1
|
Gómez-Rocal S, Cruz-Carrión Á, Morales D, García-Ruiz A, Suárez M, Arola-Arnal A. Foodomics approaches: New insights in phenolic compounds analysis. Food Res Int 2025; 208:116168. [PMID: 40263832 DOI: 10.1016/j.foodres.2025.116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 04/24/2025]
Abstract
Fruits, vegetables, and plant-based foods contain several bioactive substances such as phenolic compounds (PCs), that are plant secondary metabolites with attributed health properties. The study of the metabolic pathways of PCs, including those related with their synthesis, transport, accumulation, and degradation are essential to advance in this field of research. In this regard, omics tools such as foodomics are gaining relevance due to their versatility and their tremendous potential to generate significant advances in PC research. In this review, we present a comprehensive overview of the applications of omics technologies in PC analysis, including transcriptomics, micromics, proteomics and metabolomics, highlighting their role in metabolic pathways, current limitations, and emerging insights. Omics techniques as well as data analyses are continuously progressing, emerging new opportunities with onset of artificial intelligence and machine learning. However, significant limitations and challenges still remain. The immense diversity of PC chemical structures and their variability across plant species, varieties, and impact of agronomic factors complicate the analyses and limit the extrapolation of findings. Additionally, high data dimensionality, strong correlations among measured variables, and general lack of standardization in the different omics techniques can impact in the results. Addressing these limitations requires integrating multi-omics approaches and developing standardized protocols to enhance comparability and interpretation in PC research. In summary, foodomics approaches arise as essential for the complete mapping of PC biosynthesis.
Collapse
Affiliation(s)
- Saioa Gómez-Rocal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona 43007, Spain; Institute of Health Pere Virgili (IISPV), Reus, 43204, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TecnATox), Reus 43201, Spain
| | - Álvaro Cruz-Carrión
- Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.
| | - Diego Morales
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona 43007, Spain
| | - Almudena García-Ruiz
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona 43007, Spain; Institute of Health Pere Virgili (IISPV), Reus, 43204, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TecnATox), Reus 43201, Spain
| | - Manuel Suárez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona 43007, Spain; Institute of Health Pere Virgili (IISPV), Reus, 43204, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TecnATox), Reus 43201, Spain.
| | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona 43007, Spain; Institute of Health Pere Virgili (IISPV), Reus, 43204, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TecnATox), Reus 43201, Spain
| |
Collapse
|
2
|
Nan X, Li W, Shao M, Cui Z, Wang H, Huo J, Chen L, Chen B, Ma Z. Shading Treatment Reduces Grape Sugar Content by Suppressing Photosynthesis-Antenna Protein Pathway Gene Expression in Grape Berries. Int J Mol Sci 2024; 25:5029. [PMID: 38732247 PMCID: PMC11084848 DOI: 10.3390/ijms25095029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
To explore the impact of shade treatment on grape berries, 'Marselan' grape berries were bagged under different light transmission rates (100% (CK), 75% (A), 50% (B), 25% (C), 0% (D)). It was observed that this treatment delayed the ripening of the grape berries. The individual weight of the grape berries, as well as the content of fructose, glucose, soluble sugars, and organic acids in the berries, was measured at 90, 100, and 125 days after flowering (DAF90, DAF100, DAF125). The results revealed that shading treatment reduced the sugar content in grape berries; the levels of fructose and glucose were higher in the CK treatment compared to the other treatments, and they increased with the duration of the shading treatment. Conversely, the sucrose content exhibited the opposite trend. Additionally, as the weight of the grape berries increased, the content of soluble solids and soluble sugars in the berries also increased, while the titratable acidity decreased. Furthermore, 16 differentially expressed genes (DEGs) were identified in the photosynthesis-antenna protein pathway from the transcriptome sequencing data. Correlation analysis revealed that the expression levels of genes VIT_08s0007g02190 (Lhcb4) and VIT_15s0024g00040 (Lhca3) were positively correlated with sugar content in the berries at DAF100, but negatively correlated at DAF125. qRT-PCR results confirmed the correlation analysis. This indicates that shading grape clusters inhibits the expression of genes in the photosynthesis-antenna protein pathway in the grape berries, leading to a decrease in sugar content. This finding contributes to a deeper understanding of the impact mechanisms of grape cluster shading on berry quality, providing important scientific grounds for improving grape berry quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China (J.H.)
