1
|
Francin-Allami M, Bouder A, Geairon A, Alvarado C, Le-Bot L, Daniel S, Shao M, Laudencia-Chingcuanco D, Vogel JP, Guillon F, Bonnin E, Saulnier L, Sibout R. Mixed-Linkage Glucan Is the Main Carbohydrate Source and Starch Is an Alternative Source during Brachypodium Grain Germination. Int J Mol Sci 2023; 24:ijms24076821. [PMID: 37047802 PMCID: PMC10095428 DOI: 10.3390/ijms24076821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Seeds of the model grass Brachypodium distachyon are unusual because they contain very little starch and high levels of mixed-linkage glucan (MLG) accumulated in thick cell walls. It was suggested that MLG might supplement starch as a storage carbohydrate and may be mobilised during germination. In this work, we observed massive degradation of MLG during germination in both endosperm and nucellar epidermis. The enzymes responsible for the MLG degradation were identified in germinated grains and characterized using heterologous expression. By using mutants targeting MLG biosynthesis genes, we showed that the expression level of genes coding for MLG and starch-degrading enzymes was modified in the germinated grains of knocked-out cslf6 mutants depleted in MLG but with higher starch content. Our results suggest a substrate-dependent regulation of the storage sugars during germination. These overall results demonstrated the function of MLG as the main carbohydrate source during germination of Brachypodium grain. More astonishingly, cslf6 Brachypodium mutants are able to adapt their metabolism to the lack of MLG by modifying the energy source for germination and the expression of genes dedicated for its use.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingqin Shao
- DOE Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - John P Vogel
- DOE Joint Genome Institute, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
2
|
Duarte KE, Basso MF, de Oliveira NG, da Silva JCF, de Oliveira Garcia B, Cunha BADB, Cardoso TB, Nepomuceno AL, Kobayashi AK, Santiago TR, de Souza WR, Molinari HBC. MicroRNAs expression profiles in early responses to different levels of water deficit in Setaria viridis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1607-1624. [PMID: 36389096 PMCID: PMC9530107 DOI: 10.1007/s12298-022-01226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Water deficit is a major constraint for crops of economic importance in almost all agricultural regions. However, plants have an active defense system to adapt to these adverse conditions, acting in the reprogramming of gene expression responsible for encoding microRNAs (miRNAs). These miRNAs promote the regulation to the target gene expression by the post-transcriptional (PTGS) and transcriptional gene silencing (TGS), modulating several pathways including defense response to water deficit. The broader knowledge of the miRNA expression profile and its regulatory networks in response to water deficit can provide evidence for the development of new biotechnological tools for genetic improvement of several important crops. In this study, we used Setaria viridis accession A10.1 as a C4 model plant to widely investigate the miRNA expression profile in early responses to different levels of water deficit. Ecophysiological studies in Setaria viridis under water deficit and after rewatering demonstrated a drought tolerant accession, capable of a rapid recovery from the stress. Deep small RNA sequencing and degradome studies were performed in plants submitted to drought to identify differentially expressed miRNA genes and their predicted targets, using in silico analysis. Our findings showed that several miRNAs were differentially modulated in response to distinctive levels of water deficit and after rewatering. The predicted mRNA targets mainly corresponded to genes related to cell wall remodeling, antioxidant system and drought-related transcription factors, indicating that these genes are rapidly regulated in early responses to drought stress. The implications of these modulations are extensively discussed, and higher-effect miRNAs are suggested as major players for potential use in genetic engineering to improve drought tolerance in economically important crops, such as sugarcane, maize, and sorghum. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01226-z.
