1
|
Putra AI, Khan MN, Kamaruddin N, Khairuddin RFR, Al-Obaidi JR, Flores BJ, Flores LF. Proteomic insights into fruit-pathogen interactions: managing biotic stress in fruit. PLANT CELL REPORTS 2025; 44:54. [PMID: 39945834 DOI: 10.1007/s00299-025-03443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/24/2025] [Indexed: 05/09/2025]
Abstract
KEYMESSAGE Proteomics has revealed complex immune responses in fruits, leading to the identification of potential disease biomarkers and resistance mechanisms. Fruit diseases caused by fungal and bacterial pathogens present critical challenges to global food security by reducing fruit shelf life and quality. This review explores the molecular dynamics of fruit-pathogen interactions using advanced proteomic techniques. These approaches include mass spectrometry-based identification, gel-based, and gel-free strategies, tailored to the unique compositions of fruit tissues for accurate protein extraction and identification. Proteomic studies reveal pathogen-induced changes in fruit proteomes, including the upregulation of defence-related proteins and suppression of metabolic pathways crucial for pathogen survival. Case studies on tomatoes, apples, and bananas highlight specific pathogen-responsive proteins, such as PR proteins and enzymes involved in ROS scavenging, which play roles in disease resistance mechanisms. The review further demonstrates the utility of proteomic data in identifying early disease biomarkers, guiding genetic improvements for disease resistance, and optimizing pathogen control measures. Integrating proteomic insights with transcriptomics and metabolomics provides a multidimensional understanding of fruit-pathogen interactions, paving the way for innovative solutions in agriculture. Future research should prioritize multi-omics approaches and field-level validations to translate laboratory findings into practical applications. The advancements discussed underscore the transformative role of proteomics in improving food security and sustainability amid challenges posed by climate change and increasing global food demand.
Collapse
Affiliation(s)
- Aidhya Irhash Putra
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Muhammad Naveed Khan
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Nurhaida Kamaruddin
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Raja Farhana R Khairuddin
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia.
- Applied Science Research Center, Applied Science Private University, Amman, Jordan.
| | - Brenda Juana Flores
- Escuela de Producción, Tecnología y Medio Ambiente, Universidad Nacional de Río Negro, 8336, Villa Regina, Río Negro, Argentina
- Club de Biotecnología Agrícola y Ambiental, 8336, Villa Regina, Río Negro, Argentina
| | - Luis Fernando Flores
- Escuela de Producción, Tecnología y Medio Ambiente, Universidad Nacional de Río Negro, 8336, Villa Regina, Río Negro, Argentina
- Club de Biotecnología Agrícola y Ambiental, 8336, Villa Regina, Río Negro, Argentina
| |
Collapse
|
2
|
Liu H, Fang H, Zhang G, Li J, Zhang X, Li Y. De novo transcriptome profiling reveals the patterns of gene expression in plum fruits with bud mutations. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:909-919. [PMID: 38974351 PMCID: PMC11222343 DOI: 10.1007/s12298-024-01472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Bud mutation is a common technique for plant breeding and can provide a large number of breeding materials. Through traditional breeding methods, we obtained a plum plant with bud mutations (named "By") from an original plum variety (named "B"). The ripening period of "By" fruit was longer than that of "B" fruit, and its taste was better. In order to understand the characteristics of these plum varieties, we used transcriptome analysis and compared the gene expression patterns in fruits from the two cultivars. Subsequently, we identified the biological processes regulated by the differentially expressed genes (DEGs). Gene ontology (GO) analysis revealed that these DEGs were highly enriched for "single-organism cellular process" and "transferase activity". KEGG analysis demonstrated that the main pathways affected by the bud mutations were plant hormone signal transduction, starch and sucrose metabolism. The IAA, CKX, ARF, and SnRK2 genes were identified as the key regulators of plant hormone signal transduction. Meanwhile, TPP, the beta-glucosidase (EC3.2.1.21) gene, and UGT72E were identified as candidate DEGs affecting secondary metabolite synthesis. The transcriptome sequencing (RNA-seq) data were also validated using RT-qPCR experiments. The transcriptome analysis demonstrated that plant hormones play a significant role in extending the maturity period of plum fruit, with IAA, CKX, ARF, and SnRK2 serving as the key regulators of this process. Further, TPP, beta-glucosidase (EC3.2.1.21), and UGT72E appeared to mediate the synthesis of various soluble secondary metabolites, contributing to the aroma of plum fruits. The expression of BAG6 was upregulated in "B" as the fruit matured, but it was downregulated in "By". This indicated that "B" may have stronger resistance, especially fungal resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01472-3.
