1
|
Valencia-Ortiz M, McGee RJ, Sankaran S. Field Asymmetric Ion Mobility Spectrometry for Early Detection of Aphanomyces Root Rot in Peas Using Volatile Biomarkers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12083-12092. [PMID: 40304396 DOI: 10.1021/acs.jafc.4c12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Volatile organic compounds (VOCs) produced by plants during plant-pathogen interactions can be highly informative for early disease detection. The real-time capability of field asymmetric ion mobility spectrometry (FAIMS) offers a valuable opportunity to monitor plant VOCs nondestructively and dynamically. This study evaluated the FAIMS system reliability in measuring VOC profiles for an early diagnosis of Aphanomyces root rot (ARR) in pea (Pisum sativum L.). This evaluation utilized pea lines with a major quantitative trait locus (QTL Ae-Ps7.6) and lines without QTL, identified to provide partial resistance against ARR. For the first time, a VOC biomarker associated with ARR was detected as early as 2 days after inoculation (DAI). Furthermore, at 7 DAI, one of the biomarkers showed significant differences between lines with and without QTL Ae-Ps7.6 in the noninoculated samples. These findings demonstrate the potential applicability of the FAIMS system as a valuable tool for detecting volatile biomarkers for early plant disease detection.
Collapse
Affiliation(s)
- Milton Valencia-Ortiz
- Department of Biological System Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Rebecca J McGee
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Sindhuja Sankaran
- Department of Biological System Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
2
|
Goyal RK, Hui JPM, Ranches J, Stefanova R, Jones A, Banskota AH, Burton I, Yu B, Berrue F, Hannig A, Clark S, Chatterton S, Dhaubhadel S, Zhang J. Untargeted Metabolomic Analysis Reveals a Potential Role of Saponins in the Partial Resistance of Pea ( Pisum sativum) Against a Root Rot Pathogen, Aphanomyces euteiches. PHYTOPATHOLOGY 2024; 114:2502-2514. [PMID: 39186063 DOI: 10.1094/phyto-04-24-0151-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
In soilborne diseases, the plant-pathogen interaction begins as soon as the seed germinates and develops into a seedling. Aphanomyces euteiches, an oomycete, stays dormant in soil and is activated by sensing the host through chemical signals present in the root exudates. The composition of plant exudates may, thus, play an important role during the early phase of infection. To better understand the role of root exudates in plant resistance, we investigated the interaction between partially resistant lines (PI660736 and PI557500) and susceptible pea cultivars (CDC Meadow and AAC Chrome) against A. euteiches during the pre-invasion phase. The root exudates of the two sets of cultivars clearly differed from each other in inducing oospore germination. PI557500 root exudate not only had diminished induction but also inhibited the oospore germination. The contrast between the root exudates of resistant and susceptible cultivars was reflected in their metabolic profiles. Data from fractionation and oospore germination inhibitory experiments identified a group of saponins that accumulated differentially in susceptible and resistant cultivars. We detected 56 saponins and quantified 44 of them in pea root and 30 from root exudate; the majority of them, especially soyasaponin I and dehydrosoyasaponin I with potent in vitro inhibitory activities, were present in significantly higher amounts in both roots and root exudates of PI660736 and PI557500 compared with Meadow and Chrome. Our results provide evidence for saponins as deterrents against A. euteiches, which might have contributed to the resistance against root rot in the studied pea cultivars. [Formula: see text] Copyright © 2024 His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada and the National Research Council of Canada. This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Ravinder K Goyal
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB, T4L 1W1, Canada
| | - Joseph P M Hui
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Jeffrey Ranches
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB, T4L 1W1, Canada
| | - Roumiana Stefanova
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Alysson Jones
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Arjun H Banskota
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Ian Burton
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Bianyun Yu
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 110 Gymnasium Pl., Saskatoon, SK, S7N 0W9, Canada
| | - Fabrice Berrue
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Albert Hannig
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB, T4L 1W1, Canada
| | - Shawn Clark
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 110 Gymnasium Pl., Saskatoon, SK, S7N 0W9, Canada
| | - Syama Chatterton
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1 Ave. South, P.O. Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Junzeng Zhang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| |