Collapse
Affiliation(s)
- Karoline Estefani Duarte
- Embrapa Agroenergy, Brasília, DF 70297-400 Brazil
- Federal University of ABC, Santo André, SP 09210-580 Brazil
| | - Marcos Fernando Basso
- Embrapa Agroenergy, Brasília, DF 70297-400 Brazil
- BIOMOL/BIOTEC Laboratory, Mato Grosso Cotton Institute (IMAmt), Rondonópolis, MT 78740-970 Brazil
| | | | | | - Bruno de Oliveira Garcia
- Embrapa Agroenergy, Brasília, DF 70297-400 Brazil
- Federal University of Lavras, Lavras, MG 37200-900 Brazil
| | | | | | | | | | - Thaís Ribeiro Santiago
- Embrapa Agroenergy, Brasília, DF 70297-400 Brazil
- University of Brasília, Brasília, DF 70910-900 Brazil
| | - Wagner Rodrigo de Souza
- Embrapa Agroenergy, Brasília, DF 70297-400 Brazil
- Federal University of ABC, Santo André, SP 09210-580 Brazil
| | | |
Collapse
|
3
|
The Role of Glycoside Hydrolases in S. gordonii and C. albicans Interactions. Appl Environ Microbiol 2022; 88:e0011622. [PMID: 35506689 DOI: 10.1128/aem.00116-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Candida albicans can coaggregate with Streptococcus gordonii and cocolonize in the oral cavity. Saliva provides a vital microenvironment for close interactions of oral microorganisms. However, the level of fermentable carbohydrates in saliva is not sufficient to support the growth of multiple species. Glycoside hydrolases (GHs) that hydrolyze glycoproteins are critical for S. gordonii growth in low-fermentable-carbohydrate environments such as saliva. However, whether GHs are involved in the cross-kingdom interactions between C. albicans and S. gordonii under such conditions remains unknown. In this study, C. albicans and S. gordonii were cocultured in heart infusion broth with a low level of fermentable carbohydrate. Planktonic growth, biofilm formation, cell aggregation, and GH activities of monocultures and cocultures were examined. The results revealed that the planktonic growth of cocultured S. gordonii in a low-carbohydrate environment was elevated, while that of cocultured C. albicans was reduced. The biomass of S. gordonii in dual-species biofilms was higher than that of monocultures, while that of cocultured C. albicans was decreased. GH activity was observed in S. gordonii, and elevated activity of GHs was detected in S. gordonii-C. albicans cocultures, with elevated expression of GH-related genes of S. gordonii. By screening a mutant library of C. albicans, we identified a tec1Δ/Δ mutant strain that showed reduced ability to promote the growth and GH activities of S. gordonii compared with the wild-type strain. Altogether, the findings of this study demonstrate the involvement of GHs in the cross-kingdom metabolic interactions between C. albicans and S. gordonii in an environment with low level of fermentable carbohydrates. IMPORTANCE Cross-kingdom interactions between Candida albicans and oral streptococci such as Streptococcus gordonii have been reported. However, their interactions in a low-fermentable-carbohydrate environment like saliva is not clear. The current study revealed glycoside hydrolase-related cross-kingdom communications between S. gordonii and C. albicans under the low-fermentable-carbohydrate condition. We demonstrate that C. albicans can promote the growth and metabolic activities of S. gordonii by elevating the activities of cell-wall-anchored glycoside hydrolases of S. gordonii. C. albicans gene TEC1 is critical for this cross-kingdom metabolic communication.
Collapse
|
4
|
Liu X, Zhang H, Zhang W, Xu W, Li S, Chen X, Chen H. Genome-wide bioinformatics analysis of Cellulose Synthase gene family in common bean (Phaseolus vulgaris L.) and the expression in the pod development. BMC Genom Data 2022; 23:9. [PMID: 35093018 PMCID: PMC8801070 DOI: 10.1186/s12863-022-01026-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background CesA and Csl gene families, which belong to the cellulose synthase gene superfamily, plays an important role in the biosynthesis of the plant cell wall. Although researchers have investigated this gene superfamily in several model plants, to date, no comprehensive analysis has been conducted in the common bean. Results In this study, we identified 39 putative cellulose synthase genes from the common bean genome sequence. Then, we performed a bioinformatics analysis of this gene family involving sequence alignment, phylogenetic analysis, gene structure, collinearity analysis and chromosome location. We found all members possess a cellulose_synt domain. Phylogenetic analysis revealed that these cellulose synthase genes may be classified into five subfamilies, and that members in the same subfamily share conserved exon-intron distribution and motif compositions. Abundant and distinct cis-acting elements in the 2 k basepairs upstream regulatory regions indicate that the cellulose synthase gene family may plays a vital role in the growth and development of common bean. Moreover, the 39 cellulose synthase genes are distributed on 10 of the 11 chromosomes. Additionally expression analysis shows that all CesA/Csl genes selected are constitutively expressed in the pod development. Conclusions This research reveals both the putative biochemical and physiological functions of cellulose synthase genes in common bean and implies the importance of studying non-model plants to understand the breadth and diversity of cellulose synthase genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01026-0.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Nanjing, 210014, China
| | - Hongmei Zhang
- Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Nanjing, 210014, China
| | - Wei Zhang
- Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Nanjing, 210014, China
| | - Wenjing Xu
- Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Nanjing, 210014, China
| | - Songsong Li
- Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Nanjing, 210014, China
| | - Xin Chen
- Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Nanjing, 210014, China.
