controlling the expression of key target genes of secondary metabolite pathways including terpenoid, phenylpropanoid, and flavonoid. The comprehensive functionally relevant genomic resource created here provides beneficial insights for upscaling targeted metabolite biosynthesis through genetic engineering, and for expediting association mapping efforts to elucidate the casual genetic elements controlling specific bioactive metabolites.
Collapse
Affiliation(s)
- Aasim Majeed
- Molecular Genetic and Genomics Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Romit Seth
- Molecular Genetic and Genomics Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Balraj Sharma
- Molecular Genetic and Genomics Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amna Devi
- Molecular Genetic and Genomics Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shikha Sharma
- Molecular Genetic and Genomics Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Mamta Masand
- Molecular Genetic and Genomics Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammed Saba Rahim
- Molecular Genetic and Genomics Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Naveen Verma
- Molecular Genetic and Genomics Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Dinesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Kumar Sharma
- Molecular Genetic and Genomics Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Beltrán J, Wurtzel ET. Carotenoids: resources, knowledge, and emerging tools to advance apocarotenoid research. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112298. [PMID: 39442633 DOI: 10.1016/j.plantsci.2024.112298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Carotenoids are a large class of isoprenoid compounds which are biosynthesized by plants, algae, along with certain fungi, bacteria and insects. In plants, carotenoids provide crucial functions in photosynthesis and photoprotection. Furthermore, carotenoids also serve as precursors to apocarotenoids, which are derived through enzymatic and non-enzymatic cleavage reactions. Apocarotenoids encompass a diverse set of compounds, including hormones, growth regulators, and signaling molecules which play vital roles in pathways associated with plant development, stress responses, and plant-organismic interactions. Regulation of carotenoid biosynthesis indirectly influences the formation of apocarotenoids and bioactive effects on target pathways. Recent discovery of a plethora of new bioactive apocarotenoids across kingdoms has increased interest in expanding knowledge of the breadth of apocarotenoid function and regulation. In this review, we provide insights into the regulation of carotenogenesis, specifically linked to the biosynthesis of apocarotenoid precursors. We highlight plant studies, including useful heterologous platforms and synthetic biology tools, which hold great value in expanding discoveries, knowledge and application of bioactive apocarotenoids for crop improvement and human health. Moreover, we discuss how this field has recently flourished with the discovery of diverse functions of apocarotenoids, thereby prompting us to propose new directions for future research.
Collapse
Affiliation(s)
- Jesús Beltrán
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, University of Delaware, Newark, DE 19713, USA.
| | - Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, City University of New York (CUNY), Bronx, NY, United States; Graduate School and University Center, CUNY, New York, NY, United States.
| |
Collapse
|
3
|
Li JW, Zhou P, Deng YJ, Hu ZH, Li XH, Chen X, Xiong AS, Zhuang J. Overexpressing CsPSY1 Gene of Tea Plant, Encoding a Phytoene Synthase, Improves α-Carotene and β-Carotene Contents in Carrot. Mol Biotechnol 2024; 66:3311-3322. [PMID: 37897587 DOI: 10.1007/s12033-023-00942-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023]
Abstract
Tea plants (Camellia sinensis (L.) O. Kuntze) belong to Theaceae family, in the section Thea. Tea plants are widely distributed in subtropical and tropical regions in the word. α-carotene and β-carotene in the tea leaves belong to carotenoids, which are associated with the aroma and color of the tea. Phytoene synthase (PSY) is a rate-limiting enzyme in carotenoids biosynthesis. We identified three CsPSY genes in 'Shuchazao', named CsPSY1, CsPSY2, and CsPSY3. Structural analysis of three CsPSY genes showed that CsPSY1 had a longer intro structure. The cis-acting elements of CsPSYs promoter were mainly associated with light-responsiveness, abiotic stress-responsiveness, and hormone-responsiveness. CsPSY1 exhibited expression in all tissues of the tea plants, whereas CsPSY2 and CsPSY3 were trace expression levels in all tissues. The positive expression of CsPSY1 under hormonal and abiotic stresses suggested its role in plant development and defense responses. The amino acid sequence of CsPSY1 was highly conserved in eight tea cultivars. The recombinant vector pCAMBIA1301-CsPSY1 was constructed to stabilize the overexpression of CsPSY1 in carrot. The contents of α-carotene and β-carotene in transgenic carrot callus were significantly increased. This study provides a foundational basis for further research on the function of CsPSYs and carotenoids accumulation in tea plants.
Collapse
Affiliation(s)
- Jing-Wen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Zhou
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan-Jie Deng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Gunaseelan K, Schröder R, Rebstock R, Ninan AS, Deng C, Khanal BP, Favre L, Tomes S, Dragulescu MA, O'Donoghue EM, Hallett IC, Schaffer RJ, Knoche M, Brummell DA, Atkinson RG. Constitutive expression of apple endo-POLYGALACTURONASE1 in fruit induces early maturation, alters skin structure and accelerates softening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1413-1431. [PMID: 38038980 DOI: 10.1111/tpj.16571] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
During fruit ripening, polygalacturonases (PGs) are key contributors to the softening process in many species. Apple is a crisp fruit that normally exhibits only minor changes to cell walls and limited fruit softening. Here, we explore the effects of PG overexpression during fruit development using transgenic apple lines overexpressing the ripening-related endo-POLYGALACTURONASE1 gene. MdPG1-overexpressing (PGox) fruit displayed early maturation/ripening with black seeds, conversion of starch to sugars and ethylene production occurring by 80 days after pollination (DAP). PGox fruit exhibited a striking, white-skinned phenotype that was evident from 60 DAP and most likely resulted from increased air spaces and separation of cells in the hypodermis due to degradation of the middle lamellae. Irregularities in the integrity of the epidermis and cuticle were also observed. By 120 DAP, PGox fruit cracked and showed lenticel-associated russeting. Increased cuticular permeability was associated with microcracks in the cuticle around lenticels and was correlated with reduced cortical firmness at all time points and extensive post-harvest water loss from the fruit, resulting in premature shrivelling. Transcriptomic analysis suggested that early maturation was associated with upregulation of genes involved in stress responses, and overexpression of MdPG1 also altered the expression of genes involved in cell wall metabolism (e.g. β-galactosidase, MD15G1221000) and ethylene biosynthesis (e.g. ACC synthase, MD14G1111500). The results show that upregulation of PG not only has dramatic effects on the structure of the fruit outer cell layers, indirectly affecting water status and turgor, but also has unexpected consequences for fruit development.
Collapse
Affiliation(s)
- Kularajathevan Gunaseelan
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Roswitha Schröder
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Annu S Ninan
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Bishnu P Khanal
- Institute for Horticultural Production Systems, Leibniz-University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Laurie Favre
- Plant and Food Research, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Sumathi Tomes
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Monica A Dragulescu
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Erin M O'Donoghue
- Plant and Food Research, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | | | - Moritz Knoche
- Institute for Horticultural Production Systems, Leibniz-University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - David A Brummell
- Plant and Food Research, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| |
Collapse
|
5
|
Saieed MAU, Zhao Y, Chen K, Rahman S, Zhang J, Islam S, Ma W. Phenotypic Plasticity of Yield and Yield-Related Traits Contributing to the Wheat Yield in a Doubled Haploid Population. PLANTS (BASEL, SWITZERLAND) 2023; 13:17. [PMID: 38202324 PMCID: PMC10780773 DOI: 10.3390/plants13010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 01/12/2024]
Abstract
Phenotypic plasticity is the ability of an individual genotype to express phenotype variably in different environments. This study investigated the plasticity of yield-related traits of bread wheat by utilising 225 doubled haploid (DH) lines developed from cv. Westonia and cv. Kauz, through two field trials in Western Australia. Plasticity was quantified via two previously published methods: responsiveness to varying ecological conditions and slopes of reaction norms. The spikelets/spike was the most plastic trait, with an overall plasticity of 1.62. The least plastic trait was grain protein content, with an overall plasticity of 0.79. The trait hierarchy based on phenotypic plasticity was spikelets/spike > thousand kernel weight > seed number > seed length > grain yield > grain protein content. An increase in yield plasticity of 0.1 was associated with an increase in maximum yield of 4.45 kg ha-1. The plasticity of seed number and grain protein content were significantly associated with yield plasticity. The maximal yield was positively associated with spikelets/spike and grain yield, whereas it negatively associated with grain protein content. In contrast, the minimal yield was found to be negatively related to the plasticity of spikelets/spike and the plasticity of grain yield, whereas it was not related to grain protein content plasticity. Seed number and seed length exhibited plastic responses at the higher fertilisation state while remaining relatively stable at the lower fertilisation state for the wheat DH population. The finding of the current study will play a key role in wheat improvement under the changing climate. Seed length and seed number should be the breeding target for achieving stable yield in adverse environmental conditions.
Collapse
Affiliation(s)
- Md Atik Us Saieed
- Food Futures Institute, School of Health, Education & Environment, Murdoch University, Perth, WA 6150, Australia
- Department of Seed Science & Technology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Yun Zhao
- Food Futures Institute, School of Health, Education & Environment, Murdoch University, Perth, WA 6150, Australia
| | - Kefei Chen
- Curtin Biometry and Agriculture Data Analytics, Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Shanjida Rahman
- Food Futures Institute, School of Health, Education & Environment, Murdoch University, Perth, WA 6150, Australia
- Department of Genetics & Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jingjuan Zhang
- Food Futures Institute, School of Health, Education & Environment, Murdoch University, Perth, WA 6150, Australia
| | - Shahidul Islam
- Food Futures Institute, School of Health, Education & Environment, Murdoch University, Perth, WA 6150, Australia
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Wujun Ma
- Food Futures Institute, School of Health, Education & Environment, Murdoch University, Perth, WA 6150, Australia
- College of Agronomy, Qingdao Agriculture University, Qingdao 266109, China
| |
Collapse
|
6
|
Wang H, Tian Y, Li Y, Wei J, Ma F, Liang W, Li C. Analysis of Carotenoids and Gene Expression in Apple Germplasm Resources Reveals the Role of MdCRTISO and MdLCYE in the Accumulation of Carotenoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15121-15131. [PMID: 37796201 DOI: 10.1021/acs.jafc.3c04453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Carotenoids play an important role in the coloring and nutritional value of apple (Malus spp.) fruits. Here, six carotenoids, including lutein, zeaxanthin, β-carotene, β-cryptoxanthin, violaxanthin, and neoxanthin, were detected in 105 fruits of apple germplasm resources, which showed a skewed distribution in both the peel and pulp. There were more carotenoids in the peel than in the pulp, and lutein and β-carotene were the primary carotenoids that were present. The expression levels of most carotenoid pathway genes in germplasm fruits during fruit development were higher in the fruits that had an abundance of carotenoids. A linear relationship analysis showed that the expression levels of MdCRTISO and MdLCYE were highly correlated with the content of carotenoids. The leaves accumulated the greatest number of carotenoids, while the roots had the lowest amount. MdCRTISO and MdLCYE were highly expressed in the fruits compared to other tissues. Transgenic calli and transiently transformed fruits confirmed that MdCRTISO and MdLCYE affected the biosynthesis of carotenoids owing to their effects on the expression of other genes for enzymes in the carotenoid pathway. Our findings will extend the understanding of carotenoid biosynthesis in apple and excavate apple germplasm resources with rich carotenoids to breed high-quality apples.