Collapse
|
3
|
Kälin C, Piombo E, Bourras S, Brantestam AK, Dubey M, Elfstrand M, Karlsson M. Transcriptomic analysis identifies candidate genes for Aphanomyces root rot disease resistance in pea. BMC PLANT BIOLOGY 2024; 24:144. [PMID: 38413860 PMCID: PMC10900555 DOI: 10.1186/s12870-024-04817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Aphanomyces euteiches is a soil-borne oomycete that causes root rot in pea and other legume species. Symptoms of Aphanomyces root rot (ARR) include root discoloration and wilting, leading to significant yield losses in pea production. Resistance to ARR is known to be polygenic but the roles of single genes in the pea immune response are still poorly understood. This study uses transcriptomics to elucidate the immune response of two pea genotypes varying in their levels of resistance to A. euteiches. RESULTS In this study, we inoculated roots of the pea (P. sativum L.) genotypes 'Linnea' (susceptible) and 'PI180693' (resistant) with two different A. euteiches strains varying in levels of virulence. The roots were harvested at 6 h post-inoculation (hpi), 20 hpi and 48 hpi, followed by differential gene expression analysis. Our results showed a time- and genotype-dependent immune response towards A. euteiches infection, involving several WRKY and MYB-like transcription factors, along with genes associated with jasmonic acid (JA) and abscisic acid (ABA) signaling. By cross-referencing with genes segregating with partial resistance to ARR, we identified 39 candidate disease resistance genes at the later stage of infection. Among the genes solely upregulated in the resistant genotype 'PI180693', Psat7g091800.1 was polymorphic between the pea genotypes and encoded a Leucine-rich repeat receptor-like kinase reminiscent of the Arabidopsis thaliana FLAGELLIN-SENSITIVE 2 receptor. CONCLUSIONS This study provides new insights into the gene expression dynamics controlling the immune response of resistant and susceptible pea genotypes to A. euteiches infection. We present a set of 39 candidate disease resistance genes for ARR in pea, including the putative immune receptor Psat7g091800.1, for future functional validation.
Collapse
Affiliation(s)
- Carol Kälin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Salim Bourras
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Leprévost T, Boutet G, Lesné A, Rivière JP, Vetel P, Glory I, Miteul H, Le Rat A, Dufour P, Regnault-Kraut C, Sugio A, Lavaud C, Pilet-Nayel ML. Advanced backcross QTL analysis and comparative mapping with RIL QTL studies and GWAS provide an overview of QTL and marker haplotype diversity for resistance to Aphanomyces root rot in pea ( Pisum sativum). FRONTIERS IN PLANT SCIENCE 2023; 14:1189289. [PMID: 37841625 PMCID: PMC10569610 DOI: 10.3389/fpls.2023.1189289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/25/2023] [Indexed: 10/17/2023]
Abstract
Aphanomyces euteiches is the most damaging soilborne pea pathogen in France. Breeding of pea resistant varieties combining a diversity of quantitative trait loci (QTL) is a promising strategy considering previous research achievements in dissecting polygenic resistance to A. euteiches. The objective of this study was to provide an overview of the diversity of QTL and marker haplotypes for resistance to A. euteiches, by integrating a novel QTL mapping study in advanced backcross (AB) populations with previous QTL analyses and genome-wide association study (GWAS) using common markers. QTL analysis was performed in two AB populations derived from the cross between the susceptible spring pea variety "Eden" and the two new sources of partial resistance "E11" and "LISA". The two AB populations were genotyped using 993 and 478 single nucleotide polymorphism (SNP) markers, respectively, and phenotyped for resistance to A. euteiches in controlled conditions and in infested fields at two locations. GWAS and QTL mapping previously reported in the pea-Aphanomyces collection and from four recombinant inbred line (RIL) populations, respectively, were updated using a total of 1,850 additional markers, including the markers used in the Eden x E11 and Eden x LISA populations analysis. A total of 29 resistance-associated SNPs and 171 resistance QTL were identified by GWAS and RIL or AB QTL analyses, respectively, which highlighted 10 consistent genetic regions confirming the previously reported QTL. No new consistent resistance QTL was detected from both Eden x E11 and Eden x LISA AB populations. However, a high diversity of resistance haplotypes was identified at 11 linkage disequilibrium (LD) blocks underlying consistent genetic regions, especially in 14 new sources of resistance from the pea-Aphanomyces collection. An accumulation of favorable haplotypes at these 11 blocks was confirmed in the most resistant pea lines of the collection. This study provides new SNP markers and rare haplotypes associated with the diversity of Aphanomyces root rot resistance QTL investigated, which will be useful for QTL pyramiding strategies to increase resistance levels in future pea varieties.