Collapse
Affiliation(s)
- Huiyan Liu
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021 Ningxia China
| | - Haitian Fang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021 Ningxia China
| | - Guangdi Zhang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021 Ningxia China
- Ningxia Facility Horticulture Engineering Technology Center, Yinchuan, 750021 Ningxia China
- Technological Innovation Center of Horticulture, Ningxia University), Ningxia Hui Autonomous Region, Yinchuan, 750021 Ningxia China
| | - Jianshe Li
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021 Ningxia China
- Ningxia Facility Horticulture Engineering Technology Center, Yinchuan, 750021 Ningxia China
- Technological Innovation Center of Horticulture, Ningxia University), Ningxia Hui Autonomous Region, Yinchuan, 750021 Ningxia China
| | - Xiangjun Zhang
- School of Life Science, Ningxia University, Yinchuan, 750021 Ningxia China
| | - Yu Li
- Technological Innovation Center of Horticulture, Ningxia University), Ningxia Hui Autonomous Region, Yinchuan, 750021 Ningxia China
| |
Collapse
|
3
|
Zhang S, Yu Z, Sun L, Liang S, Xu F, Li S, Zheng X, Yan L, Huang Y, Qi X, Ren H. T2T reference genome assembly and genome-wide association study reveal the genetic basis of Chinese bayberry fruit quality. HORTICULTURE RESEARCH 2024; 11:uhae033. [PMID: 38495030 PMCID: PMC10940123 DOI: 10.1093/hr/uhae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
Abstract
Chinese bayberry (Myrica rubra or Morella rubra; 2n = 16) produces fruit with a distinctive flavor, high nutritional, and economic value. However, previous versions of the bayberry genome lack sequence continuity. Moreover, to date, no large-scale germplasm resource association analysis has examined the allelic and genetic variations determining fruit quality traits. Therefore, in this study, we assembled a telomere-to-telomere (T2T) gap-free reference genome for the cultivar 'Zaojia' using PacBio HiFi long reads. The resulting 292.60 Mb T2T genome, revealed 8 centromeric regions, 15 telomeres, and 28 345 genes. This represents a substantial improvement in the genome continuity and integrity of Chinese bayberry. Subsequently, we re-sequenced 173 accessions, identifying 6 649 674 single nucleotide polymorphisms (SNPs). Further, the phenotypic analyses of 29 fruit quality-related traits enabled a genome-wide association study (GWAS), which identified 1937 SNPs and 1039 genes significantly associated with 28 traits. An SNP cluster pertinent to fruit color was identified on Chr6: 3407532 to 5 153 151 bp region, harboring two MYB genes (MrChr6G07650 and MrChr6G07660), exhibiting differential expression in extreme phenotype transcriptomes, linked to anthocyanin synthesis. An adjacent, closely linked gene, MrChr6G07670 (MLP-like protein), harbored an exonic missense variant and was shown to increase anthocyanin production in tobacco leaves tenfold. This SNP cluster, potentially a quantitative trait locus (QTL), collectively regulates bayberry fruit color. In conclusion, our study presented a complete reference genome, uncovered a suite of allelic variations related to fruit-quality traits, and identified functional genes that could be harnessed to enhance fruit quality and breeding efficiency of bayberries.