| |
Collapse
|
3
|
Ghantous G, Popov K, El Sebaaly Z, Sassine YN. Changes in Cabernet Sauvignon yield and berry quality as affected by variability in weather conditions in the last two decades in Lebanon. Sci Rep 2024; 14:6992. [PMID: 38523138 PMCID: PMC10961301 DOI: 10.1038/s41598-024-57665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
Cabernet Sauvignon is the most planted cultivar in Lebanese vineyards. This study investigated the variation of its production at two vineyards 'Kanafar' (West Bekaa at 1020 m.a.s.l) and 'Taanayel' (Central Bekaa at 800 m.a.s.l) and their interactions with weather conditions from 2006 till 2018. Evaluation of climate records denoted interannual variability in weather conditions occurring in 2015 in Kanafar and in 2008 in Taanayel. Average yield peaked in 2009 in Kanafar (19,187.0 kg ha-1) and in 2011 in Taanayel (14,279.0 kg ha-1), both years marked a turning point after which values of average yield shifted downwards (by 31-67% in Kanafar, and 14-82% in Taanayel). At Kanafar, after 2015, averages of yield, weight of 200 berries (W200B), potential alcohol (PA), and total polyphenolic richness (TPR) decreased by 35%, 1.5%, 36.2 g, and 50%, respectively. In Taanayel, only TPR content in berries was significantly affected by varying weather conditions (decrease by 20%). Also, TPR values followed a progressive decreasing pattern starting from 2006 at both vineyards with minor exceptions. Multiple regression analysis assessed the relationship between various indicators and weather variables at each vineyard. It showed that the decrease in yield at Kanafar correlated with higher temperature during the growing season (by 0.6 °C), higher solar radiation from early-spring to early-summer (by 13.9-27.1 W m-2), and lower values of maximum wind speed during mid to late summer (by 0.4 m s-1), occurring during 2016, 2017, and 2018 at Kanafar. The model explained 60% of yield variations at this vineyard. Further, weather variables accounted for 61% (R2 = 0.61) of changes in PA and for 58% (R2 = 0.58) of TPR of berries at Kanafar. Conclusively, interannual variability in weather conditions had more serious negative influence on Cabernet Sauvignon production at Kanafar than at Taanayel, but had a similar negative influence on polyphenols accumulation in berries, and thus on potential wine quality produced at both vineyards.
Collapse
Affiliation(s)
- G Ghantous
- Department of Agronomy, Faculty of Agronomy, University of Forestry, Sofia, Bulgaria
- Department of Plant Production, Faculty of Agronomy, Lebanese University, Beirut, Lebanon
| | - K Popov
- Department of Agronomy, Faculty of Agronomy, University of Forestry, Sofia, Bulgaria
| | - Z El Sebaaly
- Department of Plant Production, Faculty of Agronomy, Lebanese University, Beirut, Lebanon.
| | - Y N Sassine
- Department of Plant Production, Faculty of Agronomy, Lebanese University, Beirut, Lebanon
| |
Collapse
|
4
|
Li H, Gao X, Wang Y, Lu H, Tian M, Duan C, Wang J. Artificial shading of teinturier grape Kolor clusters reveals light-responsive biomarkers: focus on flavonoid profiles and metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1356799. [PMID: 38533403 PMCID: PMC10963508 DOI: 10.3389/fpls.2024.1356799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024]
Abstract
Kolor is a teinturier grape cultivar, that accumulates flavonoids in the skin and pulp. However, the concentrations and proportions of flavonoids in Kolor skin and pulp differ, suggesting tissue specificity in teinturier grapes. Light conditions significantly influence the evolution of flavonoids. Moreover, studies on the mechanisms governing flavonoid accumulation in light response sensitivity of teinturier grapes are limited. In the three consecutive years of study, the exposure of Kolor clusters was altered by bagging from pre-veraison to harvest. QqQ/MS and RT‒qPCR wereused to determine the individual anthocyanin contents and the relative gene expression. There was a significant decrease in the total anthocyanins and flavonols in the Kolor berries, with flavonols showing greater sensitivity to bagging. Bagging did not exert a consistent impact on the flavan-3-ols in Kolor berries. The sensitivities of anthocyanins in Kolor skin and pulp differed under light exclusion conditions. The concentration of trihydroxy-substituted anthocyanins in the skin decreased, while the proportion of dihydroxy-substituted anthocyanins in the pulp significantly increased, but the anthocyanin concentration in the pulp did not change significantly after bagging. The contents of malvidins and quercetins in the skin, and myricetins and quercetins in the pulp, were significantly reduced after bagging. The expression of flavonoid synthesis genes in Kolor skin and pulp was tissue-specific. After bagging, UFGT expression increased in the pulp and decreased in the skin. In addition, LDOX, FLS-1, CHI-1, CHI-2, F3H-1, F3H-2, and MYB4a exhibited sensitive light responses in both the skin and pulp. This study offers new insights into the regulation of flavonoids in Kolor grapes under light exclusion conditions.