Collapse
Affiliation(s)
- Hongtao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuchen Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaqi Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Su W, Zhu C, Fan Z, Huang M, Lin H, Chen X, Deng C, Chen Y, Kou Y, Tong Z, Zhang Y, Xu C, Zheng S, Jiang J. Comprehensive metabolome and transcriptome analyses demonstrate divergent anthocyanin and carotenoid accumulation in fruits of wild and cultivated loquats. FRONTIERS IN PLANT SCIENCE 2023; 14:1285456. [PMID: 37900735 PMCID: PMC10611460 DOI: 10.3389/fpls.2023.1285456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
Eriobotrya is an evergreen fruit tree native to South-West China and adjacent countries. There are more than 26 loquat species known in this genus, while E. japonica is the only species yet domesticated to produce fresh fruits from late spring to early summer. Fruits of cultivated loquat are usually orange colored, in contrast to the red color of fruits of wild E. henryi (EH). However, the mechanisms of fruit pigment formation during loquat evolution are yet to be elucidated. To understand these, targeted carotenoid and anthocyanin metabolomics as well as transcriptomics analyses were carried out in this study. The results showed that β-carotene, violaxanthin palmitate and rubixanthin laurate, totally accounted for over 60% of the colored carotenoids, were the major carotenoids in peel of the orange colored 'Jiefangzhong' (JFZ) fruits. Total carotenoids content in JFZ is about 10 times to that of EH, and the expression levels of PSY, ZDS and ZEP in JFZ were 10.69 to 23.26 folds to that in EH at ripen stage. Cyanidin-3-O-galactoside and pelargonidin-3-O-galactoside were the predominant anthocyanins enriched in EH peel. On the contrary, both of them were almost undetectable in JFZ, and the transcript levels of F3H, F3'H, ANS, CHS and CHI in EH were 4.39 to 73.12 folds higher than that in JFZ during fruit pigmentation. In summary, abundant carotenoid deposition in JFZ peel is well correlated with the strong expression of PSY, ZDS and ZEP, while the accumulation of anthocyanin metabolites in EH peel is tightly associated with the notably upregulated expressions of F3H, F3'H, ANS, CHS and CHI. This study was the first to demonstrate the metabolic background of how fruit pigmentations evolved from wild to cultivated loquat species, and provided gene targets for further breeding of more colorful loquat fruits via manipulation of carotenoids and anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Wenbing Su
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Changqing Zhu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/State Agriculture Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zhejiang University, Hangzhou, China
| | - Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Mingkun Huang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Han Lin
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Xiuping Chen
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Chaojun Deng
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Yongping Chen
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Yidan Kou
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Zhihong Tong
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yaling Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/State Agriculture Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zhejiang University, Hangzhou, China
| | - Shaoquan Zheng
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Jimou Jiang
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou, China
| |
Collapse
|
8
|
Bhargava N, Ampomah-Dwamena C, Voogd C, Allan AC. Comparative transcriptomic and plastid development analysis sheds light on the differential carotenoid accumulation in kiwifruit flesh. FRONTIERS IN PLANT SCIENCE 2023; 14:1213086. [PMID: 37711308 PMCID: PMC10499360 DOI: 10.3389/fpls.2023.1213086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/13/2023] [Indexed: 09/16/2023]
Abstract
Carotenoids are colorful lipophilic isoprenoids synthesized in all photosynthetic organisms which play roles in plant growth and development and provide numerous health benefits in the human diet (precursor of Vitamin A). The commercially popular kiwifruits are golden yellow-fleshed (Actinidia chinensis) and green fleshed (A. deliciosa) cultivars which have a high carotenoid concentration. Understanding the molecular mechanisms controlling the synthesis and sequestration of carotenoids in Actinidia species is key to increasing nutritional value of this crop via breeding. In this study we analyzed fruit with varying flesh color from three Actinidia species; orange-fleshed A. valvata (OF), yellow-fleshed A. polygama (YF) and green-fleshed A. arguta (GF). Microscopic analysis revealed that carotenoids accumulated in a crystalline form in YF and OF chromoplasts, with the size of crystals being bigger in OF compared to YF, which also contained globular substructures in the chromoplast. Metabolic profiles were investigated using ultra-performance liquid chromatography (UPLC), which showed that β-carotene was the predominant carotenoid in the OF and YF species, while lutein was the dominant carotenoid in the GF species. Global changes in gene expression were studied between OF and GF (both tetraploid) species using RNA-sequencing which showed higher expression levels of upstream carotenoid biosynthesis-related genes such as DXS, PSY, GGPPS, PDS, ZISO, and ZDS in OF species compared to GF. However, low expression of downstream pathway genes was observed in both species. Pathway regulatory genes (OR and OR-L), plastid morphology related genes (FIBRILLIN), chlorophyll degradation genes (SGR, SGR-L, RCCR, and NYC1) were upregulated in OF species compared to GF. This suggests chlorophyll degradation (primarily in the initial ripening stages) is accompanied by increased carotenoid production and localization in orange flesh tissue, a contrast from green flesh tissue. These results suggest a coordinated change in the carotenoid pathway, as well as changes in plastid type, are responsible for an orange phenotype in certain kiwifruit species.
Collapse
Affiliation(s)
- Nitisha Bhargava
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland Mail Centre, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland Mail Centre, Auckland, New Zealand
| | - Charlotte Voogd
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland Mail Centre, Auckland, New Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland Mail Centre, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Bano A, Gupta A, Rai S, Sharma S, Upadhyay TK, Al-Keridis LA, Alshammari N, Pathak N, Iriti M, Saeed M. Bioactive Compounds, Antioxidant, and Antibacterial Activity Against MDR and Food-Borne Pathogenic Bacteria of Psidium guajava. L Fruit During Ripening. Mol Biotechnol 2023:10.1007/s12033-023-00779-y. [PMID: 37316612 DOI: 10.1007/s12033-023-00779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/23/2023] [Indexed: 06/16/2023]
Abstract
Psidium guajava fruits are highly appreciated for their nutrients and bioactive compounds content, which contribute to their antioxidant and antimicrobial capacities. The purpose of this study was to determine bioactive compound (phenolic, flavonoids, and carotenoid contents), antioxidant activity (DPPH, ABTS, ORAC, and FRAP), and antibacterial potential against MDR and food-borne pathogenic strains of Escherichia coli, and Staphylococcus aureus during different stages of fruit ripening.The results elucidated that ripe fruits (methanolic extract) contain the highest total phenolic, flavonoids, and carotenoid contents (417.36 ± 2.63 µg GAE/gm of FW, 711.78 ± 0.70 µg QE/gm of FW and 0.683 ± 0.06 µg/gm of FW) followed by hexane, ethyl acetate, and aqueous. Methanolic extract of the ripe fruits showed the highest antioxidant activity when measured by DPPH (61.55 ± 0.91%), FRAP (31.83 ± 0.98 mM Fe(II)/gm of FW), ORAC (17.19 ± 0.47 mM TE/ gm of FW), and ABTS (41.31 ± 0.99 µmol Trolox/gm of FW) assays. In the antibacterial assay, the ripe stage had the highest antibacterial activity against MDR and food-borne pathogenic strains of Escherichia coli, and Staphylococcus aureus. The methanolic ripe extract was found to possess maximum antibacterial activity ZOI, MIC, and IC50 18.00 ± 1.00 mm, 95.95 ± 0.05%, and 0.58 μg/ml; 15.66 ± 0.57 mm, 94.66 ± 0.19%, and 0.50 μg/ml, respectively, against pathogenic and MDR strains of E. coli and 22.33 ± 0.57 mm, 98.97 ± 0.02%, and 0.26 μg/ml; 20.33 ± 1.15 mm, 96.82 ± 0.14%, and 0.39 μg/ml, respectively, against pathogenic and MDR strains of S. aureus. Considering the bioactive compounds and beneficial effects, these fruit extracts could be promising antibiotic alternatives, avoiding antibiotic overuse and its negative effects on human health and the environment, and can be recommended as a novel functional food.
Collapse
Affiliation(s)
- Ambreen Bano
- Department of Biosciences, Faculty of Sciences, IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Integral University, Lucknow, UP, India
| | - Anmol Gupta
- Department of Biosciences, Faculty of Sciences, IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Integral University, Lucknow, UP, India
| | - Smita Rai
- Department of Biosciences, Faculty of Sciences, IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Integral University, Lucknow, UP, India
| | - Swati Sharma
- Department of Biosciences, Faculty of Sciences, IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Integral University, Lucknow, UP, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, Gujarat, 391760, India
| | - Lamya Ahmed Al-Keridis
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, 81411, Saudi Arabia
| | - Neelam Pathak
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India.
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi Di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Mohd Saeed
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, 81411, Saudi Arabia.
| |
Collapse
|
10
|
Ampomah-Dwamena C, Tomes S, Thrimawithana AH, Elborough C, Bhargava N, Rebstock R, Sutherland P, Ireland H, Allan AC, Espley RV. Overexpression of PSY1 increases fruit skin and flesh carotenoid content and reveals associated transcription factors in apple ( Malus × domestica). FRONTIERS IN PLANT SCIENCE 2022; 13:967143. [PMID: 36186009 PMCID: PMC9520574 DOI: 10.3389/fpls.2022.967143] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
Knowledge of the transcriptional regulation of the carotenoid metabolic pathway is still emerging and here, we have misexpressed a key biosynthetic gene in apple to highlight potential transcriptional regulators of this pathway. We overexpressed phytoene synthase (PSY1), which controls the key rate-limiting biosynthetic step, in apple and analyzed its effects in transgenic fruit skin and flesh using two approaches. Firstly, the effects of PSY overexpression on carotenoid accumulation and gene expression was assessed in fruit at different development stages. Secondly, the effect of light exclusion on PSY1-induced fruit carotenoid accumulation was examined. PSY1 overexpression increased carotenoid content in transgenic fruit skin and flesh, with beta-carotene being the most prevalent carotenoid compound. Light exclusion by fruit bagging reduced carotenoid content overall, but carotenoid content was still higher in bagged PSY fruit than in bagged controls. In tissues overexpressing PSY1, plastids showed accelerated chloroplast to chromoplast transition as well as high fluorescence intensity, consistent with increased number of chromoplasts and carotenoid accumulation. Surprisingly, the expression of other carotenoid pathway genes was elevated in PSY fruit, suggesting a feed-forward regulation of carotenogenesis when this enzyme step is mis-expressed. Transcriptome profiling of fruit flesh identified differentially expressed transcription factors (TFs) that also were co-expressed with carotenoid pathway genes. A comparison of differentially expressed genes from both the developmental series and light exclusion treatment revealed six candidate TFs exhibiting strong correlation with carotenoid accumulation. This combination of physiological, transcriptomic and metabolite data sheds new light on plant carotenogenesis and TFs that may play a role in regulating apple carotenoid biosynthesis.