Collapse
Affiliation(s)
- Shuwen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Shangcheng District, Hangzhou 310021, Zhejiang, China
| | - Zheping Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Shangcheng District, Hangzhou 310021, Zhejiang, China
| | - Li Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Shangcheng District, Hangzhou 310021, Zhejiang, China
| | - Senmiao Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Shangcheng District, Hangzhou 310021, Zhejiang, China
| | - Fei Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Shangcheng District, Hangzhou 310021, Zhejiang, China
| | - Sujuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Shangcheng District, Hangzhou 310021, Zhejiang, China
| | - Xiliang Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Shangcheng District, Hangzhou 310021, Zhejiang, China
| | - Lijv Yan
- Linhai Specialty and Technology Extension Station, 219 Dongfang Avenue, Linhai 317000, Zhejiang, China
| | - Yinghong Huang
- Jiangsu Taihu Evergreen Fruit Tree Technology Promotion Center, Dongshan Town, Wuzhong District, Suzhou 215107, Jiangsu, China
| | - Xingjiang Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Shangcheng District, Hangzhou 310021, Zhejiang, China
- Xianghu Laboratory, 168 Gengwen Road, Xiaoshan District, Hangzhou 311231, Zhejiang, China
| | - Haiying Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Shangcheng District, Hangzhou 310021, Zhejiang, China
| |
Collapse
|
4
|
Xing Q, Cabioch L, Desrut A, Le Corguillé G, Rousvoal S, Dartevelle L, Rolland E, Guitton Y, Potin P, Markov GV, Faugeron S, Leblanc C. Aldehyde perception induces specific molecular responses in Laminaria digitata and affects algal consumption by a specialist grazer. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1617-1632. [PMID: 37658798 DOI: 10.1111/tpj.16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
In the marine environment, distance signaling based on water-borne cues occurs during interactions between macroalgae and herbivores. In the brown alga Laminaria digitata from North-Atlantic Brittany, oligoalginates elicitation or grazing was shown to induce chemical and transcriptomic regulations, as well as emission of a wide range of volatile aldehydes, but their biological roles as potential defense or warning signals in response to herbivores remain unknown. In this context, bioassays using the limpet Patella pellucida and L. digitata were carried out for determining the effects of algal transient incubation with 4-hydroxyhexenal (4-HHE), 4-hydroxynonenal (4-HNE) and dodecadienal on algal consumption by grazers. Simultaneously, we have developed metabolomic and transcriptomic approaches to study algal molecular responses after treatments of L. digitata with these chemical compounds. The results indicated that, unlike the treatment of the plantlets with 4-HNE or dodecadienal, treatment with 4-HHE decreases algal consumption by herbivores at 100 ng.ml-1 . Moreover, we showed that algal metabolome was significantly modified according to the type of aldehydes, and more specifically the metabolite pathways linked to fatty acid degradation. RNAseq analysis further showed that 4-HHE at 100 ng.ml-1 can activate the regulation of genes related to oxylipin signaling pathways and specific responses, compared to oligoalginates elicitation. As kelp beds constitute complex ecosystems consisting of habitat and food source for marine herbivores, the algal perception of specific aldehydes leading to targeted molecular regulations could have an important biological role on kelps/grazers interactions.
Collapse
Affiliation(s)
- Qikun Xing
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Léa Cabioch
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
- Centro de Conservación Marina and CeBiB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antoine Desrut
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Gildas Le Corguillé
- Sorbonne Université, CNRS, FR 2424, ABIMS Platform, Station Biologique de Roscoff, Roscoff, France
| | - Sylvie Rousvoal
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Laurence Dartevelle
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Elodie Rolland
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | | | - Philippe Potin
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Sylvain Faugeron
- Centro de Conservación Marina and CeBiB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catherine Leblanc
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
5
|
Ren J, Li W, Guo Z, Ma Z, Wan D, Lu S, Guo L, Gou H, Chen B, Mao J. Whole-genome resequencing and transcriptome analyses of four generation mutants to reveal spur-type and skin-color related genes in apple (Malus domestica Borkh. Cv. Red delicious). BMC PLANT BIOLOGY 2023; 23:607. [PMID: 38030998 PMCID: PMC10688089 DOI: 10.1186/s12870-023-04631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Bud sport is a kind of somatic mutation that usually occurred in apple. 'Red Delicious' is considered to be a special plant material of bud sport, whereas the genetic basis of plant mutants is still unknown. In this study, we used whole-genome resequencing and transcriptome sequencing to identify genes related to spur-type and skin-color in the 'Red Delicious' (G0) and its four generation mutants including 'Starking Red' (G1), 'Starkrimson' (G2), 'Campbell Redchief' (G3) and 'Vallee Spur' (G4). RESULTS The number of single nucleotide polymorphisms (SNPs), insertions and deletions (InDels) and structural variations (SVs) were decreased in four generation mutants compared to G0, and the number of unique SNPs and InDels were over 9-fold and 4-fold higher in G1 versus (vs.) G2 and G2 vs. G3, respectively. Chromosomes 2, 5, 11 and 15 carried the most SNPs, InDels and SVs, while chromosomes 1 and 6 carried the least. Meanwhile, we identified 4,356 variation genes by whole-genome resequencing and transcriptome, and obtained 13 and 16 differentially expressed genes (DEGs) related to spur-type and skin-color by gene expression levels. Among them, DELLA and 4CL7 were the potential genes that regulate the difference of spur-type and skin-color characters, respectively. CONCLUSIONS Our study identified potential genes associated with spur-type and skin-color differences in 'Red Delicious' and its four generation mutants, which provides a theoretical foundation for the mechanism of the apple bud sport.
