1
|
Skirycz A, Fernie AR. Past accomplishments and future challenges of the multi-omics characterization of leaf growth. PLANT PHYSIOLOGY 2022; 189:473-489. [PMID: 35325227 PMCID: PMC9157134 DOI: 10.1093/plphys/kiac136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The advent of omics technologies has revolutionized biology and advanced our understanding of all biological processes, including major developmental transitions in plants and animals. Here, we review the vast knowledge accumulated concerning leaf growth in terms of transcriptional regulation before turning our attention to the historically less well-characterized alterations at the protein and metabolite level. We will then discuss how the advent of biochemical methods coupled with metabolomics and proteomics can provide insight into the protein-protein and protein-metabolite interactome of the growing leaves. We finally highlight the substantial challenges in detection, spatial resolution, integration, and functional validation of the omics results, focusing on metabolomics as a prerequisite for a comprehensive understanding of small-molecule regulation of plant growth.
Collapse
Affiliation(s)
- Aleksandra Skirycz
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- Cornell University, Ithaca, New York 14853, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| |
Collapse
|
2
|
Salmeron-Santiago IA, Martínez-Trujillo M, Valdez-Alarcón JJ, Pedraza-Santos ME, Santoyo G, Pozo MJ, Chávez-Bárcenas AT. An Updated Review on the Modulation of Carbon Partitioning and Allocation in Arbuscular Mycorrhizal Plants. Microorganisms 2021; 10:75. [PMID: 35056524 PMCID: PMC8781679 DOI: 10.3390/microorganisms10010075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs that supply mineral nutrients to the host plant in exchange for carbon derived from photosynthesis. Sucrose is the end-product of photosynthesis and the main compound used by plants to translocate photosynthates to non-photosynthetic tissues. AMF alter carbon distribution in plants by modifying the expression and activity of key enzymes of sucrose biosynthesis, transport, and/or catabolism. Since sucrose is essential for the maintenance of all metabolic and physiological processes, the modifications addressed by AMF can significantly affect plant development and stress responses. AMF also modulate plant lipid biosynthesis to acquire storage reserves, generate biomass, and fulfill its life cycle. In this review we address the most relevant aspects of the influence of AMF on sucrose and lipid metabolism in plants, including its effects on sucrose biosynthesis both in photosynthetic and heterotrophic tissues, and the influence of sucrose on lipid biosynthesis in the context of the symbiosis. We present a hypothetical model of carbon partitioning between plants and AMF in which the coordinated action of sucrose biosynthesis, transport, and catabolism plays a role in the generation of hexose gradients to supply carbon to AMF, and to control the amount of carbon assigned to the fungus.
Collapse
Affiliation(s)
| | | | - Juan J. Valdez-Alarcón
- Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58880, Mexico;
| | - Martha E. Pedraza-Santos
- Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo, Uruapan 60170, Mexico;
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico;
| | - María J. Pozo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Ana T. Chávez-Bárcenas
- Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo, Uruapan 60170, Mexico;
| |
Collapse
|
3
|
Han M, Zhang C, Suglo P, Sun S, Wang M, Su T. l-Aspartate: An Essential Metabolite for Plant Growth and Stress Acclimation. Molecules 2021; 26:molecules26071887. [PMID: 33810495 PMCID: PMC8037285 DOI: 10.3390/molecules26071887] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 01/07/2023] Open
Abstract
L-aspartate (Asp) serves as a central building block, in addition to being a constituent of proteins, for many metabolic processes in most organisms, such as biosynthesis of other amino acids, nucleotides, nicotinamide adenine dinucleotide (NAD), the tricarboxylic acid (TCA) cycle and glycolysis pathway intermediates, and hormones, which are vital for growth and defense. In animals and humans, lines of data have proved that Asp is indispensable for cell proliferation. However, in plants, despite the extensive study of the Asp family amino acid pathway, little attention has been paid to the function of Asp through the other numerous pathways. This review aims to elucidate the most important aspects of Asp in plants, from biosynthesis to catabolism and the role of Asp and its metabolic derivatives in response to changing environmental conditions. It considers the distribution of Asp in various cell compartments and the change of Asp level, and its significance in the whole plant under various stresses. Moreover, it provides evidence of the interconnection between Asp and phytohormones, which have prominent functions in plant growth, development, and defense. The updated information will help improve our understanding of the physiological role of Asp and Asp-borne metabolic fluxes, supporting the modular operation of these networks.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (C.Z.); (P.S.); (S.S.); (M.W.)
| | - Can Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (C.Z.); (P.S.); (S.S.); (M.W.)
| | - Peter Suglo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (C.Z.); (P.S.); (S.S.); (M.W.)
| | - Shuyue Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (C.Z.); (P.S.); (S.S.); (M.W.)
| | - Mingyao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (C.Z.); (P.S.); (S.S.); (M.W.)