Collapse
Affiliation(s)
- Théo Leprévost
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Gilles Boutet
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Angélique Lesné
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | | | - Pierrick Vetel
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Isabelle Glory
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Henri Miteul
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Anaïs Le Rat
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | | | | | - Akiko Sugio
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Clément Lavaud
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
- KWS MOMONT Recherche SARL, Allonnes, France
| | | |
Collapse
|
5
|
Kälin C, Kolodinska Brantestam A, Arvidsson AK, Dubey M, Elfstrand M, Karlsson M. Evaluation of pea genotype PI180693 partial resistance towards aphanomyces root rot in commercial pea breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1114408. [PMID: 36998689 PMCID: PMC10043495 DOI: 10.3389/fpls.2023.1114408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
The cultivation of vining pea (Pisum sativum) faces a major constraint with root rot diseases, caused by a complex of soil-borne pathogens including the oomycetes Aphanomyces euteiches and Phytophtora pisi. Disease resistant commercial varieties are lacking but the landrace PI180693 is used as a source of partial resistance in ongoing pea breeding programs. In this study, the level of resistance and their interaction with A. euteiches virulence levels of six new back-crossed pea breeding lines, deriving from the cross between the susceptible commercial cultivar Linnea and PI180693, were evaluated for their resistance towards aphanomyces root rot in growth chamber and green house tests. Resistance towards mixed infections by A. euteiches and P. pisi and commercial production traits were evaluated in field trials. In growth chamber trials, pathogen virulence levels had a significant effect on plant resistance, as resistance was more consistent against A. euteiches strains exhibiting high or intermediate virulence compared with lowly virulent strains. In fact, line Z1701-1 showed to be significantly more resistant than both parents when inoculated with a lowly virulent strain. In two separate field trials in 2020, all six breeding lines performed equally well as the resistant parent PI180693 at sites only containing A. euteiches, as there were no differences in disease index. In mixed infections, PI180693 exhibited significantly lower disease index scores than Linnea. However, breeding lines displayed higher disease index scores compared with PI180693, indicating higher susceptibility towards P. pisi. Data on seedling emergence from the same field trials suggested that PI180693 was particularly sensitive towards seed decay/damping off disease caused by P. pisi. Furthermore, the breeding lines performed equally well as Linnea in traits important for green pea production, again emphasizing the commercial potential. In summary, we show that the resistance from PI180693 interacts with virulence levels of the pathogen A. euteiches and is less effective towards root rot caused by P. pisi. Our results show the potential use of combining PI180693 partial resistance against aphanomyces root rot with commercially favorable breeding traits in commercial breeding programs.
Collapse
Affiliation(s)
- Carol Kälin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
6
|
Fortier M, Lemaitre V, Gaudry A, Pawlak B, Driouich A, Follet-Gueye ML, Vicré M. A fine-tuned defense at the pea root caps: Involvement of border cells and arabinogalactan proteins against soilborne diseases. FRONTIERS IN PLANT SCIENCE 2023; 14:1132132. [PMID: 36844081 PMCID: PMC9947496 DOI: 10.3389/fpls.2023.1132132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Plants have to cope with a myriad of soilborne pathogens that affect crop production and food security. The complex interactions between the root system and microorganisms are determinant for the whole plant health. However, the knowledge regarding root defense responses is limited as compared to the aerial parts of the plant. Immune responses in roots appear to be tissue-specific suggesting a compartmentalization of defense mechanisms in these organs. The root cap releases cells termed root "associated cap-derived cells" (AC-DCs) or "border cells" embedded in a thick mucilage layer forming the root extracellular trap (RET) dedicated to root protection against soilborne pathogens. Pea (Pisum sativum) is the plant model used to characterize the composition of the RET and to unravel its function in root defense. The objective of this paper is to review modes of action of the RET from pea against diverse pathogens with a special focus on root rot disease caused by Aphanomyces euteiches, one of the most widely occurring and large-scale pea crop diseases. The RET, at the interface between the soil and the root, is enriched in antimicrobial compounds including defense-related proteins, secondary metabolites, and glycan-containing molecules. More especially arabinogalactan proteins (AGPs), a family of plant extracellular proteoglycans belonging to the hydroxyproline-rich glycoproteins were found to be particularly present in pea border cells and mucilage. Herein, we discuss the role of RET and AGPs in the interaction between roots and microorganisms and future potential developments for pea crop protection.