Collapse
Affiliation(s)
- Jiaxuan Ren
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Wenfang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zhigang Guo
- Tianshui Normal University, Tianshui, 741001, PR China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Dongshi Wan
- College of Ecology, Lanzhou University, Lanzhou, 730000, PR China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Lili Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
6
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
7
|
Ma R, Zhang M, Yang X, Guo J, Fan Y. Transcriptome analysis reveals genes related to the synthesis and metabolism of cell wall polysaccharides in goji berry (Lycium barbarum L.) from various regions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7050-7060. [PMID: 37340801 DOI: 10.1002/jsfa.12791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND In goji berries (Lycium barbarum L.), the cell wall properties and ripening environment affect fruit quality and their economic benefits. However, the mechanism underlying the cell wall remains to be fully elucidated. RESULTS The results showed that total sugar content was higher in Qinghai berries (13.87%, P < 0.01), whereas cellulose content peaked in Zhongning berries (28%, P < 0.05). Arabinose, galactose, and galacturonic acid were the principal components of the cell wall polysaccharides in goji berries. Among them, the content of galactose in Zhongning was significantly the highest (P < 0.05). Interestingly, we found that highly expressed β-glucosidase and lowly expressed endoglucanase led to cellulose accumulation by RNA-sequencing analysis. The expression analysis results suggested that pectate lyase and pectinesterase enzymes could be major factors related to higher galactose and galacturonic acid contents in Zhongning compared to in Qinghai and Gansu. The starch and sucrose metabolism pathway, pentose and glucuronate interconversions pathway, and galactose metabolism pathway played a significant role in cell wall polysaccharide synthesis and metabolism. CONCLUSION In the present study, we aimed to provide some insights into the cell wall on polysaccharide composition, structural features, and gene analysis in goji berries from Zhongning, Qinghai, and Gansu in China. These results might help to clarify the molecular function of the major genes in the cell wall polysaccharides of goji berries and provide a solid foundation for further study. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruixue Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Meng Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Xiaohua Yang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Jia Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Yanli Fan
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| |
Collapse
|
8
|
Chien HJ, Zheng YF, Wang WC, Kuo CY, Hsu YM, Lai CC. Determination of adulteration, geographical origins, and species of food by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2273-2323. [PMID: 35652168 DOI: 10.1002/mas.21780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Food adulteration, mislabeling, and fraud, are rising global issues. Therefore, a number of precise and reliable analytical instruments and approaches have been proposed to ensure the authenticity and accurate labeling of food and food products by confirming that the constituents of foodstuffs are of the kind and quality claimed by the seller and manufacturer. Traditional techniques (e.g., genomics-based methods) are still in use; however, emerging approaches like mass spectrometry (MS)-based technologies are being actively developed to supplement or supersede current methods for authentication of a variety of food commodities and products. This review provides a critical assessment of recent advances in food authentication, including MS-based metabolomics, proteomics and other approaches.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ming Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
9
|
Tariq N, Yaseen M, Xu D, Rehman HM, Bibi M, Uzair M. Rice anther tapetum: a vital reproductive cell layer for sporopollenin biosynthesis and pollen exine patterning. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:233-245. [PMID: 36350096 DOI: 10.1111/plb.13485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The tapetum is the innermost layer of the four layers of the rice anther that provides protection and essential nutrients to pollen grain development and delivers precursors for pollen exine formation. The tapetum has a key role in the normal development of pollen grains and tapetal programmed cell death (PCD) that is linked with sporopollenin biosynthesis and transport. Recently, many genes have been identified that are involved in tapetum formation in rice and Arabidopsis. Genetic mutation in PCD-associated genes could affect normal tapetal PCD, which finally leads to aborted pollen grains and male sterility in rice. In this review, we discuss the most recent research on rice tapetum development, including genomic, transcriptomic and proteomic studies. Furthermore, tapetal PCD, sporopollenin biosynthesis, ROS activity for tapetum function and its role in male reproductive development are discussed in detail. This will improve our understanding of the role of the tapetum in male fertility using rice as a model system, and provide information that can be applied in rice hybridization and that of other major crops.