Collapse
Affiliation(s)
| | - Sumathi Tomes
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | | | - Caitlin Elborough
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
- BioLumic Limited, Palmerston North, New Zealand
| | - Nitisha Bhargava
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Paul Sutherland
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Hilary Ireland
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| |
Collapse
|
11
|
Huang H, Gao X, Gao X, Zhang S, Zheng Y, Zhang N, Hong B, Zhao X, Gu Z. Flower color mutation, pink to orange, through CmGATA4 - CCD4a-5 module regulates carotenoids degradation in chrysanthemum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111290. [PMID: 35753140 DOI: 10.1016/j.plantsci.2022.111290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The carotenoids biosynthesis pathway in plants has been studied extensively, yet little is known about the regulatory mechanisms underlying this process, especially for ornamental horticulture plants. In this study, a natural variation of chrysanthemum with orange coloration was identified and compared with the wild type with pink coloration; the content and component of carotenoids were largely enriched in the mutant with orange coloration. CmCCD4a-5, the DNA sequence in both 'Pink yan' and the mutant, was identified and shown to function as a carotenoid degradation enzyme. Compared with 'Pink yan', the mutant shows lower expression level of CmCCD4a-5. Furthermore, CmGATA4 was found to have an opposite expression trend to CmCCD4a-5, and it could directly bind with the CmCCD4a-5 promoter. Taken together, this study demonstrates that CmGATA4 acts as a negative regulator of CmCCD4a-5 and, furthermore, low expression of CmCCD4a-5 resulted in carotenoid accumulation in the mutant.
Collapse
Affiliation(s)
- Hongfeng Huang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xuekai Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China.
| | - Shiqi Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Ying Zheng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Ning Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xin Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhaoyu Gu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Si Y, Lv T, Li H, Liu J, Sun J, Mu Z, Qiao J, Bu H, Yuan H, Wang A. The molecular mechanism on suppression of climacteric fruit ripening with postharvest wax coating treatment via transcriptome. FRONTIERS IN PLANT SCIENCE 2022; 13:978013. [PMID: 36046594 PMCID: PMC9421051 DOI: 10.3389/fpls.2022.978013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Wax coating is an important means to maintain fruit quality and extend fruit shelf life, especially for climacteric fruits, such as apples (Malus domestica). Here, we found that wax coating could inhibit ethylene production, chlorophyll degradation, and carotenoid synthesis, but the molecular mechanism remains unclear. The regulatory mechanism of wax coating on apple fruit ripening was determined by subjecting wax-treated apple fruits to transcriptome analysis. RNA-seq revealed that 1,137 and 1,398 genes were upregulated and downregulated, respectively. These differentially expressed genes (DEGs) were shown to be related to plant hormones, such as ethylene, auxin, abscisic acid, and gibberellin, as well as genes involved in chlorophyll degradation and carotenoid biosynthesis. Moreover, we found that some genes related to the wax synthesis process also showed differential expression after the wax coating treatment. Among the DEGs obtained from RNA-seq analysis, 15 were validated by quantitative RT-PCR, confirming the results from RNA-seq analysis. RNA-seq and qRT-PCR of pear (Pyrus ussuriensis) showed similar changes after wax treatment. Our data suggest that wax coating treatment inhibits fruit ripening through ethylene synthesis and signal transduction, chlorophyll metabolism, and carotenoid synthesis pathways and that waxing inhibits endogenous wax production. These results provide new insights into the inhibition of fruit ripening by wax coating.
Collapse
Affiliation(s)
- Yajing Si
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Tianxing Lv
- Liaoning Institute of Pomology, Xiongyue, China
| | - Hongjian Li
- Liaoning Institute of Pomology, Xiongyue, China
| | - Jiaojiao Liu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jiamao Sun
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhaohui Mu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Junling Qiao
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Haidong Bu
- Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Hui Yuan
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
13
|
Li S, Wu P, Yu X, Cao J, Chen X, Gao L, Chen K, Grierson D. Contrasting Roles of Ethylene Response Factors in Pathogen Response and Ripening in Fleshy Fruit. Cells 2022; 11:cells11162484. [PMID: 36010560 PMCID: PMC9406635 DOI: 10.3390/cells11162484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fleshy fruits are generally hard and unpalatable when unripe; however, as they mature, their quality is transformed by the complex and dynamic genetic and biochemical process of ripening, which affects all cell compartments. Ripening fruits are enriched with nutrients such as acids, sugars, vitamins, attractive volatiles and pigments and develop a pleasant taste and texture and become attractive to eat. Ripening also increases sensitivity to pathogens, and this presents a crucial problem for fruit postharvest transport and storage: how to enhance pathogen resistance while maintaining ripening quality. Fruit development and ripening involve many changes in gene expression regulated by transcription factors (TFs), some of which respond to hormones such as auxin, abscisic acid (ABA) and ethylene. Ethylene response factor (ERF) TFs regulate both fruit ripening and resistance to pathogen stresses. Different ERFs regulate fruit ripening and/or pathogen responses in both fleshy climacteric and non-climacteric fruits and function cooperatively or independently of other TFs. In this review, we summarize the current status of studies on ERFs that regulate fruit ripening and responses to infection by several fungal pathogens, including a systematic ERF transcriptome analysis of fungal grey mould infection of tomato caused by Botrytis cinerea. This deepening understanding of the function of ERFs in fruit ripening and pathogen responses may identify novel approaches for engineering transcriptional regulation to improve fruit quality and pathogen resistance.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (S.L.); (D.G.)
| | - Pan Wu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaofen Yu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jinping Cao
- College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
| | - Xia Chen
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lei Gao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
| | - Donald Grierson
- College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Correspondence: (S.L.); (D.G.)
| |
Collapse
|
14
|
Identification and Characterization Roles of Phytoene Synthase (PSY) Genes in Watermelon Development. Genes (Basel) 2022; 13:genes13071189. [PMID: 35885972 PMCID: PMC9324402 DOI: 10.3390/genes13071189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Phytoene synthase (PSY) plays an essential role in carotenoid biosynthesis. In this study, three ClPSY genes were identified through the watermelon genome, and their full-length cDNA sequences were cloned. The deduced proteins of the three ClPSY genes were ranged from 355 to 421 amino acid residues. Phylogenetic analysis suggested that the ClPSYs are highly conserved with bottle gourd compared to other cucurbit crops PSY proteins. Variation in ClPSY1 expression in watermelon with different flesh colors was observed; ClPSY1 was most highly expressed in fruit flesh and associated with the flesh color formation. ClPSY1 expression was much lower in the white-fleshed variety than the colored fruits. Gene expression analysis of ClPSY genes in root, stem, leaf, flower, ovary and flesh of watermelon plants showed that the levels of ClPSY2 transcripts found in leaves was higher than other tissues; ClPSY3 was dominantly expressed in roots. Functional complementation assays of the three ClPSY genes suggested that all of them could encode functional enzymes to synthesize the phytoene from Geranylgeranyl Pyrophosphate (GGPP). Some of the homologous genes clustered together in the phylogenetic tree and located in the synteny chromosome region seemed to have similar expression profiles among different cucurbit crops. The findings provide a foundation for watermelon flesh color breeding with regard to carotenoid synthesis and also provide an insight for the further research of watermelon flesh color formation.
Collapse
|
15
|
Light Induces Carotenoid Biosynthesis-Related Gene Expression, Accumulation of Pigment Content, and Expression of the Small Heat Shock Protein in Apple Fruit. Int J Mol Sci 2022; 23:ijms23116153. [PMID: 35682835 PMCID: PMC9181450 DOI: 10.3390/ijms23116153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 02/05/2023] Open
Abstract
The coloration of the apple fruit (Malus × domestica Borkh.) depends on pigment content. Light stimulus activates a broad range of photosynthesis-related genes, including carotenoids. The effect of light on two red commercial apple cultivars, ‘Summer Prince’ and ‘Arisoo’ at the juvenile stage were examined. Apple fruits were either bagged to reduce light irradiation or were exposed to direct, enhanced sunlight (reflected). The pigment content and the expression of carotenoid metabolism genes in the peel and flesh of apple fruits were significantly different between the shaded and the reflected parts. These parameters were also different in the two cultivars, highlighting the contribution of the genetic background. Further, a combination of light and transient overexpression of carotenogenic genes increased fruit coloration and pigment content in the variety ‘RubyS’. Western blot analysis showed the expression of small heat shock proteins (smHSP) in lysates extracted from the reflected part of the fruits but not in the bagged fruits, indicating the activation of smHSP in response to heat generated by the reflected light. Therefore, the synergy between the genes and the environment dictates the color of apple fruits.
Collapse
|
16
|
Karniel U, Adler Berke N, Mann V, Hirschberg J. Perturbations in the Carotenoid Biosynthesis Pathway in Tomato Fruit Reactivate the Leaf-Specific Phytoene Synthase 2. FRONTIERS IN PLANT SCIENCE 2022; 13:844748. [PMID: 35283915 PMCID: PMC8914173 DOI: 10.3389/fpls.2022.844748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of the red carotenoid pigment lycopene in tomato (Solanum lycopersicum) fruit is achieved by increased carotenoid synthesis during ripening. The first committed step that determines the flux in the carotenoid pathway is the synthesis of phytoene catalyzed by phytoene synthase (PSY). Tomato has three PSY genes that are differentially expressed. PSY1 is exclusively expressed in fruits, while PSY2 mostly functions in green tissues. It has been established that PSY1 is mostly responsible for phytoene synthesis in fruits. Although PSY2 is found in the chromoplasts, it is inactive because loss-of-function mutations in PSY1 in the locus yellow flesh (r) eliminate carotenoid biosynthesis in the fruit. Here we demonstrate that specific perturbations of carotenoid biosynthesis downstream to phytoene prior and during the transition from chloroplast to chromoplast cause the recovery of phytoene synthesis in yellow flesh (r) fruits without significant transcriptional changes of PSY1 and PSY2. The recovery of carotenoid biosynthesis was abolished when the expression of PSY2 was silenced, indicating that the perturbations of carotenoid biosynthesis reactivated the chloroplast-specific PSY2 in fruit chromoplasts. Furthermore, it is demonstrated that PSY2 can function in fruit chromoplasts under certain conditions, possibly due to alterations in the plastidial sub-organelle organization that affect its association with the carotenoid biosynthesis metabolon. This finding provides a plausible molecular explanation to the epistasis of the mutation tangerine in the gene carotenoid isomerase over yellow flesh.
Collapse
Affiliation(s)
| | | | | | - Joseph Hirschberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
17
|
Paudel L, Kerr S, Prentis P, Tanurdžić M, Papanicolaou A, Plett JM, Cazzonelli CI. Horticultural innovation by viral-induced gene regulation of carotenogenesis. HORTICULTURE RESEARCH 2022; 9:uhab008. [PMID: 35043183 PMCID: PMC8769041 DOI: 10.1093/hr/uhab008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
Multipartite viral vectors provide a simple, inexpensive and effective biotechnological tool to transiently manipulate (i.e. reduce or increase) gene expression in planta and characterise the function of genetic traits. The development of virus-induced gene regulation (VIGR) systems usually involve the targeted silencing or overexpression of genes involved in pigment biosynthesis or degradation in plastids, thereby providing rapid visual assessment of success in establishing RNA- or DNA-based VIGR systems in planta. Carotenoids pigments provide plant tissues with an array of yellow, orange, and pinkish-red colours. VIGR-induced transient manipulation of carotenoid-related gene expression has advanced our understanding of carotenoid biosynthesis, regulation, accumulation and degradation, as well as plastid signalling processes. In this review, we describe mechanisms of VIGR, the importance of carotenoids as visual markers of technology development, and knowledge gained through manipulating carotenogenesis in model plants as well as horticultural crops not always amenable to transgenic approaches. We outline how VIGR can be utilised in plants to fast-track the characterisation of gene function(s), accelerate fruit tree breeding programs, edit genomes, and biofortify plant products enriched in carotenoid micronutrients for horticultural innovation.