Collapse
|
7
|
Santo Domingo M, Mayobre C, Pereira L, Argyris J, Valverde L, Martín-Hernández AM, Garcia-Mas J, Pujol M. Fruit Morphology and Ripening-Related QTLs in a Newly Developed Introgression Line Collection of the Elite Varieties 'Védrantais' and 'Piel de Sapo'. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223120. [PMID: 36432848 PMCID: PMC9694011 DOI: 10.3390/plants11223120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 05/28/2023]
Abstract
Melon is an economically important crop with widely diverse fruit morphology and ripening characteristics. Its diploid sequenced genome and multiple genomic tools make this species suitable to study the genetic architecture of fruit traits. With the development of this introgression line population of the elite varieties 'Piel de Sapo' and 'Védrantais', we present a powerful tool to study fruit morphology and ripening traits that can also facilitate characterization or pyramidation of QTLs in inodorous melon types. The population consists of 36 lines covering almost 98% of the melon genome, with an average of three introgressions per chromosome and segregating for multiple fruit traits: morphology, ripening and quality. High variability in fruit morphology was found within the population, with 24 QTLs affecting six different traits, confirming previously reported QTLs and two newly detected QTLs, FLQW5.1 and FWQW7.1. We detected 20 QTLs affecting fruit ripening traits, six of them reported for the first time, two affecting the timing of yellowing of the rind (EYELLQW1.1 and EYELLQW8.1) and four at the end of chromosome 8 affecting aroma, abscission and harvest date (EAROQW8.3, EALFQW8.3, ABSQW8.3 and HARQW8.3). We also confirmed the location of several QTLs, such as fruit-quality-related QTLs affecting rind and flesh appearance and flesh firmness.
Collapse
Affiliation(s)
- Miguel Santo Domingo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Barcelona, Spain
| | - Carlos Mayobre
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Barcelona, Spain
| | - Lara Pereira
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Barcelona, Spain
| | - Jason Argyris
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08193 Barcelona, Spain
| | - Laura Valverde
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08193 Barcelona, Spain
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08193 Barcelona, Spain
| | - Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08193 Barcelona, Spain
| |
Collapse
|
8
|
Parihar AK, Kumar J, Gupta DS, Lamichaney A, Naik SJ S, Singh AK, Dixit GP, Gupta S, Toklu F. Genomics Enabled Breeding Strategies for Major Biotic Stresses in Pea ( Pisum sativum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:861191. [PMID: 35665148 PMCID: PMC9158573 DOI: 10.3389/fpls.2022.861191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Pea (Pisum sativum L.) is one of the most important and productive cool season pulse crops grown throughout the world. Biotic stresses are the crucial constraints in harnessing the potential productivity of pea and warrant dedicated research and developmental efforts to utilize omics resources and advanced breeding techniques to assist rapid and timely development of high-yielding multiple stress-tolerant-resistant varieties. Recently, the pea researcher's community has made notable achievements in conventional and molecular breeding to accelerate its genetic gain. Several quantitative trait loci (QTLs) or markers associated with genes controlling resistance for fusarium wilt, fusarium root rot, powdery mildew, ascochyta blight, rust, common root rot, broomrape, pea enation, and pea seed borne mosaic virus are available for the marker-assisted breeding. The advanced genomic tools such as the availability of comprehensive genetic maps and linked reliable DNA markers hold great promise toward the introgression of resistance genes from different sources to speed up the genetic gain in pea. This review provides a brief account of the achievements made in the recent past regarding genetic and genomic resources' development, inheritance of genes controlling various biotic stress responses and genes controlling pathogenesis in disease causing organisms, genes/QTLs mapping, and transcriptomic and proteomic advances. Moreover, the emerging new breeding approaches such as transgenics, genome editing, genomic selection, epigenetic breeding, and speed breeding hold great promise to transform pea breeding. Overall, the judicious amalgamation of conventional and modern omics-enabled breeding strategies will augment the genetic gain and could hasten the development of biotic stress-resistant cultivars to sustain pea production under changing climate. The present review encompasses at one platform the research accomplishment made so far in pea improvement with respect to major biotic stresses and the way forward to enhance pea productivity through advanced genomic tools and technologies.