Collapse
Affiliation(s)
- N Tariq
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - M Yaseen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Institute of Rice Research, Sichuan Agricultural University, Sichuan, China
| | - D Xu
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - H M Rehman
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - M Bibi
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, Korea
| | - M Uzair
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
10
|
Guo X, Wang J, Niu R, Li R, Wang J, Fan X, Wang X, Sun Z. Effects of apple juice fermented with Lactobacillus plantarum CICC21809 on antibiotic-associated diarrhea of mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Song J, Campbell L, Vinqvist-Tymchuk M. Application of quantitative proteomics to investigate fruit ripening and eating quality. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153766. [PMID: 35921768 DOI: 10.1016/j.jplph.2022.153766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The consumption of fruit and vegetables play an important role in human nutrition, dietary diversity and health. Fruit and vegetable industries impart significant impact on our society, economy, and environment, contributing towards sustainable development in both developing and developed countries. The eating quality of fruit is determined by its appearance, color, firmness, flavor, nutritional components, and the absence of defects from physiological disorders. However, all of these components are affected by many pre- and postharvest factors that influence fruit ripening and senescence. Significant efforts have been made to maintain and improve fruit eating quality by expanding our knowledge of fruit ripening and senescence, as well as by controlling and reducing losses. Innovative approaches are required to gain better understanding of the management of eating quality. With completion of the genome sequence for many horticultural products in recent years and development of the proteomic research technique, quantitative proteomic research on fruit is changing rapidly and represents a complementary research platform to address how genetics and environment influence the quality attributes of various produce. Quantiative proteomic research on fruit is advancing from protein abundance and protein quantitation to gene-protein interactions and post-translational modifications of proteins that occur during fruit development, ripening and in response to environmental influences. All of these techniques help to provide a comprehensive understanding of eating quality. This review focuses on current developments in the field as well as limitations and challenges, both in broad term and with specific examples. These examples include our own research experience in applying quantitative proteomic techniques to identify and quantify the protein changes in association with fruit ripening, quality and development of disorders, as well as possible control mechanisms.
Collapse
Affiliation(s)
- Jun Song
- Agriculture and Agri-Food Canada. KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia, B4N 1J5, Canada.
| | - Leslie Campbell
- Agriculture and Agri-Food Canada. KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia, B4N 1J5, Canada
| | - Melinda Vinqvist-Tymchuk
- Agriculture and Agri-Food Canada. KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia, B4N 1J5, Canada
| |
Collapse
|
12
|
Zhang M, Du T, Yin Y, Cao H, Song Z, Ye M, Liu Y, Shen Y, Zhang L, Yang Q, Meng D, Wu J. Synergistic Effects of Plant Hormones on Spontaneous Late-ripening Mutant of ‘Jinghong’ Peach Detected by Transcriptome Analysis. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
Peach (Prunus persica L.) is an ancient fruit tree that originated from China. It is the climacteric fruit which belongs to genus Prunus in family Rosaceae. Ethylene, which is produced during ripening, accelerates fruit softening, and therefore peaches cannot be stored for a long time.
Materials and Methods
To study the mechanism of fruit late ripening, transcriptome analysis of the fruit of a late-ripening mutant of ‘Jinghong’ peach was performed to identify genes and pathways involved in fruit late ripening.
Results
A total of 1,805, 1,511, and 2,309 genes were found to be differentially expressed in W2_vs_M1, W3_vs_M2, and W3_vs_M3, respectively. Functional enrichment analysis of the differentially expressed genes showed they were related to carotenoid biosynthesis, starch and sucrose metabolism plant hormone signal transduction, flavonoid biosynthesis, and photosynthesis. The expression trends of ripening-related genes that encode transcription factors and plant hormone signal transduction-related genes that encode enzymes were similar.
Conclusions
It will help to elucidate the transcriptional regulatory network of fruit development in the spontaneous late-ripening mutant of ‘Jinghong’ peach and provide a theoretical basis for understanding the molecular regulatory mechanism of fruit ripening.