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (C.Z.); (P.S.); (S.S.); (M.W.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
- Correspondence:
| |
Collapse
|
4
|
Raffan S, Oddy J, Halford NG. The Sulphur Response in Wheat Grain and Its Implications for Acrylamide Formation and Food Safety. Int J Mol Sci 2020; 21:E3876. [PMID: 32485924 PMCID: PMC7312080 DOI: 10.3390/ijms21113876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/21/2023] Open
Abstract
Free (soluble, non-protein) asparagine concentration can increase many-fold in wheat grain in response to sulphur deficiency. This exacerbates a major food safety and regulatory compliance problem for the food industry because free asparagine may be converted to the carcinogenic contaminant, acrylamide, during baking and processing. Here, we describe the predominant route for the conversion of asparagine to acrylamide in the Maillard reaction. The effect of sulphur deficiency and its interaction with nitrogen availability is reviewed, and we reiterate our advice that sulphur should be applied to wheat being grown for human consumption at a rate of 20 kg per hectare. We describe the genetic control of free asparagine accumulation, including genes that encode metabolic enzymes (asparagine synthetase, glutamine synthetase, glutamate synthetase, and asparaginase), regulatory protein kinases (sucrose nonfermenting-1 (SNF1)-related protein kinase-1 (SnRK1) and general control nonderepressible-2 (GCN2)), and basic leucine zipper (bZIP) transcription factors, and how this genetic control responds to sulphur, highlighting the importance of asparagine synthetase-2 (ASN2) expression in the embryo. We show that expression of glutamate-cysteine ligase is reduced in response to sulphur deficiency, probably compromising glutathione synthesis. Finally, we describe unexpected effects of sulphur deficiency on carbon metabolism in the endosperm, with large increases in expression of sucrose synthase-2 (SuSy2) and starch synthases.
Collapse
Affiliation(s)
| | | | - Nigel G. Halford
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, UK; (S.R.); (J.O.)
| |
Collapse
|
5
|
Laser Microdissection as a Useful Tool to Study Gene Expression in Plant and Fungal Partners in AM Symbiosis. Methods Mol Biol 2020; 2146:171-184. [PMID: 32415603 DOI: 10.1007/978-1-0716-0603-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Laser microdissection (LMD) technology has been widely applied to plant tissues, offering novel information on the role of different cell-type populations during plant-microbe interactions. In this chapter, protocols to apply the LMD approach to study plant and fungal transcript profiles in different cell-type populations from arbuscular mycorrhizal (AM) roots are described in detail, starting from the biological material preparation to gene expression analyses by RT-PCR and RT-qPCR.
Collapse
|
6
|
French KE. Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health. Front Microbiol 2017; 8:1403. [PMID: 28785256 PMCID: PMC5519612 DOI: 10.3389/fmicb.2017.01403] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
Creating sustainable bioeconomies for the 21st century relies on optimizing the use of biological resources to improve agricultural productivity and create new products. Arbuscular mycorrhizae (phylum Glomeromycota) form symbiotic relationships with over 80% of vascular plants. In return for carbon, these fungi improve plant health and tolerance to environmental stress. This symbiosis is over 400 million years old and there are currently over 200 known arbuscular mycorrhizae, with dozens of new species described annually. Metagenomic sequencing of native soil communities, from species-rich meadows to mangroves, suggests biologically diverse habitats support a variety of mycorrhizal species with potential agricultural, medical, and biotechnological applications. This review looks at the effect of mycorrhizae on plant metabolism and how we can harness this symbiosis to improve crop health. I will first describe the mechanisms that underlie this symbiosis and what physiological, metabolic, and environmental factors trigger these plant-fungal relationships. These include mycorrhizal manipulation of host genetic expression, host mitochondrial and plastid proliferation, and increased production of terpenoids and jasmonic acid by the host plant. I will then discuss the effects of mycorrhizae on plant root and foliar secondary metabolism. I subsequently outline how mycorrhizae induce three key benefits in crops: defense against pathogen and herbivore attack, drought resistance, and heavy metal tolerance. I conclude with an overview of current efforts to harness mycorrhizal diversity to improve crop health through customized inoculum. I argue future research should embrace synthetic biology to create mycorrhizal chasses with improved symbiotic abilities and potentially novel functions to improve plant health. As the effects of climate change and anthropogenic disturbance increase, the global diversity of arbuscular mycorrhizal fungi should be monitored and protected to ensure this important agricultural and biotechnological resource for the future.