Collapse
Affiliation(s)
- Ashok Kumar Parihar
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Jitendra Kumar
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Debjyoti Sen Gupta
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Amrit Lamichaney
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Satheesh Naik SJ
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Anil K. Singh
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Girish P. Dixit
- All India Coordinated Research Project on Chickpea, ICAR-IIPR, Kanpur, India
| | - Sanjeev Gupta
- Indian Council of Agricultural Research, New Delhi, India
| | - Faruk Toklu
- Department of Field Crops, Faculty of Agricultural, Cukurova University, Adana, Turkey
| |
Collapse
|
9
|
Kiselev A, San Clemente H, Camborde L, Dumas B, Gaulin E. A Comprehensive Assessment of the Secretome Responsible for Host Adaptation of the Legume Root Pathogen Aphanomyces euteiches. J Fungi (Basel) 2022; 8:88. [PMID: 35050028 PMCID: PMC8780586 DOI: 10.3390/jof8010088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
The soil-borne oomycete pathogen Aphanomyces euteiches causes devastating root rot diseases in legumes such as pea and alfalfa. The different pathotypes of A. euteiches have been shown to exhibit differential quantitative virulence, but the molecular basis of host adaptation has not yet been clarified. Here, we re-sequenced a pea field reference strain of A. euteiches ATCC201684 with PacBio long-reads and took advantage of the technology to generate the mitochondrial genome. We identified that the secretome of A. euteiches is characterized by a large portfolio of secreted proteases and carbohydrate-active enzymes (CAZymes). We performed Illumina sequencing of four strains of A. euteiches with contrasted specificity to pea or alfalfa and found in different geographical areas. Comparative analysis showed that the core secretome is largely represented by CAZymes and proteases. The specific secretome is mainly composed of a large set of small, secreted proteins (SSP) without any predicted functional domain, suggesting that the legume preference of the pathogen is probably associated with unknown functions. This study forms the basis for further investigations into the mechanisms of interaction of A. euteiches with legumes.
Collapse
Affiliation(s)
| | | | | | | | - Elodie Gaulin
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Toulouse, France; (A.K.); (H.S.C.); (L.C.); (B.D.)
| |
Collapse
|
10
|
Santo Domingo M, Areco L, Mayobre C, Valverde L, Martín-Hernández AM, Pujol M, Garcia-Mas J. Modulating climacteric intensity in melon through QTL stacking. HORTICULTURE RESEARCH 2022; 9:uhac131. [PMID: 35928400 PMCID: PMC9343914 DOI: 10.1093/hr/uhac131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/29/2022] [Indexed: 05/14/2023]
Abstract
Fruit ripening is one of the main processes affecting fruit quality and shelf life. In melon there are both climacteric and non-climacteric genotypes, making it a suitable species to study fruit ripening. In the current study, in order to fine tune ripening, we have pyramided three climacteric QTLs in the non-climacteric genotype "Piel de Sapo": ETHQB3.5, ETHQV6.3 and ETHQV8.1. The results showed that the three QTLs interact epistatically, affecting ethylene production and ripening-related traits such as aroma profile. Each individual QTL has a specific role in the ethylene production profile. ETHQB3.5 accelerates the ethylene peak, ETHQV6.3 advances the ethylene production and ETHQV8.1 enhances the effect of the other two QTLs. Regarding aroma, the three QTLs independently activated the production of esters changing the aroma profile of the fruits, with no significant effects in fruit firmness, soluble solid content and fruit size. Understanding the interaction and the effect of different ripening QTLs offers a powerful knowledge for candidate gene identification as well as for melon breeding programs, where fruit ripening is one of the main objectives.