Collapse
Affiliation(s)
- Man Zhang
- Hebei Normal University of Science and Technology, Qinhuangdao Hebei
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization
| | - Tingting Du
- The College of Forestry, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yarui Yin
- Hebei Normal University of Science and Technology, Qinhuangdao Hebei
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization
| | - Hongyan Cao
- The College of Forestry, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Zhihua Song
- The College of Forestry, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Mao Ye
- Hebei Normal University of Science and Technology, Qinhuangdao Hebei
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization
| | - Yating Liu
- Hebei Normal University of Science and Technology, Qinhuangdao Hebei
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization
| | - Yanhong Shen
- Hebei Normal University of Science and Technology, Qinhuangdao Hebei
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization
| | - Libin Zhang
- Hebei Normal University of Science and Technology, Qinhuangdao Hebei
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization
| | - Qing Yang
- The College of Forestry, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Dong Meng
- The College of Forestry, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Junkai Wu
- Hebei Normal University of Science and Technology, Qinhuangdao Hebei
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization
| |
Collapse
|
13
|
Li Z, Deng X, Luo J, Lei Y, Jin X, Zhu J, Lv G. Metabolomic Comparison of Patients With Colorectal Cancer at Different Anticancer Treatment Stages. Front Oncol 2022; 11:574318. [PMID: 35186705 PMCID: PMC8855116 DOI: 10.3389/fonc.2021.574318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The difficulties of early diagnosis of colorectal cancer (CRC) result in a high mortality rate. The ability to predict the response of a patient to surgical resection or chemotherapy may be of great value for clinicians when planning CRC treatments. Metabolomics is an emerging tool for biomarker discovery in cancer research. Previous reports have indicated that the metabolic profile of individuals can be significantly altered between CRC patients and healthy controls. However, metabolic changes in CRC patients at different treatment stages have not been explored. METHODS To this end, we performed nuclear magnetic resonance (NMR)-based metabolomic analysis to determine metabolite aberrations in CRC patients before and after surgical resection or chemotherapy. In general, a total of 106 urine samples from four clinical groups, namely, healthy volunteers (n = 31), presurgery CRC patients (n = 25), postsurgery CRC patients (n = 25), and postchemotherapy CRC patients (n = 25), were collected and subjected to further analysis. RESULTS In the present study, we identified five candidate metabolites, namely, N-phenylacetylglycine, succinate, 4-hydroxyphenylacetate, acetate, and arabinose, in CRC patients compared with healthy individuals, three of which were reported for the first time. Furthermore, approximately ten metabolites were uniquely identified at each stage of CRC treatment, serving as good candidates for biomarker panel selection. CONCLUSION In summary, these potential metabolite candidates may provide promising early diagnostic and monitoring approaches for CRC patients at different anticancer treatment stages.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guoqing Lv
- Department of Gastroinerstinal Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
14
|
Gao B, Chen MX, Zhu FY. SWATH-MS Proteomic Approach to Discover Novel Protein Targets and Pathways in Response to Abscisic Acid. Methods Mol Biol 2022; 2462:191-200. [PMID: 35152390 DOI: 10.1007/978-1-0716-2156-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
SWATH-MS proteomic approaches enable the identification and quantification of thousands of proteins within a single profiling experiment, which is useful for the identification of genes regulated by abscisic acid (ABA) in a high-throughput manner. Here we describe the experimental procedures for protein extraction, digestion, peptides desalting, followed by the establishment of a DDA spectrum database and DIA-based SWATH detection and protein quantification. This method is able to identify and quantify proteins involved in ABA metabolism, signal perception and transduction with high accuracy and reproducibility.