Collapse
Affiliation(s)
- Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Stephanie Kerr
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
- School of Biology and Environmental Sciences, Faculty of Science,
Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Peter Prentis
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
- School of Biology and Environmental Sciences, Faculty of Science,
Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| |
Collapse
|
18
|
Elevating fruit carotenoid content in apple (Malus x domestica Borkh). Methods Enzymol 2022; 671:63-98. [DOI: 10.1016/bs.mie.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Dang Q, Sha H, Nie J, Wang Y, Yuan Y, Jia D. An apple (Malus domestica) AP2/ERF transcription factor modulates carotenoid accumulation. HORTICULTURE RESEARCH 2021; 8:223. [PMID: 34611138 PMCID: PMC8492665 DOI: 10.1038/s41438-021-00694-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/15/2021] [Accepted: 08/25/2021] [Indexed: 05/13/2023]
Abstract
Color is an important trait for horticultural crops. Carotenoids are one of the main pigments for coloration and have important implications for photosynthesis in plants and benefits for human health. Here, we identified an APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factor named MdAP2-34 in apple (Malus domestica Borkh.). MdAP2-34 expression exhibited a close correlation with carotenoid content in 'Benin Shogun' and 'Yanfu 3' fruit flesh. MdAP2-34 promotes carotenoid accumulation in MdAP2-34-OVX transgenic apple calli and fruits by participating in the carotenoid biosynthesis pathway. The major carotenoid contents of phytoene and β-carotene were much higher in overexpressing MdAP2-34 transgenic calli and fruit skin, yet the predominant compound of lutein showed no obvious difference, indicating that MdAP2-34 regulates phytoene and β-carotene accumulation but not lutein. MdPSY2-1 (phytoene synthase 2) is a major gene in the carotenoid biosynthesis pathway in apple fruit, and the MdPSY2-1 gene is directly bound and transcriptionally activated by MdAP2-34. In addition, overexpressing MdPSY2-1 in apple calli mainly increases phytoene and total carotenoid contents. Our findings will advance and extend our understanding of the complex molecular mechanisms of carotenoid biosynthesis in apple, and this research is valuable for accelerating the apple breeding process.
Collapse
Affiliation(s)
- Qingyuan Dang
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haiyun Sha
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiyun Nie
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yongzhang Wang
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yongbing Yuan
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Dongjie Jia
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
20
|
Arias D, Arenas-M A, Flores-Ortiz C, Peirano C, Handford M, Stange C. Daucus carota DcPSY2 and DcLCYB1 as Tools for Carotenoid Metabolic Engineering to Improve the Nutritional Value of Fruits. FRONTIERS IN PLANT SCIENCE 2021; 12:677553. [PMID: 34512681 PMCID: PMC8427143 DOI: 10.3389/fpls.2021.677553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Carotenoids are pigments with important nutritional value in the human diet. As antioxidant molecules, they act as scavengers of free radicals enhancing immunity and preventing cancer and cardiovascular diseases. Moreover, α-carotene and β-carotene, the main carotenoids of carrots (Daucus carota) are precursors of vitamin A, whose deficiency in the diet can trigger night blindness and macular degeneration. With the aim of increasing the carotenoid content in fruit flesh, three key genes of the carotenoid pathway, phytoene synthase (DcPSY2) and lycopene cyclase (DcLCYB1) from carrots, and carotene desaturase (XdCrtI) from the yeast Xanthophyllomyces dendrorhous, were optimized for expression in apple and cloned under the Solanum chilense (tomatillo) polygalacturonase (PG) fruit specific promoter. A biotechnological platform was generated and functionally tested by subcellular localization, and single, double and triple combinations were both stably transformed in tomatoes (Solanum lycopersicum var. Microtom) and transiently transformed in Fuji apple fruit flesh (Malus domestica). We demonstrated the functionality of the S. chilense PG promoter by directing the expression of the transgenes specifically to fruits. Transgenic tomato fruits expressing DcPSY2, DcLCYB1, and DcPSY2-XdCRTI, produced 1.34, 2.0, and 1.99-fold more total carotenoids than wild-type fruits, respectively. Furthermore, transgenic tomatoes expressing DcLCYB1, DcPSY2-XdCRTI, and DcPSY2-XdCRTI-DcLCYB1 exhibited an increment in β-carotene levels of 2.5, 3.0, and 2.57-fold in comparison with wild-type fruits, respectively. Additionally, Fuji apple flesh agroinfiltrated with DcPSY2 and DcLCYB1 constructs showed a significant increase of 2.75 and 3.11-fold in total carotenoids and 5.11 and 5.84-fold in β-carotene, respectively whereas the expression of DcPSY2-XdCRTI and DcPSY2-XdCRTI-DcLCYB1 generated lower, but significant changes in the carotenoid profile of infiltrated apple flesh. The results in apple demonstrate that DcPSY2 and DcLCYB1 are suitable biotechnological genes to increase the carotenoid content in fruits of species with reduced amounts of these pigments.
Collapse
Affiliation(s)
- Daniela Arias
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| | - Anita Arenas-M
- Laboratorio de Nutrición y Genómica de Plantas, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Flores-Ortiz
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| | - Clio Peirano
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| | - Michael Handford
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| | - Claudia Stange
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Chile
| |
Collapse
|
21
|
Chen A, Liu L, Liu X, Fu Y, Li J, Zhao J, Hou X. Exploring the differential stages of the pigment metabolism by pre-harvest bagging and post-harvest ethylene de-greening of Eureka lemon peel. PeerJ 2021; 9:e11504. [PMID: 34164234 PMCID: PMC8194417 DOI: 10.7717/peerj.11504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/03/2021] [Indexed: 11/20/2022] Open
Abstract
Pre-harvest bagging or post-harvest ethylene treatments on lemons are commonly applied to change the surface color from green to favorable yellow. In this study, the differential mechanisms of the pigment metabolism by the two treatments were investigated by pigments contents and related genetic expression. The results showed that both treatments reduced the number of chloroplasts and the content of chlorophyll. The differential expression of PSY1 and PSY2 were observed, causing the different accumulation of the main carotenoid phytoene content. The differential expression of NYC resulted in altered contents of chlorophyll a and chlorophyll b, and further led to the difference in a* value. More interestingly, the degradation of chlorophyll uncovered the color of carotenoids, leading to the color changed from green to yellow.
Collapse
Affiliation(s)
- Anjun Chen
- Sichuan Agricultural University, Yaan, China
| | - Lu Liu
- Sichuan Agricultural University, Yaan, China
| | | | - Yunyun Fu
- Sichuan Agricultural University, Yaan, China
| | - Jie Li
- Sichuan Agricultural University, Yaan, China
| | | | - Xiaoyan Hou
- Sichuan Agricultural University, Yaan, China
| |
Collapse
|
22
|
Dhami N. Chloroplast-to-chromoplast transition envisions provitamin A biofortification in green vegetables. PLANT CELL REPORTS 2021; 40:799-804. [PMID: 33754204 DOI: 10.1007/s00299-021-02684-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The carotenoids available in food are vital dietary micronutrients for human health. Plants synthesize and accumulate different carotenoids in plastids in a tissue-specific manner. The level of β-carotene (provitamin A) and other nutritionally important carotenoids is substantially low in the green tissues such as leaves compared to the fruits and roots. In photosynthetic tissues, chloroplasts can accumulate a moderate level of carotenoids, mainly to facilitate photosynthesis and environmental stress tolerance. However, chromoplasts from the storage tissues such as tomato fruit and carrot root can synthesize and accumulate carotenoids to a substantially higher level. A synthetic biology approach that utilizes a transient expression of bacterial phytoene synthase (crtB) gene in the photosynthetic leaves can induce the transition of chloroplasts into chromoplasts. The plastid-localized heterologous expression of crtB in leaves can induce the overaccumulation of phytoene, triggering the chloroplast-to-chromoplast transition; therefore, enhancing the biosynthesis and accumulation of carotenoids, including provitamin A. The transition of chloroplasts into chromoplasts, however, altered the photosynthetic thylakoids, consequently reducing the photosynthetic efficiency and plant growth. An efficient metabolic engineering strategy is desirable to enhance the production of targeted carotenoids in leaves without perturbing the photosynthetic efficiency and plant growth. Collectively, a synthetic biology strategy that triggers the transformation of chloroplasts into chromoplasts in photosynthetic tissues unfolds new avenues for carotenoid biofortification in the leafy food and vegetable crops, which can increase the dietary intake of carotenoids, therefore, combating the crisis of vitamin A deficiency.
Collapse
Affiliation(s)
- Namraj Dhami
- School of Health and Allied Sciences, Pokhara University, Pokhara 30, Dhungepatan, Pokhara, Gandaki, 33700, Nepal.
| |
Collapse
|
23
|
Lara-Abia S, Lobo-Rodrigo G, Welti-Chanes J, Cano MP. Carotenoid and Carotenoid Ester Profile and Their Deposition in Plastids in Fruits of New Papaya ( Carica papaya L.) Varieties from the Canary Islands. Foods 2021; 10:434. [PMID: 33671129 PMCID: PMC7921962 DOI: 10.3390/foods10020434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
The carotenoid profile of non-saponified and saponified extracts of different tissues (pulp and peel) of fruits of three new papaya varieties, Sweet Mary, Alicia, and Eksotika, was characterized for the first time, and almost all carotenoid compounds were quantified. Carotenoids and carotenoid esters were analyzed and characterized using HPLC-photo diode array (PDA-MS with atmospheric pressure chemical ionization with positive ion mode (APCI+) with a C30 reversed-phase column. The carotenoid deposition in collenchyma and chlorenchyma cells of papaya pulp and peel tissues was assessed by optical microscopy, confocal laser scanning microscopy, and transmission electron microscopy. The most abundant carotenoids in the fruit of the three papaya varieties (pulp and peel) were (all-E)-lycopene (230.0-421.2 µg/100 g fresh weight), (all-E)-β-carotene (120.3-233.2 µg/100 g fresh weight), and (all-E)-β-cryptoxanthin laurate (74.4-223.2 µg/100 g fresh weight. Moreover, high concentrations of (all-E)-lutein (922.5-1381.1 µg/100 g fresh weight) and its esters, such as (all-E)-lutein-3-O-myristate and (all-E)-lutein dimyristate, were found in peel extracts. The optical microscopy study of papaya pulps showed that carotenoid deposition in all papaya varieties, including Maradol, was mainly localized close to the cell walls, showing the presence of some crystalloids and round-shaped structures, with different sizes and distribution due to the different carotenoid content among varieties. No crystalloids or globular depositions were found in any of the peel sections, and no remarkable differences were found in the papaya peel microstructure of the different papaya varieties.