Collapse
Affiliation(s)
- Miguel Santo Domingo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Lorena Areco
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Carlos Mayobre
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Laura Valverde
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Institut de Recerca i Tecnologia Agoralimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | | | | |
Collapse
|
11
|
Becking T, Kiselev A, Rossi V, Street-Jones D, Grandjean F, Gaulin E. Pathogenicity of animal and plant parasitic Aphanomyces spp and their economic impact on aquaculture and agriculture. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Quillévéré-Hamard A, Le Roy G, Lesné A, Le May C, Pilet-Nayel ML. Aggressiveness of Diverse French Aphanomyces euteiches Isolates on Pea Near Isogenic Lines Differing in Resistance Quantitative Trait Loci. PHYTOPATHOLOGY 2021; 111:695-702. [PMID: 32781903 DOI: 10.1094/phyto-04-20-0147-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aphanomyces root rot is a major disease in many pea growing regions worldwide. Development of resistant varieties is necessary to manage the disease. Near isogenic lines (NILs) carrying resistance alleles at main quantitative trait loci (QTLs) were developed by marker-assisted backcrossing. This study aimed to evaluate the aggressiveness of diverse French isolates of Aphanomyces euteiches on NILs carrying different resistance QTLs. Forty-three A. euteiches isolates from different French pea growing regions were tested for aggressiveness on eight NILs carrying single or combinations of resistance QTLs and two susceptible or resistant control lines, in controlled conditions. Three clusters of isolates, unrelated to geographical origin, were identified, including 37, 56, and 7% of isolates with high, moderate, and low average levels of aggressiveness, respectively. Three groups of pea lines were also identified. The first group consisted of a pea resistant control line, moderately to highly resistant to all of the isolates. The second group included five NILs carrying a major-effect resistance allele at QTL Ae-Ps7.6, with a medium to broad range of effects on the isolates. The third group consisted of three NILs carrying minor-effect resistance alleles, with a narrow range of effects on the isolates. The results suggest that highly aggressive isolates occur naturally, which may be selected by future partially resistant pea varieties carrying QTLs and increase the risk of erosion of QTL effect. QTL pyramiding strategies for a higher level and a broader range of effect of quantitative resistance on A. euteiches populations will be required for breeding for durable pea resistant varieties.
Collapse
Affiliation(s)
| | - Gwenola Le Roy
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Angélique Lesné
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | | |
Collapse
|
13
|
Kankanala P, Nandety RS, Mysore KS. Genomics of Plant Disease Resistance in Legumes. FRONTIERS IN PLANT SCIENCE 2019; 10:1345. [PMID: 31749817 PMCID: PMC6842968 DOI: 10.3389/fpls.2019.01345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/27/2019] [Indexed: 05/15/2023]
Abstract
The constant interactions between plants and pathogens in the environment and the resulting outcomes are of significant importance for agriculture and agricultural scientists. Disease resistance genes in plant cultivars can break down in the field due to the evolution of pathogens under high selection pressure. Thus, the protection of crop plants against pathogens is a continuous arms race. Like any other type of crop plant, legumes are susceptible to many pathogens. The dawn of the genomic era, in which high-throughput and cost-effective genomic tools have become available, has revolutionized our understanding of the complex interactions between legumes and pathogens. Genomic tools have enabled a global view of transcriptome changes during these interactions, from which several key players in both the resistant and susceptible interactions have been identified. This review summarizes some of the large-scale genomic studies that have clarified the host transcriptional changes during interactions between legumes and their plant pathogens while highlighting some of the molecular breeding tools that are available to introgress the traits into breeding programs. These studies provide valuable insights into the molecular basis of different levels of host defenses in resistant and susceptible interactions.