| | - Huatao Chen
- Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Nanjing, 210014, China.
| |
Collapse
|
5
|
Finley T, Chappell H, Veena V. Agrobacterium-Mediated Transformation of Setaria viridis, a Model System for Cereals and Bioenergy Crops. Curr Protoc 2021; 1:e127. [PMID: 33999520 DOI: 10.1002/cpz1.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Setaria viridis is an emerging model system for the genetic and molecular characterization of cereals and bioenergy crops. Here, we describe a detailed procedure for genetic transformation of the S. viridis accession line ME034V-1. This method utilizes callus generated from mature seeds for infection with Agrobacterium tumefaciens strain AGL1 to regenerate hygromycin-resistant stable transgenic plants. It takes approximately 7 weeks to generate callus from mature seeds, 11-17 weeks from infection to the regeneration of transgenic lines, and an additional 3-4 weeks for plant growth in the greenhouse for seed collection. The protocol as presented consistently results in transformation frequency of approximately 25% for the generation of transgenic plants, with fewer escapes and higher survivability in soil for optimal seed collection. © 2021 Donald Danforth Plant Science Center. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of S. viridis (Accession ME034V-1) callus from mature seeds Basic Protocol 2: Agrobacterium-mediated transformation of callus to generate transgenic plants Basic Protocol 3: Plantlet transplantation in soil, plant growth in greenhouse, and seed collection Support Protocol: Preparation of Agrobacterium culture for infection.
Collapse
Affiliation(s)
- Todd Finley
- Plant Transformation Facility, Donald Danforth Plant Science Center, Saint Louis, Missouri
| | - Hal Chappell
- Plant Transformation Facility, Donald Danforth Plant Science Center, Saint Louis, Missouri
| | - Veena Veena
- Plant Transformation Facility, Donald Danforth Plant Science Center, Saint Louis, Missouri
| |
Collapse
|
6
|
Cesarino I, Dello Ioio R, Kirschner GK, Ogden MS, Picard KL, Rast-Somssich MI, Somssich M. Plant science's next top models. ANNALS OF BOTANY 2020; 126:1-23. [PMID: 32271862 PMCID: PMC7304477 DOI: 10.1093/aob/mcaa063] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/08/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Model organisms are at the core of life science research. Notable examples include the mouse as a model for humans, baker's yeast for eukaryotic unicellular life and simple genetics, or the enterobacteria phage λ in virology. Plant research was an exception to this rule, with researchers relying on a variety of non-model plants until the eventual adoption of Arabidopsis thaliana as primary plant model in the 1980s. This proved to be an unprecedented success, and several secondary plant models have since been established. Currently, we are experiencing another wave of expansion in the set of plant models. SCOPE Since the 2000s, new model plants have been established to study numerous aspects of plant biology, such as the evolution of land plants, grasses, invasive and parasitic plant life, adaptation to environmental challenges, and the development of morphological diversity. Concurrent with the establishment of new plant models, the advent of the 'omics' era in biology has led to a resurgence of the more complex non-model plants. With this review, we introduce some of the new and fascinating plant models, outline why they are interesting subjects to study, the questions they will help to answer, and the molecular tools that have been established and are available to researchers. CONCLUSIONS Understanding the molecular mechanisms underlying all aspects of plant biology can only be achieved with the adoption of a comprehensive set of models, each of which allows the assessment of at least one aspect of plant life. The model plants described here represent a step forward towards our goal to explore and comprehend the diversity of plant form and function. Still, several questions remain unanswered, but the constant development of novel technologies in molecular biology and bioinformatics is already paving the way for the next generation of plant models.