Collapse
Affiliation(s)
- Sara Lara-Abia
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL) (CSIC-UAM), 28001 Madrid, Spain;
- School of Sciences and Engineering, Tecnológico de Monterrey (ITESM), Monterrey 64000, Mexico;
| | - Gloria Lobo-Rodrigo
- Department of Crop Production in Tropical and Subtropical Areas, Instituto Canario de Investigaciones Agrarias (ICIA), 38270 Tenerife, Spain;
| | - Jorge Welti-Chanes
- School of Sciences and Engineering, Tecnológico de Monterrey (ITESM), Monterrey 64000, Mexico;
| | - M. Pilar Cano
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL) (CSIC-UAM), 28001 Madrid, Spain;
- School of Sciences and Engineering, Tecnológico de Monterrey (ITESM), Monterrey 64000, Mexico;
| |
Collapse
|
24
|
Wei X, Meng C, Yuan Y, Nath UK, Zhao Y, Wang Z, Yang S, Li L, Niu L, Yao Q, Wei F, Zhang X. CaPSY1 gene plays likely the key role in carotenoid metabolism of pepper (Capsicum annuum) at ripening. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:141-155. [PMID: 32926830 DOI: 10.1071/fp19287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 08/11/2020] [Indexed: 05/09/2023]
Abstract
Phytoene synthase (PSY) is the first committed enzyme in carotenoid biosynthesis, which plays important role in ripen fruit colour. However, the roles of CaPSY genes are not explained detail in ripen pepper fruit colour. In this study, three CaPSY genes (CaPSY1, CaPSY2 and CaPSY3) were identified through basic local alignment search tool (BLAST) in pepper genome. Among them, CaPSY1 was predicted as putative candidate based on relative expression values using five developmental stages of fruit in Zunla-1 cultivar and also in ripen fruits of five contrasting pepper lines. The CaPSY1 was characterised functionally through virus-induced gene silencing (VIGS) in ripen fruits and overexpression in Arabidopsis thaliana (L.) Heynh. Silencing of CaPSY1 gene altered colour with increased lutein and decreased zeaxanthin content in pepper fruits. The transgenic Arabidopsis line CaPSY1 gene showed higher expression of PSY1 gene compared with WT and dwarf phenotype due to reduction of GA3 (gibberellic acid) and higher abscisic acid (ABA) content. Our results confirmed that CaPSY1 gene involved in carotenoid metabolism in ripen pepper fruit and provide clue to develop bright red coloured pepper lines through breeding.
Collapse
Affiliation(s)
- Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China; and School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunyang Meng
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China; and School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Lin Li
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Liujing Niu
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Qiuju Yao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Fang Wei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; and Corresponding authors. ;
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China; and School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; and Corresponding authors. ;
| |
Collapse
|
25
|
Feng K, Hou XL, Xing GM, Liu JX, Duan AQ, Xu ZS, Li MY, Zhuang J, Xiong AS. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol 2020; 40:750-776. [PMID: 32522044 DOI: 10.1080/07388551.2020.1768509] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the whole life process, many factors including external and internal factors affect plant growth and development. The morphogenesis, growth, and development of plants are controlled by genetic elements and are influenced by environmental stress. Transcription factors contain one or more specific DNA-binding domains, which are essential in the whole life cycle of higher plants. The AP2/ERF (APETALA2/ethylene-responsive element binding factors) transcription factors are a large group of factors that are mainly found in plants. The transcription factors of this family serve as important regulators in many biological and physiological processes, such as plant morphogenesis, responsive mechanisms to various stresses, hormone signal transduction, and metabolite regulation. In this review, we summarized the advances in identification, classification, function, regulatory mechanisms, and the evolution of AP2/ERF transcription factors in plants. AP2/ERF family factors are mainly classified into four major subfamilies: DREB (Dehydration Responsive Element-Binding), ERF (Ethylene-Responsive-Element-Binding protein), AP2 (APETALA2) and RAV (Related to ABI3/VP), and Soloists (few unclassified factors). The review summarized the reports about multiple regulatory functions of AP2/ERF transcription factors in plants. In addition to growth regulation and stress responses, the regulatory functions of AP2/ERF in plant metabolite biosynthesis have been described. We also discussed the roles of AP2/ERF transcription factors in different phytohormone-mediated signaling pathways in plants. Genomic-wide analysis indicated that AP2/ERF transcription factors were highly conserved during plant evolution. Some public databases containing the information of AP2/ERF have been introduced. The studies of AP2/ERF factors will provide important bases for plant regulatory mechanisms and molecular breeding.
Collapse
Affiliation(s)
- Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xi-Lin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Guo-Ming Xing
- Collaborative Innovation Center for Improving Quality and Increased Profits of Protected Vegetables in Shanxi, Taigu, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Cerda A, Moreno JC, Acosta D, Godoy F, Cáceres JC, Cabrera R, Stange C. Functional characterisation and in silico modelling of MdPSY2 variants and MdPSY5 phytoene synthases from Malus domestica. JOURNAL OF PLANT PHYSIOLOGY 2020; 249:153166. [PMID: 32422487 DOI: 10.1016/j.jplph.2020.153166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Carotenoids are plastid isoprenoid pigments that play critical roles in light harvesting, photoprotection, and phytohormone biosynthesis. They are also vitamin-A precursors and antioxidant molecules important for human nutrition. Apples (e.g. Malus x domestica Borkh), one of the most widely consumed fruits with high nutrient levels, have a very low carotenoid concentration in flesh, compared with other fruits and vegetables. This could be explained by a deficiency in carotenoid synthesis/accumulation and/or accelerated degradation. We analysed the contribution of M. domestica cv. 'Fuji' phytoene synthase (PSY) in the biosynthesis of carotenoids and determined that among four MdPSY genes present in the organism, MdPSY2 and MdPSY5 are highly expressed in leaves and during fruit ripening in line with an increment in carotenoid content in fruits. Furthermore, two representative polymorphic MdPSY2 variants were found, one with a Tyr358Phe substitution (MdPSY2_F) and the other that additionally has a six-amino-acid deletion in the signal peptide (MdPSY2_CG). MdPSY2, MdPSY5, MdPSY2_F and MdPSY2_CG are all localised in plastids. Interestingly, the polymorphic MdPSY2_F and MdPSY2_CG variants show lower enzymatic activity than the wild-type form in a heterologous complementation assay, which could be attributed to the Tyr358Phe substitution close to the active-site pocket, as was suggested by 3-D modelling analysis. The presence of polymorphic MdPSY2 variants with lower enzymatic activity could be partially responsible for the low carotenoid content in Fuji apple fruits.
Collapse
Affiliation(s)
- Ariel Cerda
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653 Ñuñoa, Santiago, Chile
| | - Juan C Moreno
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany
| | - Daniel Acosta
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653 Ñuñoa, Santiago, Chile
| | - Francisca Godoy
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653 Ñuñoa, Santiago, Chile
| | - Juan Carlos Cáceres
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653 Ñuñoa, Santiago, Chile
| | - Ricardo Cabrera
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653 Ñuñoa, Santiago, Chile
| | - Claudia Stange
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653 Ñuñoa, Santiago, Chile.
| |
Collapse
|
27
|
Arcos Y, Godoy F, Flores-Ortiz C, Arenas-M A, Stange C. Boosting carotenoid content in Malus domestica var. Fuji by expressing AtDXR through an Agrobacterium-mediated transformation method. Biotechnol Bioeng 2020; 117:2209-2222. [PMID: 32311081 DOI: 10.1002/bit.27358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/06/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022]
Abstract
Apple (Malus domestica) fruits accumulate negligible levels of carotenoids, antioxidant pigments that are precursors for vitamin A in humans. As vitamin A deficiency is an important public health issue, we aimed at increasing carotenoids in apple by constitutively expressing the Arabidopsis thaliana DXR gene, one of the key regulatory steps in the plastidial isoprenoid pathway. For this purpose, we optimized an Agrobacterium-mediated transformation method in the commercial Fuji Raku Raku variety. This resulted in a shoot establishment efficiency of 0.75% at 20 weeks after infection. Molecular and microscopical analyses revealed that 80% of the hygromycin resistant shoots contained and expressed AtDXR:eGFP and that the AtDXR:eGFP fusion protein located in plastids. Transgenic seedlings displayed up to 3-fold increase in total carotenoids and in individual carotenoids compared to the WT, correlating with an increased transcript abundance of endogenous carotenogenic genes such as MdDXS, MdPSY1, MdPSY2, MdPSY3, MdLCYB1, and MdLCYB2. In addition, buds of 2-year-old transgenic dormant trees showed an increment up to 3-fold in lutein, and transient transformation of fruits revealed that AtDXR induced a 2-fold increment in total carotenoids. Thus, these results suggest that DXR may be a good candidate for increasing carotenoid levels in apple fruits through metabolic engineering.
Collapse
Affiliation(s)
- Yessica Arcos
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile
| | - Francisca Godoy
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile
| | - Carlos Flores-Ortiz
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile
| | - Anita Arenas-M
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile
| | - Claudia Stange
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile
| |
Collapse
|
28
|
Elucidating Carotenoid Biosynthetic Enzyme Localization and Interactions Using Fluorescent Microscopy. Methods Mol Biol 2019. [PMID: 31745925 DOI: 10.1007/978-1-4939-9952-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Carotenoids are essential for survival of all plants, where these colorful pigments and derivatives are biosynthesized, as well as for humans and other species that obtain plant-derived carotenoids in their diets and rely upon them for vitamin biosynthesis or antioxidant actions. The plant carotenoid biosynthetic pathway consists of nuclear encoded enzymes that are imported into chloroplasts and other plastids. The pathway structural genes are known and have been targeted for metabolic engineering to improve carotenoid profiles or content. However, results are not always as expected because there remain fundamental gaps in understanding how the pathway is physically organized. Many of the enzymes have been found in high molecular weight complexes which are poorly described. Elucidation of enzyme localization as well as enzyme interactions in vivo are needed for advancing the carotenoid field and facilitating our understanding of the three-dimensional organization of this important pathway. Fluorescent protein fusions with carotenoid enzymes can provide in vivo information when these fusions are introduced and transiently expressed in plant cells. Current advances in fluorescent microscopy, especially confocal microscopy, provide the resolution needed to localize fluorescently tagged carotenoid enzymes within suborganellar locations of plastids. Interactions between carotenoid biosynthetic enzymes can be determined using bimolecular fluorescence complementation (BiFC), a method whereby genes of interest are fused with sequences encoding nonfluorescent N- and C-terminal halves of YFP (yellow fluorescent protein), and then introduced into plant protoplasts to allow expression and visualization by fluorescence microscopy. The YFP fluorescence is restored only if the N and C-terminal regions are brought together by interacting fusion partners. Here we describe the methodology, with extensive tips and notes, for determining in vivo carotenoid enzyme localization and enzyme interactions by transient expression of enzyme-fluorescent protein fusions.
Collapse
|
29
|
Cao H, Luo H, Yuan H, Eissa MA, Thannhauser TW, Welsch R, Hao YJ, Cheng L, Li L. A Neighboring Aromatic-Aromatic Amino Acid Combination Governs Activity Divergence between Tomato Phytoene Synthases. PLANT PHYSIOLOGY 2019; 180:1988-2003. [PMID: 31221734 PMCID: PMC6670109 DOI: 10.1104/pp.19.00384] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/10/2019] [Indexed: 05/25/2023]
Abstract
Carotenoids exert multifaceted roles to plants and are critically important to humans. Phytoene synthase (PSY) is a major rate-limiting enzyme in the carotenoid biosynthetic pathway. PSY in plants is normally found as a small enzyme family with up to three members. However, knowledge of PSY isoforms in relation to their respective enzyme activities and amino acid residues that are important for PSY activity is limited. In this study, we focused on two tomato (Solanum lycopersicum) PSY isoforms, PSY1 and PSY2, and investigated their abilities to catalyze carotenogenesis via heterologous expression in transgenic Arabidopsis (Arabidopsis thaliana) and bacterial systems. We found that the fruit-specific PSY1 was less effective in promoting carotenoid biosynthesis than the green tissue-specific PSY2. Examination of the PSY proteins by site-directed mutagenesis analysis and three-dimensional structure modeling revealed two key amino acid residues responsible for this activity difference and identified a neighboring aromatic-aromatic combination in one of the PSY core structures as being crucial for high PSY activity. Remarkably, this neighboring aromatic-aromatic combination is evolutionarily conserved among land plant PSYs except PSY1 of tomato and potato (Solanum tuberosum). Strong transcription of tomato PSY1 likely evolved as compensation for its weak enzyme activity to allow for the massive carotenoid biosynthesis in ripe fruit. This study provides insights into the functional divergence of PSY isoforms and highlights the potential to rationally design PSY for the effective development of carotenoid-enriched crops.