Collapse
|
7
|
Daher Z, Recorbet G, Solymosi K, Wienkoop S, Mounier A, Morandi D, Lherminier J, Wipf D, Dumas-Gaudot E, Schoefs B. Changes in plastid proteome and structure in arbuscular mycorrhizal roots display a nutrient starvation signature. PHYSIOLOGIA PLANTARUM 2017; 159:13-29. [PMID: 27558913 DOI: 10.1111/ppl.12505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/17/2016] [Accepted: 07/18/2016] [Indexed: 05/21/2023]
Abstract
During arbuscular mycorrhizal symbiosis, arbuscule-containing root cortex cells display a proliferation of plastids, a feature usually ascribed to an increased plant anabolism despite the lack of studies focusing on purified root plastids. In this study, we investigated mycorrhiza-induced changes in plastidic pathways by performing a label-free comparative subcellular quantitative proteomic analysis targeted on plastid-enriched fractions isolated from Medicago truncatula roots, coupled to a cytological analysis of plastid structure. We identified 490 root plastid protein candidates, among which 79 changed in abundance upon mycorrhization, as inferred from spectral counting. According to cross-species sequence homology searches, the mycorrhiza-responsive proteome was enriched in proteins experimentally localized in thylakoids, whereas it was depleted of proteins ascribed predominantly to amyloplasts. Consistently, the analysis of plastid morphology using transmission electron microscopy indicated that starch depletion associated with the proliferation of membrane-free and tubular membrane-containing plastids was a feature specific to arbusculated cells. The loss of enzymes involved in carbon/nitrogen assimilation and provision of reducing power, coupled to macromolecule degradation events in the plastid-enriched fraction of mycorrhizal roots that paralleled lack of starch accumulation in arbusculated cells, lead us to propose that arbuscule functioning elicits a nutrient starvation and an oxidative stress signature that may prime arbuscule breakdown.
Collapse
Affiliation(s)
- Zeina Daher
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Ghislaine Recorbet
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Katalin Solymosi
- Department of Plant Anatomy, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Stefanie Wienkoop
- Department of Molecular System Biology, University of Vienna, Vienna 1090, Austria
| | - Arnaud Mounier
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Dominique Morandi
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Jeannine Lherminier
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Eliane Dumas-Gaudot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Benoît Schoefs
- MicroMar, Mer, Molécules, Santé, UBL, Université du Maine, Le Mans Cedex 9 72085, France
| |
Collapse
|
8
|
Tenenboim H, Brotman Y. Omic Relief for the Biotically Stressed: Metabolomics of Plant Biotic Interactions. TRENDS IN PLANT SCIENCE 2016; 21:781-791. [PMID: 27185334 DOI: 10.1016/j.tplants.2016.04.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/08/2016] [Accepted: 04/19/2016] [Indexed: 05/19/2023]
Abstract
Many aspects of the way plants protect themselves against pathogen attack, or react upon such an attack, are realized by metabolites. The ambitious aim of metabolomics, namely the identification and annotation of the entire cellular metabolome, still poses a considerable challenge due to the high diversity of the metabolites in the cell. Recent advances in analytical methods and data analysis have resulted in improved sensitivity, accuracy, and capacity, allowing the analysis of several hundreds or even thousands of compounds within one sample. Investigators have only recently begun to acknowledge and harness the power of metabolomics to elucidate key questions in the study of plant biotic interactions; we review trends and developments in the field.
Collapse
Affiliation(s)
- Hezi Tenenboim
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel.
| |
Collapse
|
9
|
Courty PE, Wipf D. Editorial: Transport in Plant Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2016; 7:809. [PMID: 27375662 PMCID: PMC4896956 DOI: 10.3389/fpls.2016.00809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 05/24/2016] [Indexed: 06/06/2023]
Affiliation(s)
| | - Daniel Wipf
- UMR 1347 Agroécologie, BP 86510, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University of Bourgogne Franche-ComtéDijon, France
| |
Collapse
|