Collapse
Affiliation(s)
- Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, Butantã, São Paulo, Brazil
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, Rome, Italy
| | - Gwendolyn K Kirschner
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Division of Crop Functional Genomics, Bonn, Germany
| | - Michael S Ogden
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Kelsey L Picard
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Madlen I Rast-Somssich
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, VIC, Australia
| | - Marc Somssich
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Nguyen DQ, Van Eck J, Eamens AL, Grof CPL. Robust and Reproducible Agrobacterium-Mediated Transformation System of the C 4 Genetic Model Species Setaria viridis. FRONTIERS IN PLANT SCIENCE 2020; 11:281. [PMID: 32231678 PMCID: PMC7082778 DOI: 10.3389/fpls.2020.00281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/25/2020] [Indexed: 05/04/2023]
Abstract
Setaria viridis (green foxtail) has been identified as a potential experimental model system to genetically and molecularly characterise the C4 monocotyledonous grasses due to its small physical size, short generation time and prolific seed production, together with a sequenced and annotated genome. Setaria viridis is the wild ancestor of the cropping species, foxtail millet (Setaria italica), with both Setaria species sharing a close evolutionary relationship with the agronomically important species, maize, sorghum, and sugarcane, as well as the bioenergy feedstocks, switchgrass, and Miscanthus. However, an efficient and reproducible transformation protocol is required to further advance the use of S. viridis to study the molecular genetics of C4 monocotyledonous grasses. An efficient and reproducible protocol was established for Agrobacterium tumefaciens-mediated transformation of S. viridis (Accession A10) regenerable callus material derived from mature seeds, a protocol that returned an average transformation efficiency of 6.3%. The efficiency of this protocol was the result of the: (i) use of mature embryo derived callus material; (ii) age of the seed used to induce callus formation; (iii) composition of the callus induction media, including the addition of the ethylene inhibitor, silver nitrate; (iv) use of a co-cultivation approach, and; (v) concentration of the selective agent. Our protocol furthers the use of S. viridis as an experimental model system to study the molecular genetics of C4 monocotyledonous grasses for the potential future development of improved C4 cropping species.
Collapse
Affiliation(s)
- Duc Quan Nguyen
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Andrew L. Eamens
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
8
|
Morello L, Pydiura N, Galinousky D, Blume Y, Breviario D. Flax tubulin and CesA superfamilies represent attractive and challenging targets for a variety of genome- and base-editing applications. Funct Integr Genomics 2019; 20:163-176. [PMID: 30826923 DOI: 10.1007/s10142-019-00667-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Flax is both a valuable resource and an interesting model crop. Despite a long history of flax genetic transformation only one transgenic linseed cultivar has been so far registered in Canada. Implementation and use of the genome-editing technologies that allow site-directed modification of endogenous genes without the introduction of foreign genes might improve this situation. Besides its potential for boosting crop yields, genome editing is now one of the best tools for carrying out reverse genetics and it is emerging as an especially versatile tool for studying basic biology. A complex interplay between the flax tubulin family (6 α-, 14 β-, and 2 γ-tubulin genes), the building block of microtubules, and the CesA (15-16 genes), the subunit of the multimeric cellulose-synthesizing complex devoted to the oriented deposition of the cellulose microfibrils is fundamental for the biosynthesis of the cell wall. The role of the different members of each family in providing specificities to the assembled complexes in terms of structure, dynamics, activity, and interaction remains substantially obscure. Genome-editing strategies, recently shown to be successful in flax, can therefore be useful to unravel the issue of functional redundancy and provide evidence for specific interactions between different members of the tubulin and CesA gene families, in relation to different phase and mode of cell wall biosynthesis.
Collapse
Affiliation(s)
- Laura Morello
- Istituto di Biologia e Biotecnologia Agraria IBBA-CNR, Via Alfonso Corti 12, 20133, Milan, Italy
| | - Nikolay Pydiura
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho St. 2a, Kyiv, 04123, Ukraine
| | - Dmitry Galinousky
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Akademicheskaya St. 27, 220072, Minsk, Belarus
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho St. 2a, Kyiv, 04123, Ukraine.
| | - Diego Breviario
- Istituto di Biologia e Biotecnologia Agraria IBBA-CNR, Via Alfonso Corti 12, 20133, Milan, Italy.