Collapse
Affiliation(s)
- Hongbo Cao
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hongmei Luo
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Mohamed A Eissa
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
- Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853
| | - Ralf Welsch
- University of Freiburg, Faculty of Biology II, 79104 Freiburg, Germany
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| |
Collapse
|
30
|
Jiang CC, Zhang YF, Lin YJ, Chen Y, Lu XK. Illumina ® Sequencing Reveals Candidate Genes of Carotenoid Metabolism in Three Pummelo Cultivars ( Citrus Maxima) with Different Pulp Color. Int J Mol Sci 2019; 20:ijms20092246. [PMID: 31067703 PMCID: PMC6539737 DOI: 10.3390/ijms20092246] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/27/2019] [Accepted: 05/05/2019] [Indexed: 01/15/2023] Open
Abstract
Pummelo (Citrus maxima) is one of important fruit trees, which belongs to Citrus species. The fruits of different pummelo cultivars have different colors and differ in the contents of carotenoid. Our results clearly showed that ‘Huangjinmiyou’ (HJMY) has the highest content of β-carotene, followed by ‘Hongroumiyou’ (HRMY) and ‘Guanximiyou’ (GXMY). Lycopene is dominantly accumulated in HRMY. However, the molecular mechanism underlying the carotenoid accumulation in pummelo flesh is not fully understood. In this study, we used the RNA-Seq technique to investigate the candidate genes of carotenoid metabolism in the flesh of pummelo cv. GXMY and its mutants HRMY and HJMY in three development periods of fruit. After data assembly and bioinformatic analysis, a total of 357 genes involved in biosynthesis of secondary metabolites were isolated, of which 12 differentially expressed genes (DEGs) are involved in carotenoid biosynthesis. Among these 12 DEGs, phytoene synthase (PSY2), lycopene β-cyclase (LYCB2), lycopene Ɛ-cyclase (LYCE), carotenoid cleavage dioxygenases (CCD4), 9-cis-epoxycarotenoid dioxygenase (NCED2), aldehyde oxidase 3 (AAO3), and ABA 8′-hydroxylases (CYP707A1) are the most distinct DEGs in three pummelo cultivars. The co-expression analysis revealed that the expression patterns of several transcription factors such as bHLH, MYB, ERF, NAC and WRKY are highly correlated with DEGs, which are involved in carotenoid biosynthesis. In addition, the expression patterns of 22 DEGs were validated by real-time quantitative PCR (RT-qPCR) and the results are highly concordant with the RNA-Seq results. Our results provide a global vision of transcriptomic profile among three pummelo cultivars with different pulp colors. These results would be beneficial to further study the molecular mechanism of carotenoid accumulation in pummelo flesh and help the breeding of citrus with high carotenoid content.
Collapse
Affiliation(s)
- Cui-Cui Jiang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Yan-Fang Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Yan-Jin Lin
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Yuan Chen
- Institute of Agricultural Engineering and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.
| | - Xin-Kun Lu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| |
Collapse
|
31
|
Wurtzel ET. Changing Form and Function through Carotenoids and Synthetic Biology. PLANT PHYSIOLOGY 2019; 179:830-843. [PMID: 30361256 PMCID: PMC6393808 DOI: 10.1104/pp.18.01122] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/06/2018] [Indexed: 05/06/2023]
Abstract
The diverse structures and multifaceted roles of carotenoids make these colorful pigments attractive targets for synthetic biology.
Collapse
Affiliation(s)
- Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York 10468
- The Graduate School and University Center-CUNY, New York, New York 10016-4309
| |
Collapse
|
32
|
Zhang G, Diao S, Zhang T, Chen D, He C, Zhang J. Identification and characterization of circular RNAs during the sea buckthorn fruit development. RNA Biol 2019; 16:354-361. [PMID: 30681395 DOI: 10.1080/15476286.2019.1574162] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
As a rising star of noncoding RNA, circular RNAs (circRNAs) have a covalently closed loop structure, which formed by 3'-5' ligation during splicing. A few circRNAs were identified and thought to be transcriptional noise due to cognitive defect over the past 40 years. Recently, with the development of high-throughput RNA sequencing techniques and specific algorithms for circRNA detection and quantification, plenty of potential circRNAs were identified in many species which play important roles in various biological processes. However, researches on circRNAs in fruit ripening process were lacking. Here, we totally identified 2616 circRNAs in sea buckthorn fruit development process, which uniformly distributed in sea buckthorn chromosome. Among them, 1721 (65.8%) circRNAs were arising from the exons of their host genes, 252 circRNAs were identified as the differentially expressed circRNAs (DEcircRNAs) between three different development stages, and 181 (71.8%) DEcircRNAs had sequence similarity with 235 identified circRNAs from five know plant species. Functional annotation revealed that host genes of DEcircRNAs were predicted to be involved in carotenoid biosynthesis, lipid synthesis and plant hormone signal transduction. Additionally, 53 DEcircRNAs were predicted as the corresponding nine miRNAs sponges in sea buckthorn. Divergent reverse-transcription PCR and RT-qPCR were used for validate the differential expression and back-splicing sites of six DEcircRNAs. These results revealed the role of circRNAs in sea buckthorn fruit ripening process and promoted the noncoding RNA researches in plants.
Collapse
Affiliation(s)
- Guoyun Zhang
- a State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration , Research Institute of Forestry, Chinese Academy of Forestry , Beijing , China
| | - Songfeng Diao
- a State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration , Research Institute of Forestry, Chinese Academy of Forestry , Beijing , China.,b Non-timber Forestry Research and Development Center, Chinese Academy of Forestry , Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Forestry Administration , Zhengzhou , China
| | - Tong Zhang
- a State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration , Research Institute of Forestry, Chinese Academy of Forestry , Beijing , China
| | - Daoguo Chen
- a State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration , Research Institute of Forestry, Chinese Academy of Forestry , Beijing , China
| | - Caiyun He
- a State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration , Research Institute of Forestry, Chinese Academy of Forestry , Beijing , China
| | - Jianguo Zhang
- a State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration , Research Institute of Forestry, Chinese Academy of Forestry , Beijing , China.,c Collaborative Innovation Center of Sustainable Forestry in Southern China , Nanjing Forestry University , Nanjing , China
| |
Collapse
|
33
|
Liu Z, Lv J, Zhang Z, Li H, Yang B, Chen W, Dai X, Li X, Yang S, Liu L, Ou L, Ma Y, Zou X. Integrative Transcriptome and Proteome Analysis Identifies Major Metabolic Pathways Involved in Pepper Fruit Development. J Proteome Res 2019; 18:982-994. [DOI: 10.1021/acs.jproteome.8b00673] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhoubin Liu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Junheng Lv
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Zhuqing Zhang
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Heng Li
- Shanghai Applied Protein Technology Co. Ltd, Shanghai 200233, P.R. China
| | - Bozhi Yang
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Wenchao Chen
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xiongze Dai
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xuefeng Li
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Sha Yang
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Li Liu
- Shanghai Applied Protein Technology Co. Ltd, Shanghai 200233, P.R. China
| | - Lijun Ou
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yanqing Ma
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xuexiao Zou
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| |
Collapse
|
34
|
Ampomah‐Dwamena C, Thrimawithana AH, Dejnoprat S, Lewis D, Espley RV, Allan AC. A kiwifruit (Actinidia deliciosa) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation. THE NEW PHYTOLOGIST 2019; 221:309-325. [PMID: 30067292 PMCID: PMC6585760 DOI: 10.1111/nph.15362] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/11/2018] [Indexed: 05/10/2023]
Abstract
MYB transcription factors (TFs) regulate diverse plant developmental processes and understanding their roles in controlling pigment accumulation in fruit is important for developing new cultivars. In this study, we characterised kiwifruit TFMYB7, which was found to activate the promoter of the kiwifruit lycopene beta-cyclase (AdLCY-β) gene that plays a key role in the carotenoid biosynthetic pathway. To determine the role of MYB7, we analysed gene expression and metabolite profiles in Actinidia fruit which show different pigment profiles. The impact of MYB7 on metabolic biosynthetic pathways was then evaluated by overexpression in Nicotiana benthamiana followed by metabolite and gene expression analysis of the transformants. MYB7 was expressed in fruit that accumulated carotenoid and Chl pigments with high transcript levels associated with both pigments. Constitutive over-expression of MYB7, through transient or stable transformation of N. benthamiana, altered Chl and carotenoid pigment levels. MYB7 overexpression was associated with transcriptional activation of certain key genes involved in carotenoid biosynthesis, Chl biosynthesis, and other processes such as chloroplast and thylakoid membrane organization. Our results suggest that MYB7 plays a role in modulating carotenoid and Chl pigment accumulation in tissues through transcriptional activation of metabolic pathway genes.