Collapse
Affiliation(s)
- Bei Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu Province, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
15
|
Thitisaksakul M, Sangwongchai W, Mungmonsin U, Promrit P, Krusong K, Wanichthanarak K, Tananuwong K. Granule morphological and structural variability of Thai certified glutinous rice starches in relation to thermal, pasting, and digestible properties. Cereal Chem 2020. [DOI: 10.1002/cche.10389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maysaya Thitisaksakul
- Department of Biochemistry Faculty of Science Khon Kaen University Khon Kaen Thailand
- Salt‐Tolerant Rice Research Group Faculty of Science Khon Kaen University Khon Kaen Thailand
| | - Wichian Sangwongchai
- Department of Biochemistry Faculty of Science Khon Kaen University Khon Kaen Thailand
| | - Urairat Mungmonsin
- Department of Biochemistry Faculty of Science Khon Kaen University Khon Kaen Thailand
| | - Pennapa Promrit
- Department of Biochemistry Faculty of Science Khon Kaen University Khon Kaen Thailand
| | - Kuakarun Krusong
- Structural and Computational Biology Research Unit Department of Biochemistry Faculty of Science Chulalongkorn University Bangkok Thailand
| | - Kwanjeera Wanichthanarak
- Siriraj Metabolomics and Phenomics Center Faculty of Medicine Siriraj Hospital Mahidol University Bangkok Thailand
| | - Kanitha Tananuwong
- Department of Food Technology Faculty of Science Chulalongkorn University Bangkok Thailand
| |
Collapse
|
16
|
Zhang KL, Feng Z, Yang JF, Yang F, Yuan T, Zhang D, Hao GF, Fang YM, Zhang J, Wu C, Chen MX, Zhu FY. Systematic characterization of the branch point binding protein, splicing factor 1, gene family in plant development and stress responses. BMC PLANT BIOLOGY 2020; 20:379. [PMID: 32811430 PMCID: PMC7433366 DOI: 10.1186/s12870-020-02570-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/22/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Among eukaryotic organisms, alternative splicing is an important process that can generate multiple transcripts from one same precursor messenger RNA, which greatly increase transcriptome and proteome diversity. This process is carried out by a super-protein complex defined as the spliceosome. Specifically, splicing factor 1/branchpoint binding protein (SF1/BBP) is a single protein that can bind to the intronic branchpoint sequence (BPS), connecting the 5' and 3' splice site binding complexes during early spliceosome assembly. The molecular function of this protein has been extensively investigated in yeast, metazoa and mammals. However, its counterpart in plants has been seldomly reported. RESULTS To this end, we conducted a systematic characterization of the SF1 gene family across plant lineages. In this work, a total of 92 sequences from 59 plant species were identified. Phylogenetic relationships of these sequences were constructed, and subsequent bioinformatic analysis suggested that this family likely originated from an ancient gene transposition duplication event. Most plant species were shown to maintain a single copy of this gene. Furthermore, an additional RNA binding motif (RRM) existed in most members of this gene family in comparison to their animal and yeast counterparts, indicating that their potential role was preserved in the plant lineage. CONCLUSION Our analysis presents general features of the gene and protein structure of this splicing factor family and will provide fundamental information for further functional studies in plants.
Collapse
Affiliation(s)
- Kai-Lu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Zhen Feng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079 China
| | - Feng Yang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Tian Yuan
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Di Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079 China
| | - Yan-Ming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Jianhua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Mo-Xian Chen
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 PR China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| |
Collapse
|
17
|
Song T, Yang F, Das D, Chen M, Hu Q, Tian Y, Cheng C, Liu Y, Zhang J. Transcriptomic analysis of photosynthesis‐related genes regulated by alternate wetting and drying irrigation in flag leaves of rice. Food Energy Secur 2020. [DOI: 10.1002/fes3.221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Tao Song
- Shenzhen Research Institute The Chinese University of Hong Kong Shenzhen China
| | - Feng Yang
- Shenzhen Research Institute The Chinese University of Hong Kong Shenzhen China
| | - Debatosh Das
- Shenzhen Research Institute The Chinese University of Hong Kong Shenzhen China
| | - Moxian Chen
- Shenzhen Research Institute The Chinese University of Hong Kong Shenzhen China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China Hunan Agricultural University Changsha China
| | - Qijuan Hu
- Shenzhen Research Institute The Chinese University of Hong Kong Shenzhen China
| | - Yuan Tian
- Shenzhen Research Institute The Chinese University of Hong Kong Shenzhen China
| | - Chaolin Cheng
- Shenzhen Research Institute The Chinese University of Hong Kong Shenzhen China
| | - Yue Liu
- Shenzhen Research Institute The Chinese University of Hong Kong Shenzhen China
| | - Jianhua Zhang
- Department of Biology Hong Kong Baptist University Kowloon Hong Kong
- School of Life Sciences and State Key Laboratory of Agrobiotechnology The Chinese University of Hong Kong Shatin Hong Kong
| |
Collapse
|
18
|