| |
Collapse
|
9
|
Tetreault HM, Scully ED, Gries T, Palmer NA, Funnell-Harris DL, Baird L, Seravalli J, Dien BS, Sarath G, Clemente TE, Sattler SE. Overexpression of the Sorghum bicolor SbCCoAOMT alters cell wall associated hydroxycinnamoyl groups. PLoS One 2018; 13:e0204153. [PMID: 30289910 PMCID: PMC6173380 DOI: 10.1371/journal.pone.0204153] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022] Open
Abstract
Sorghum (Sorghum bicolor) is a drought tolerant crop, which is being developed as a bioenergy feedstock. The monolignol biosynthesis pathway is a major focus for altering the abundance and composition of lignin. Caffeoyl coenzyme-A O-methyltransferase (CCoAOMT) is an S-adenosyl methionine (SAM)-dependent O-methyltransferase that methylates caffeoyl-CoA to generate feruloyl-CoA, an intermediate required for the biosynthesis of both G- and S-lignin. SbCCoAOMT was overexpressed to assess the impact of increasing the amount of this enzyme on biomass composition. SbCCoAOMT overexpression increased both soluble and cell wall-bound (esterified) ferulic and sinapic acids, however lignin concentration and its composition (S/G ratio) remained unaffected. This increased deposition of hydroxycinnamic acids in these lines led to an increase in total energy content of the stover. In stalk and leaf midribs, the increased histochemical staining and autofluorescence in the cell walls of the SbCCoAOMT overexpression lines also indicate increased phenolic deposition within cell walls, which is consistent with the chemical analyses of soluble and wall-bound hydroxycinnamic acids. The growth and development of overexpression lines were similar to wild-type plants. Likewise, RNA-seq and metabolite profiling showed that global gene expression and metabolite levels in overexpression lines were also relatively similar to wild-type plants. Our results demonstrate that SbCCoAOMT overexpression significantly altered cell wall composition through increases in cell wall associated hydroxycinnamic acids without altering lignin concentration or affecting plant growth and development.
Collapse
Affiliation(s)
- Hannah M. Tetreault
- Wheat, Sorghum and Forage Research Unit, USDA-ARS, Lincoln, Nebraska, United States of America
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Erin D. Scully
- Wheat, Sorghum and Forage Research Unit, USDA-ARS, Lincoln, Nebraska, United States of America
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Tammy Gries
- Wheat, Sorghum and Forage Research Unit, USDA-ARS, Lincoln, Nebraska, United States of America
| | - Nathan A. Palmer
- Wheat, Sorghum and Forage Research Unit, USDA-ARS, Lincoln, Nebraska, United States of America
| | - Deanna L. Funnell-Harris
- Wheat, Sorghum and Forage Research Unit, USDA-ARS, Lincoln, Nebraska, United States of America
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Lisa Baird
- Department of Biology, Shiley Center for Science and Technology, University of San Diego, San Diego, California, United States of America
| | - Javier Seravalli
- Redox Biology Center and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Bruce S. Dien
- National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, United States of America
| | - Gautam Sarath
- Wheat, Sorghum and Forage Research Unit, USDA-ARS, Lincoln, Nebraska, United States of America
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Thomas E. Clemente
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Scott E. Sattler
- Wheat, Sorghum and Forage Research Unit, USDA-ARS, Lincoln, Nebraska, United States of America
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
10
|
McGaughey SA, Osborn HL, Chen L, Pegler JL, Tyerman SD, Furbank RT, Byrt CS, Grof CPL. Roles of Aquaporins in Setaria viridis Stem Development and Sugar Storage. FRONTIERS IN PLANT SCIENCE 2016; 7:1815. [PMID: 28018372 PMCID: PMC5147461 DOI: 10.3389/fpls.2016.01815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/17/2016] [Indexed: 05/29/2023]
Abstract
Setaria viridis is a C4 grass used as a model for bioenergy feedstocks. The elongating internodes in developing S. viridis stems grow from an intercalary meristem at the base, and progress acropetally toward fully expanded cells that store sugar. During stem development and maturation, water flow is a driver of cell expansion and sugar delivery. As aquaporin proteins are implicated in regulating water flow, we analyzed elongating and mature internode transcriptomes to identify putative aquaporin encoding genes that had particularly high transcript levels during the distinct stages of internode cell expansion and maturation. We observed that SvPIP2;1 was highly expressed in internode regions undergoing cell expansion, and SvNIP2;2 was highly expressed in mature sugar accumulating regions. Gene co-expression analysis revealed SvNIP2;2 expression was highly correlated with the expression of five putative sugar transporters expressed in the S. viridis internode. To explore the function of the proteins encoded by SvPIP2;1 and SvNIP2;2, we expressed them in Xenopus laevis oocytes and tested their permeability to water. SvPIP2;1 and SvNIP2;2 functioned as water channels in X. laevis oocytes and their permeability was gated by pH. Our results indicate that SvPIP2;1 may function as a water channel in developing stems undergoing cell expansion and SvNIP2;2 is a candidate for retrieving water and possibly a yet to be determined solute from mature internodes. Future research will investigate whether changing the function of these proteins influences stem growth and sugar yield in S. viridis.