Collapse
Affiliation(s)
- Charles Ampomah‐Dwamena
- The New Zealand Institute for Plant & Food Research Limited (PFR)Private Bag 92 169AucklandNew Zealand
| | - Amali H. Thrimawithana
- The New Zealand Institute for Plant & Food Research Limited (PFR)Private Bag 92 169AucklandNew Zealand
| | - Supinya Dejnoprat
- The New Zealand Institute for Plant & Food Research Limited (PFR)Private Bag 92 169AucklandNew Zealand
| | - David Lewis
- The New Zealand Institute for Plant & Food Research Limited (PFR)Private Bag 11600Palmerston North4442New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant & Food Research Limited (PFR)Private Bag 92 169AucklandNew Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant & Food Research Limited (PFR)Private Bag 92 169AucklandNew Zealand
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019AucklandNew Zealand
| |
Collapse
|
35
|
Ahrazem O, Diretto G, Argandoña Picazo J, Fiore A, Rubio-Moraga Á, Rial C, Varela RM, Macías FA, Castillo R, Romano E, Gómez-Gómez L. The Specialized Roles in Carotenogenesis and Apocarotenogenesis of the Phytoene Synthase Gene Family in Saffron. FRONTIERS IN PLANT SCIENCE 2019; 10:249. [PMID: 30886624 PMCID: PMC6409354 DOI: 10.3389/fpls.2019.00249] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/14/2019] [Indexed: 05/11/2023]
Abstract
Crocus sativus stigmas are the main source of crocins, which are glucosylated apocarotenoids derived from zeaxanthin cleavage that give saffron its red color. Phytoene synthase (PSY) mediates the first committed step in carotenoid biosynthesis in plants. Four PSY genes encoding functional enzymes were isolated from saffron. All the proteins were localized in plastids, but the expression patterns of each gene, CsPSY1a, CsPSY1b, CsPSY2, and CsPSY3, in different saffron tissues and during the development of the stigma showed different tissue specialization. The CsPSY2 transcript was primarily detected in the stigmas where it activates and stimulates the accumulation of crocins, while its expression was very low in other tissues. In contrast, CsPSY1a and CsPSY1b were mainly expressed in the leaves, but only CsPSY1b showed stress-light regulation. Interestingly, CsPSY1b showed differential expression of two alternative splice variants, which differ in the intron retention at their 5' UTRs, resulting in a reduction in their expression levels. In addition, the CsPSY1a and CsPSY1b transcripts, together with the CsPSY3 transcript, were induced in roots under different stress conditions. The CsPSY3 expression was high in the root tip, and its expression was associated with mycorrhizal colonization and strigolactone production. CsPSY3 formed a separate branch to the stress-specific Poaceae homologs but was closely related to the dicot PSY3 enzymes.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, Italy
| | - Javier Argandoña Picazo
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Alessia Fiore
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, Italy
| | - Ángela Rubio-Moraga
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Carlos Rial
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cádiz, Cádiz, Spain
| | - Rosa M. Varela
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cádiz, Cádiz, Spain
| | - Francisco A. Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cádiz, Cádiz, Spain
| | | | - Elena Romano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Lourdes Gómez-Gómez
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La Mancha, Albacete, Spain
- *Correspondence: Lourdes Gómez-Gómez,
| |
Collapse
|
36
|
Wang Q, Huang XQ, Cao TJ, Zhuang Z, Wang R, Lu S. Heteromeric Geranylgeranyl Diphosphate Synthase Contributes to Carotenoid Biosynthesis in Ripening Fruits of Red Pepper ( Capsicum annuum var. conoides). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11691-11700. [PMID: 30339374 DOI: 10.1021/acs.jafc.8b04052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pepper ( Capsicum annuum) fruits are a rich source of carotenoids. Geranylgeranyl diphosphate (GGPP) is the precursor for carotenoid biosynthesis and is produced by GGPP synthase (GGPPS), which belongs to the prenyl transferase (PTS) family. In this study, we identified from the pepper genome a total of eight PTS homologues. Our subcellular localization, enzymatic activity, and expression level analyses proved that among these homologues Capana04g000412 is the only functional GGPPS (CaGGPPS1) for carotenoid biosynthesis in pepper fruits. We demonstrated that CaGGPPS1 interacts with a catalytically inactive small subunit homologue protein CaSSUII, and such an interaction promotes CaGGPPS1 enzymatic activity. We also revealed a protein-protein interaction between CaSSUII and a putative phytoene synthase and the repression of carotenoid accumulation by silencing CaSSUII in pepper fruits. Taken together, our results suggest an essential contribution of the CaGGPPS1/CaSSUII interaction to carotenoid biosynthesis in ripening pepper fruits.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Xing-Qi Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Tian-Jun Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Zhong Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Ran Wang
- Zhengzhou Tobacco Research Institute , Zhengzhou 450001 , China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
37
|
Zhang XJ, Gao Y, Wen PF, Hao YY, Chen XX. Cloning and expression analysis of the phytoene synthase gene in ‘Granny Smith’ apple ( Malus × domestica Borkh.). BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1512379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Xiao-Jun Zhang
- Department of Pomology, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Institute of Pomology Research, Shanxi Academy of Agricultural Sciences, Taiyuan, PR China
| | - Yan Gao
- Department of Pomology, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Institute of Pomology Research, Shanxi Academy of Agricultural Sciences, Taiyuan, PR China
| | - Peng-Fei Wen
- Department of Pomology, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Institute of Pomology Research, Shanxi Academy of Agricultural Sciences, Taiyuan, PR China
| | - Yan-Yan Hao
- Department of Pomology, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Institute of Pomology Research, Shanxi Academy of Agricultural Sciences, Taiyuan, PR China
| | - Xue-Xiong Chen
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Institute of Pomology Research, Shanxi Academy of Agricultural Sciences, Taiyuan, PR China
- Department of Agricultural Resources Utilization, College of Resources & Environmental Science, Shanxi Agricultural University, Taigu, PR China
| |
Collapse
|
38
|
Stauder R, Welsch R, Camagna M, Kohlen W, Balcke GU, Tissier A, Walter MH. Strigolactone Levels in Dicot Roots Are Determined by an Ancestral Symbiosis-Regulated Clade of the PHYTOENE SYNTHASE Gene Family. FRONTIERS IN PLANT SCIENCE 2018; 9:255. [PMID: 29545815 PMCID: PMC5838088 DOI: 10.3389/fpls.2018.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/12/2018] [Indexed: 05/20/2023]
Abstract
Strigolactones (SLs) are apocarotenoid phytohormones synthesized from carotenoid precursors. They are produced most abundantly in roots for exudation into the rhizosphere to cope with mineral nutrient starvation through support of root symbionts. Abscisic acid (ABA) is another apocarotenoid phytohormone synthesized in roots, which is involved in responses to abiotic stress. Typically low carotenoid levels in roots raise the issue of precursor supply for the biosynthesis of these two apocarotenoids in this organ. Increased ABA levels upon abiotic stress in Poaceae roots are known to be supported by a particular isoform of phytoene synthase (PSY), catalyzing the rate-limiting step in carotenogenesis. Here we report on novel PSY3 isogenes from Medicago truncatula (MtPSY3) and Solanum lycopersicum (SlPSY3) strongly expressed exclusively upon root interaction with symbiotic arbuscular mycorrhizal (AM) fungi and moderately in response to phosphate starvation. They belong to a widespread clade of conserved PSYs restricted to dicots (dPSY3) distinct from the Poaceae-PSY3s involved in ABA formation. An ancient origin of dPSY3s and a potential co-evolution with the AM symbiosis is discussed in the context of PSY evolution. Knockdown of MtPSY3 in hairy roots of M. truncatula strongly reduced SL and AM-induced C13 α-ionol/C14 mycorradicin apocarotenoids. Inhibition of the reaction subsequent to phytoene synthesis revealed strongly elevated levels of phytoene indicating induced flux through the carotenoid pathway in roots upon mycorrhization. dPSY3 isogenes are coregulated with upstream isogenes and downstream carotenoid cleavage steps toward SLs (D27, CCD7, CCD8) suggesting a combined carotenoid/apocarotenoid pathway, which provides "just in time"-delivery of precursors for apocarotenoid formation.
Collapse
Affiliation(s)
- Ron Stauder
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Ralf Welsch
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maurizio Camagna
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Gerd U. Balcke
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Michael H. Walter
- Department of Cell and Metabolic Biology, Leibniz-Institute of Plant Biochemistry, Halle, Germany
- *Correspondence: Michael H. Walter,
| |
Collapse
|
39
|
Wisutiamonkul A, Ampomah-Dwamena C, Allan AC, Ketsa S. Carotenoid accumulation in durian (Durio zibethinus) fruit is affected by ethylene via modulation of carotenoid pathway gene expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:308-319. [PMID: 28415031 DOI: 10.1016/j.plaphy.2017.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 05/25/2023]
Abstract
Carotenoid content in durian (Durio zibethinus) fruit is an important aspect of fruit quality, with different cultivars distinguished by differing pigmentation. We have studied the dependence of carotenogenesis on ethylene. Fruit of the cultivar 'Chanee' harvested at the mature stage were either left untreated (controls), treated with 1-methylcyclopropene (1-MCP) for 12 h, or treated with application of an aqueous ethephon solution to the stem end, or treated for 12 h with 1-MCP followed by ethephon application. Fruit were then stored for 9 d at 25 °C. Pulp color of durian became steadily yellowish as a result of accumulation of carotenoids, which were mainly beta-carotene, and alpha-carotene, with a minor amount of zeaxanthin and lutein. 1-MCP delayed the increase in the accumulation of beta-carotene, alpha-carotene, and zeaxanthin, but not lutein. In contrast, ethephon had no significant effect on carotenoid accumulation. The expression of zeta-carotene desaturase (ZDS), lycopene beta-cyclase (LCYB), chromoplast specific lycopene beta-cyclase (CYCB) and beta-carotene hydroxylase (BCH) genes was highly correlated with carotenoid content and pulp color.1-MCP resulted in significant down-regulation of ZDS, LCYB, CYCB and BCH expression. The accumulation of beta-carotene and alpha-carotene appears to be controlled by the level of expression of LCYB gene, whose function was tested in bacteria to show conversion of lycopene and delta-carotene to beta-carotene and alpha-carotene, respectively. These results suggest that ripening-induced carotenoid accumulation is regulated by endogenous ethylene controlling the expression of key genes such as LCYB.
Collapse
Affiliation(s)
- Apinya Wisutiamonkul
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 92169, Auckland, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 92169, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Saichol Ketsa
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10300, Thailand.
| |
Collapse
|
40
|
Kaur N, Pandey A, Kumar P, Pandey P, Kesarwani AK, Mantri SS, Awasthi P, Tiwari S. Regulation of Banana Phytoene Synthase (MaPSY) Expression, Characterization and Their Modulation under Various Abiotic Stress Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:462. [PMID: 28421096 PMCID: PMC5377061 DOI: 10.3389/fpls.2017.00462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/16/2017] [Indexed: 06/07/2023]
Abstract
Phytoene synthase (PSY) is a key regulatory enzyme of carotenoid biosynthesis pathway in plants. The present study examines the role of PSY in carotenogenesis and stress management in banana. Germplasm screening of 10 Indian cultivars showed that Nendran (3011.94 μg/100 g dry weight) and Rasthali (105.35 μg/100 g dry weight) contained the highest and lowest amounts of β-carotene, respectively in ripe fruit-pulp. Nendran ripe pulp also showed significantly higher antioxidant activity as compared to Rasthali. Meta-analysis of three banana PSY genes (MaPSY1, MaPSY2, and MaPSY3) was performed to identify their structural features, subcellular, and chromosomal localization in banana genome. The distinct expression patterns of MaPSY1, MaPSY2, and MaPSY3 genes were observed in various tissues, and fruit developmental stages of these two contrasting cultivars, suggesting differential regulation of the banana PSY genes. A positive correlation was observed between the expression of MaPSY1 and β-carotene accumulation in the ripe fruit-peel and pulp of Nendran. The presence of stress responsive cis-regulatory motifs in promoter region of MaPSY genes were correlated with the expression pattern during various stress (abscisic acid, methyl jasmonate, salicylic acid and dark) treatments. The positive modulation of MaPSY1 noticed under abiotic stresses suggested its role in plant physiological functions and defense response. The amino acid sequence analysis of the PSY proteins in contrasting cultivars revealed that all PSY comprises conserved domains related to enzyme activity. Bacterial complementation assay has validated the functional activity of six PSY proteins and among them PSY1 of Nendran (Nen-PSY1) gave the highest activity. These data provide new insights into the regulation of PSY expression in banana by developmental and stress related signals that can be explored in the banana improvement programs.