Collapse
|
14
|
Quillévéré-Hamard A, Le Roy G, Moussart A, Baranger A, Andrivon D, Pilet-Nayel ML, Le May C. Genetic and Pathogenicity Diversity of Aphanomyces euteiches Populations From Pea-Growing Regions in France. FRONTIERS IN PLANT SCIENCE 2018; 9:1673. [PMID: 30510559 PMCID: PMC6252352 DOI: 10.3389/fpls.2018.01673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/26/2018] [Indexed: 06/09/2023]
Abstract
Aphanomyces euteiches is an oomycete pathogen with a broad host-range on legumes that causes devastating root rot disease in many pea-growing countries and especially in France. Genetic resistance is a promising way to manage the disease since consistent QTL controlling partial resistance have been identified in near isogenic lines of pea. However, there are still no resistant pea varieties cultivated in France. This study aimed to evaluate the phenotypic and genetic diversity of A. euteiches populations from the major pea-growing regions in France. A collection of 205 isolates, from soil samples collected in infested pea fields located in five French regions, was established and genotyped using 20 SSR markers. Thirteen multilocus genotypes were found among the 205 isolates which displayed a low genotypic richness (ranged from 0 to 0.333). Two main clusters of isolates were identified using PCoA and STRUCTURE, including a predominant group comprising 88% of isolates and another group representing 12% of isolates mainly from the Bourgogne region. A subset of 34 isolates, representative of the fields sampled, was phenotyped for aggressiveness on a set of resistant and susceptible varieties of four legume hosts (pea, faba bean, vetch, alfalfa). Significant differences in disease severity were found among isolates and three groups of aggressiveness comprising 16, 17, and 2 isolates, respectively, were identified using HCA analysis. A higher diversity in pathogen aggressiveness was observed among isolates from Bourgogne, which included different legumes in its crop history. Little relationship was observed between genetic clusters and pathogenicity in the subset of 34 isolates, as expected using neutral markers. This study provides useful knowledge on the current state of low to moderate diversity among A. euteiches populations before resistant pea varieties are grown in France. New insights and hypotheses about the major factors shaping the diversity and evolution of A. euteiches are also discussed.
Collapse
Affiliation(s)
- Anne Quillévéré-Hamard
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
- UMT PISOM INRA/Terres Inovia, Le Rheu, France
| | - Gwenola Le Roy
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
- UMT PISOM INRA/Terres Inovia, Le Rheu, France
| | - Anne Moussart
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
- UMT PISOM INRA/Terres Inovia, Le Rheu, France
- Terres Inovia, Thiverval Grignon, France
| | - Alain Baranger
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
- UMT PISOM INRA/Terres Inovia, Le Rheu, France
| | - Didier Andrivon
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Marie-Laure Pilet-Nayel
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
- UMT PISOM INRA/Terres Inovia, Le Rheu, France
| | - Christophe Le May
- UMT PISOM INRA/Terres Inovia, Le Rheu, France
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, Rennes, France
| |
Collapse
|
15
|
Pilet-Nayel ML, Moury B, Caffier V, Montarry J, Kerlan MC, Fournet S, Durel CE, Delourme R. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection. FRONTIERS IN PLANT SCIENCE 2017; 8:1838. [PMID: 29163575 PMCID: PMC5664368 DOI: 10.3389/fpls.2017.01838] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/10/2017] [Indexed: 05/18/2023]
Abstract
Quantitative resistance has gained interest in plant breeding for pathogen control in low-input cropping systems. Although quantitative resistance frequently has only a partial effect and is difficult to select, it is considered more durable than major resistance (R) genes. With the exponential development of molecular markers over the past 20 years, resistance QTL have been more accurately detected and better integrated into breeding strategies for resistant varieties with increased potential for durability. This review summarizes current knowledge on the genetic inheritance, molecular basis, and durability of quantitative resistance. Based on this knowledge, we discuss how strategies that combine major R genes and QTL in crops can maintain the effectiveness of plant resistance to pathogens. Combining resistance QTL with complementary modes of action appears to be an interesting strategy for breeding effective and potentially durable resistance. Combining quantitative resistance with major R genes has proven to be a valuable approach for extending the effectiveness of major genes. In the plant genomics era, improved tools and methods are becoming available to better integrate quantitative resistance into breeding strategies. Nevertheless, optimal combinations of resistance loci will still have to be identified to preserve resistance effectiveness over time for durable crop protection.
Collapse
Affiliation(s)
- Marie-Laure Pilet-Nayel
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
- PISOM, UMT INRA-Terres Inovia, Le Rheu, France
| | | | - Valérie Caffier
- Research Institute of Horticulture and Seeds (INRA), UMR 1345, Beaucouzé, France
| | - Josselin Montarry
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
| | - Marie-Claire Kerlan
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
| | - Sylvain Fournet
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
| | - Charles-Eric Durel
- Research Institute of Horticulture and Seeds (INRA), UMR 1345, Beaucouzé, France
| | - Régine Delourme
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
| |
Collapse
|