Collapse
Affiliation(s)
- Samantha A. McGaughey
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, CallaghanNSW, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
| | - Hannah L. Osborn
- Australian Research Council Centre of Excellence for Translational Photosynthesis, College of Medicine, Biology and Environment, Australian National University, CanberraACT, Australia
| | - Lily Chen
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, CallaghanNSW, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, College of Medicine, Biology and Environment, Australian National University, CanberraACT, Australia
| | - Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, CallaghanNSW, Australia
| | - Stephen D. Tyerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
| | - Robert T. Furbank
- Australian Research Council Centre of Excellence for Translational Photosynthesis, College of Medicine, Biology and Environment, Australian National University, CanberraACT, Australia
| | - Caitlin S. Byrt
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, CallaghanNSW, Australia
| |
Collapse
|
11
|
Rai KM, Thu SW, Balasubramanian VK, Cobos CJ, Disasa T, Mendu V. Identification, Characterization, and Expression Analysis of Cell Wall Related Genes in Sorghum bicolor (L.) Moench, a Food, Fodder, and Biofuel Crop. FRONTIERS IN PLANT SCIENCE 2016; 7:1287. [PMID: 27630645 PMCID: PMC5006623 DOI: 10.3389/fpls.2016.01287] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/11/2016] [Indexed: 05/20/2023]
Abstract
Biomass based alternative fuels offer a solution to the world's ever-increasing energy demand. With the ability to produce high biomass in marginal lands with low inputs, sorghum has a great potential to meet second-generation biofuel needs. Despite the sorghum crop importance in biofuel and fodder industry, there is no comprehensive information available on the cell wall related genes and gene families (biosynthetic and modification). It is important to identify the cell wall related genes to understand the cell wall biosynthetic process as well as to facilitate biomass manipulation. Genome-wide analysis using gene family specific Hidden Markov Model of conserved domains identified 520 genes distributed among 20 gene families related to biosynthesis/modification of various cell wall polymers such as cellulose, hemicellulose, pectin, and lignin. Chromosomal localization analysis of these genes revealed that about 65% of cell wall related genes were confined to four chromosomes (Chr. 1-4). Further, 56 tandem duplication events involving 169 genes were identified in these gene families which could be associated with expansion of genes within families in sorghum. Additionally, we also identified 137 Simple Sequence Repeats related to 112 genes and target sites for 10 miRNAs in some important families such as cellulose synthase, cellulose synthase-like, and laccases, etc. To gain further insight into potential functional roles, expression analysis of these gene families was performed using publically available data sets in various tissues and under abiotic stress conditions. Expression analysis showed tissue specificity as well as differential expression under abiotic stress conditions. Overall, our study provides a comprehensive information on cell wall related genes families in sorghum which offers a valuable resource to develop strategies for altering biomass composition by plant breeding and genetic engineering approaches.
Collapse
Affiliation(s)
- Krishan M. Rai
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech UniversityLubbock, TX, USA
| | - Sandi W. Thu
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech UniversityLubbock, TX, USA
| | - Vimal K. Balasubramanian
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech UniversityLubbock, TX, USA
| | - Christopher J. Cobos
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech UniversityLubbock, TX, USA
| | - Tesfaye Disasa
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech UniversityLubbock, TX, USA
- National Agricultural Biotechnology Research Center, Ethiopian Institute of Agricultural ResearchAddis Ababa, Ethiopia
| | - Venugopal Mendu
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech UniversityLubbock, TX, USA
- *Correspondence: Venugopal Mendu
| |
Collapse
|