Collapse
Affiliation(s)
- Navneet Kaur
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India)Mohali, India
- Department of Biotechnology, Panjab UniversityChandigarh, India
| | - Ashutosh Pandey
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India)Mohali, India
| | - Prateek Kumar
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India)Mohali, India
| | - Pankaj Pandey
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India)Mohali, India
| | - Atul K Kesarwani
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India)Mohali, India
| | - Shrikant S Mantri
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India)Mohali, India
| | - Praveen Awasthi
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India)Mohali, India
| | - Siddharth Tiwari
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India)Mohali, India
| |
Collapse
|
41
|
Álvarez D, Voß B, Maass D, Wüst F, Schaub P, Beyer P, Welsch R. Carotenogenesis Is Regulated by 5'UTR-Mediated Translation of Phytoene Synthase Splice Variants. PLANT PHYSIOLOGY 2016; 172:2314-2326. [PMID: 27729470 PMCID: PMC5129717 DOI: 10.1104/pp.16.01262] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/05/2016] [Indexed: 05/18/2023]
Abstract
Phytoene synthase (PSY) catalyzes the highly regulated, frequently rate-limiting synthesis of the first biosynthetically formed carotene. While PSY constitutes a small gene family in most plant taxa, the Brassicaceae, including Arabidopsis (Arabidopsis thaliana), predominantly possess a single PSY gene. This monogenic situation is compensated by the differential expression of two alternative splice variants (ASV), which differ in length and in the exon/intron retention of their 5'UTRs. ASV1 contains a long 5'UTR (untranslated region) and is involved in developmentally regulated carotenoid formation, such as during deetiolation. ASV2 contains a short 5'UTR and is preferentially induced when an immediate increase in the carotenoid pathway flux is required, such as under salt stress or upon sudden light intensity changes. We show that the long 5'UTR of ASV1 is capable of attenuating the translational activity in response to high carotenoid pathway fluxes. This function resides in a defined 5'UTR stretch with two predicted interconvertible RNA conformations, as known from riboswitches, which might act as a flux sensor. The translation-inhibitory structure is absent from the short 5'UTR of ASV2 allowing to bypass translational inhibition under conditions requiring rapidly increased pathway fluxes. The mechanism is not found in the rice (Oryza sativa) PSY1 5'UTR, consistent with the prevalence of transcriptional control mechanisms in taxa with multiple PSY genes. The translational control mechanism identified is interpreted in terms of flux adjustments needed in response to retrograde signals stemming from intermediates of the plastid-localized carotenoid biosynthesis pathway.
Collapse
Affiliation(s)
- Daniel Álvarez
- Faculty of Biology, Institute for Biology II (D.A., D.M., F.W., P.S., P.B., R.W.), Institute for Biology III (B.V.), University of Freiburg, 79104 Freiburg, Germany
| | - Björn Voß
- Faculty of Biology, Institute for Biology II (D.A., D.M., F.W., P.S., P.B., R.W.), Institute for Biology III (B.V.), University of Freiburg, 79104 Freiburg, Germany
| | - Dirk Maass
- Faculty of Biology, Institute for Biology II (D.A., D.M., F.W., P.S., P.B., R.W.), Institute for Biology III (B.V.), University of Freiburg, 79104 Freiburg, Germany
| | - Florian Wüst
- Faculty of Biology, Institute for Biology II (D.A., D.M., F.W., P.S., P.B., R.W.), Institute for Biology III (B.V.), University of Freiburg, 79104 Freiburg, Germany
| | - Patrick Schaub
- Faculty of Biology, Institute for Biology II (D.A., D.M., F.W., P.S., P.B., R.W.), Institute for Biology III (B.V.), University of Freiburg, 79104 Freiburg, Germany
| | - Peter Beyer
- Faculty of Biology, Institute for Biology II (D.A., D.M., F.W., P.S., P.B., R.W.), Institute for Biology III (B.V.), University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Welsch
- Faculty of Biology, Institute for Biology II (D.A., D.M., F.W., P.S., P.B., R.W.), Institute for Biology III (B.V.), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
42
|
Flowerika, Alok A, Kumar J, Thakur N, Pandey A, Pandey AK, Upadhyay SK, Tiwari S. Characterization and Expression Analysis of Phytoene Synthase from Bread Wheat (Triticum aestivum L.). PLoS One 2016; 11:e0162443. [PMID: 27695116 PMCID: PMC5047459 DOI: 10.1371/journal.pone.0162443] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/23/2016] [Indexed: 02/01/2023] Open
Abstract
Phytoene synthase (PSY) regulates the first committed step of the carotenoid biosynthetic pathway in plants. The present work reports identification and characterization of the three PSY genes (TaPSY1, TaPSY2 and TaPSY3) in wheat (Triticum aestivum L.). The TaPSY1, TaPSY2, and TaPSY3 genes consisted of three homoeologs on the long arm of group 7 chromosome (7L), short arm of group 5 chromosome (5S), and long arm of group 5 chromosome (5L), respectively in each subgenomes (A, B, and D) with a similarity range from 89% to 97%. The protein sequence analysis demonstrated that TaPSY1 and TaPSY3 retain most of conserved motifs for enzyme activity. Phylogenetic analysis of all TaPSY revealed an evolutionary relationship among PSY proteins of various monocot species. TaPSY derived from A and D subgenomes shared proximity to the PSY of Triticum urartu and Aegilops tauschii, respectively. The differential expression of TaPSY1, TaPSY2, and TaPSY3 in the various tissues, seed development stages, and stress treatments suggested their role in plant development, and stress condition. TaPSY3 showed higher expression in all tissues, followed by TaPSY1. The presence of multiple stress responsive cis-regulatory elements in promoter region of TaPSY3 correlated with the higher expression during drought and heat stresses has suggested their role in these conditions. The expression pattern of TaPSY3 was correlated with the accumulation of β-carotene in the seed developmental stages. Bacterial complementation assay has validated the functional activity of each TaPSY protein. Hence, TaPSY can be explored in developing genetically improved wheat crop.
Collapse
Affiliation(s)
- Flowerika
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali, 160071, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India-160014
| | - Anshu Alok
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali, 160071, Punjab, India
| | - Jitesh Kumar
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali, 160071, Punjab, India
| | - Neha Thakur
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali, 160071, Punjab, India
| | - Ashutosh Pandey
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali, 160071, Punjab, India
| | - Ajay Kumar Pandey
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali, 160071, Punjab, India
| | | | - Siddharth Tiwari
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), C-127, Industrial Area, Phase VIII, S.A.S. Nagar, Mohali, 160071, Punjab, India
| |
Collapse
|
43
|
Abstract
Carotenoids are recognized as the main pigments in most fruit crops, providing colours that range from yellow and pink to deep orange and red. Moreover, the edible portion of widely consumed fruits or their derived products represent a major dietary source of carotenoids for animals and humans. Therefore, these pigments are crucial compounds contributing to fruit aesthetic and nutritional quality but may also have protecting and ecophysiological functions in coloured fruits. Among plant organs, fruits display one of the most heterogeneous carotenoids patterns in terms of diversity and abundance. In this chapter a comprehensive list of the carotenoid content and profile in the most commonly cultivated fleshy fruits is reported. The proposed fruit classification systems attending to carotenoid composition are revised and discussed. The regulation of carotenoids in fruits can be rather complex due to the dramatic changes in content and composition during ripening, which are also dependent on the fruit tissue and the developmental stage. In addition, carotenoid accumulation is a dynamic process, associated with the development of chromoplasts during ripening. As a general rule, carotenoid accumulation is highly controlled at the transcriptional level of the structural and accessory proteins of the biosynthetic and degradation pathways, but other mechanisms such as post-transcriptional modifications or the development of sink structures have been recently revealed as crucial factors in determining the levels and stability of these pigments. In this chapter common key metabolic reactions regulating carotenoid composition in fruit tissues are described in addition to others that are restricted to certain species and generate unique carotenoids patterns. The existence of fruit-specific isoforms for key steps such as the phytoene synthase, lycopene β-cyclases or catabolic carotenoid cleavage dioxygenases has allowed an independent regulation of the pathway in fruit tissues and a source of variability to create novel activities or different catalytic properties. Besides key genes of the carotenoid pathway, changes in carotenoid accumulation could be also directly influenced by differences in gene expression or protein activity in the pathway of carotenoid precursors and some relevant examples are discussed. The objective of this chapter is to provide an updated review of the main carotenoid profiles in fleshy fruits, their pattern of changes during ripening and our current understanding of the different regulatory levels responsible for the diversity of carotenoid accumulation in fruit tissues.
Collapse
Affiliation(s)
- Joanna Lado
- Instituto de Agroquimica y Tecnologia de Alimentos (IATA), Consejo Superior de Investigaciones Cientificas (CSIC), Avenida Agustin Escardino 7, 46980, Paterna, Valencia, Spain.
- Instituto Nacional de Investigacion Agropecuaria (INIA), Camino a la Represa s/n, Salto, Uruguay.
| | - Lorenzo Zacarías
- Instituto de Agroquimica y Tecnologia de Alimentos (IATA), Consejo Superior de Investigaciones Cientificas (CSIC), Avenida Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - María Jesús Rodrigo
- Instituto de Agroquimica y Tecnologia de Alimentos (IATA), Consejo Superior de Investigaciones Cientificas (CSIC), Avenida Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| |
Collapse
|
44
|
Ahrazem O, Rubio-Moraga A, Jimeno ML, Gómez-Gómez L. Structural characterization of highly glucosylated crocins and regulation of their biosynthesis during flower development in Crocus. FRONTIERS IN PLANT SCIENCE 2015; 6:971. [PMID: 26582258 PMCID: PMC4632010 DOI: 10.3389/fpls.2015.00971] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/22/2015] [Indexed: 05/18/2023]
Abstract
Crocin biosynthesis in Crocus has been proposed to proceed through a zeaxanthin cleavage pathway catalyzed by carotenoid cleavage dioxygenase 2 (CCD2), and followed by glucosylation reactions catalyzed by CsGT2 (UGT74AD1). In Crocus ancyrensis flowers, crocins with eight (crocin-1), seven (crocin-2), and six glucose (crocin-3) moieties accumulated both in stigma and tepals. We have characterized the structure of these highly glucosylated crocins and follow up their accumulation by high-resolution liquid chromatography coupled with diode array detector along the development of both tissues, and coupled to the isolation and analysis of the expression of eighteen genes (PSY-I, PSY-II, PDS-(I-V), ISO-ZDS, ZDS, CtrISO, LYC-I and II, BCH, CaCCD2, UGT74AD2-5) related with the apocarotenoid metabolism in C. ancyrensis tepals and stigmas. Structure elucidation of crocin-1 and crocin-2 was done by the combined use of 1D and 2D [(1)H, (1)H] (gCOSY and TOCSY and ROESY) and [(1)H-(13)C] NMR experiments, revealing that for crocin-1 was all-trans-crocetin O-[β-D- Glucopyranosyl)-(1→4)-(β-D-glucopyranosyl)-(1→2)]-O-[β-D-glucopyranosyl-(1→6)]-β-D-glucopyranosyl diester, while crocin-2 showed an identical structure except for the absence of one glucose residue in one end of the molecule. Crocins accumulation was not synchronically regulated in stigma and tepals, although in both cases crocins accumulation parallels tissue development, decreasing at anthesis. The expression of the carotenogenic genes PSY, ZDS-V, BCH, and LCY-II was correlated with crocins accumulation. In addition, CaCCD2 and only one of the four glucosyltransferase encoding genes, UGT74AD2, were highly expressed, and the expression was correlated with high levels of crocins accumulation in stigma and tepals.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La ManchaAlbacete, Spain
- Fundación Parque Científico y Tecnológico de Castilla-La ManchaAlbacete, Spain
| | - Angela Rubio-Moraga
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Maria L. Jimeno
- Centro Química Orgánica “Lora-Tamayo” – Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Lourdes Gómez-Gómez
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Instituto Botánico, Universidad de Castilla-La ManchaAlbacete, Spain
- *Correspondence: Lourdes Gómez-Gómez,
| |
Collapse
|