Chen MX, Zhang KL, Gao B, Yang JF, Tian Y, Das D, Fan T, Dai L, Hao GF, Yang GF, Zhang J, Zhu FY, Fang YM. Phylogenetic comparison of 5' splice site determination in central spliceosomal proteins of the U1-70K gene family, in response to developmental cues and stress conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:357-378. [PMID: 32133712 DOI: 10.1111/tpj.14735] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 05/07/2023]
Abstract
Intron-containing genes have the ability to generate multiple transcript isoforms by splicing, thereby greatly expanding the eukaryotic transcriptome and proteome. In eukaryotic cells, precursor mRNA (pre-mRNA) splicing is performed by a mega-macromolecular complex defined as a spliceosome. Among its splicing components, U1 small nuclear ribonucleoprotein (U1 snRNP) is the smallest subcomplex involved in early spliceosome assembly and 5'-splice site recognition. Its central component, named U1-70K, has been extensively characterized in animals and yeast. Very few investigations on U1-70K genes have been conducted in plants, however. To this end, we performed a comprehensive study to systematically identify 115 U1-70K genes from 67 plant species, ranging from algae to angiosperms. Phylogenetic analysis suggested that the expansion of the plant U1-70K gene family was likely to have been driven by whole-genome duplications. Subsequent comparisons of gene structures, protein domains, promoter regions and conserved splicing patterns indicated that plant U1-70Ks are likely to preserve their conserved molecular function across plant lineages and play an important functional role in response to environmental stresses. Furthermore, genetic analysis using T-DNA insertion mutants suggested that Arabidopsis U1-70K may be involved in response to osmotic stress. Our results provide a general overview of this gene family in Viridiplantae and will act as a reference source for future mechanistic studies on this U1 snRNP-specific splicing factor.
Collapse
Affiliation(s)
- Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518063, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Kai-Lu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Bei Gao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yuan Tian
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Debatosh Das
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Tao Fan
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Lei Dai
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518063, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Jianhua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Hong Kong Baptist University, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan-Ming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
19
|
Chen MX, Zhu FY, Gao B, Ma KL, Zhang Y, Fernie AR, Chen X, Dai L, Ye NH, Zhang X, Tian Y, Zhang D, Xiao S, Zhang J, Liu YG. Full-Length Transcript-Based Proteogenomics of Rice Improves Its Genome and Proteome Annotation. PLANT PHYSIOLOGY 2020; 182:1510-1526. [PMID: 31857423 PMCID: PMC7054881 DOI: 10.1104/pp.19.00430] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/26/2019] [Indexed: 05/18/2023]
Abstract
Rice (Oryza sativa) molecular breeding has gained considerable attention in recent years, but inaccurate genome annotation hampers its progress and functional studies of the rice genome. In this study, we applied single-molecule long-read RNA sequencing (lrRNA_seq)-based proteogenomics to reveal the complexity of the rice transcriptome and its coding abilities. Surprisingly, approximately 60% of loci identified by lrRNA_seq are associated with natural antisense transcripts (NATs). The high-density genomic arrangement of NAT genes suggests their potential roles in the multifaceted control of gene expression. In addition, a large number of fusion and intergenic transcripts have been observed. Furthermore, 906,456 transcript isoforms were identified, and 72.9% of the genes can generate splicing isoforms. A total of 706,075 posttranscriptional events were subsequently categorized into 10 subtypes, demonstrating the interdependence of posttranscriptional mechanisms that contribute to transcriptome diversity. Parallel short-read RNA sequencing indicated that lrRNA_seq has a superior capacity for the identification of longer transcripts. In addition, over 190,000 unique peptides belonging to 9,706 proteoforms/protein groups were identified, expanding the diversity of the rice proteome. Our findings indicate that the genome organization, transcriptome diversity, and coding potential of the rice transcriptome are far more complex than previously anticipated.
Collapse
Affiliation(s)
- Mo-Xian Chen
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271000, Shandong, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People’s Republic of China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Bei Gao
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kai-Long Ma
- BGI-Shenzhen, Shenzhen 518083, People’s Republic of China
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Xi Chen
- SpecAlly Life Technology Co., Ltd., Wuhan 430075, China
| | - Lei Dai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Neng-Hui Ye
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xue Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuan Tian
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271000, Shandong, China
| | - Di Zhang
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271000, Shandong, China
- Author for Contact:
| |
Collapse
|