Collapse
Affiliation(s)
- Huiqing Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaotong Gao
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yu Wang
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Haocheng Lu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Mengbo Tian
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
5
|
Xu C, Xue X, Li Z, Chen M, Yang Y, Wang S, Shang M, Qiu L, Zhao X, Hu W. The PpMYB75-PpDFR module reveals the difference between 'SR' and its bud variant 'RMHC' in peach red flesh. JOURNAL OF PLANT RESEARCH 2024; 137:241-254. [PMID: 38194204 DOI: 10.1007/s10265-023-01512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024]
Abstract
'Red Meat Honey Crisp (RMHC)' has been widely cultivated by growers in recent years due to its early maturity, and red meat type characteristics. As a bud variant of 'Super Red (SR)' peach, red flesh is the most distinctive characteristic of 'Red Meat Honey Crisp (RMHC)'. However, the mechanism of red flesh formation in 'RMHC' remains unclear. In this study, 79 differentially produced metabolites were identified by metabolomics analysis. The anthocyanin content in 'RMHC' was significantly higher than that in 'SR' during the same period, such as cyanidin O-syringic acid and cyanidin 3-O-glucoside. Other flavonoids also increased during the formation of red flesh, including flavonols (6-hydroxykaempferol-7-O-glucoside, hyperin), flavanols (protocatechuic acid, (+)-gallocatechin), and flavonoids (chrysoeriol 5-O-hexoside, tricetin). In addition, transcriptomic analysis and RT-qPCR showed that the expression levels of the flavonoid synthesis pathway transcription factor MYB75 and some structural genes, such as PpDFR, PpCHS, PpC4H, and PpLDOX increased significantly in 'RMHC'. Subcellular localization analysis revealed that MYB75 was localized to the nucleus. Yeast single hybridization assays showed that MYB75 bound to the cis-acting element CCGTTG of the PpDFR promoter region. The MYB75-PpDFR regulatory network was identified to be a key pathway in the reddening of 'RMHC' flesh. Moreover, this is the first study to describe the cause for red meat reddening in 'RMHC' compared to 'SR' peaches using transcriptomics, metabolomics and molecular methods. Our study identified a key transcription factor involved in the regulation of the flavonoid synthetic pathway and contributes to peach breeding-related efforts as well as the identification of genes involved in color formation in other species.
Collapse
Affiliation(s)
- Chao Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, Shandong, 250353, PR China
| | - Xiaomin Xue
- Pomology Institute of Shandong Province, Taian, Shandong, 271000, China
| | - Zhixing Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, Shandong, 250353, PR China
| | - Mingguang Chen
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, Shandong, 250353, PR China
| | - Yating Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, Shandong, 250353, PR China
| | - Siyu Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, Shandong, 250353, PR China
| | - Mingrui Shang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, Shandong, 250353, PR China
| | - Lei Qiu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, Shandong, 250353, PR China
| | - Xianyan Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, Shandong, 250353, PR China.
| | - Wenxiao Hu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, Shandong, 250353, PR China.
| |
Collapse
|
6
|
Yu M, Xiong J, Dong K, Quan X, Guo H, Huo J, Qin D, Wang Y, Lu X, Zhu C. AcMYB10 Involved in Anthocyanin Regulation of 'Hongyang' Kiwifruit Induced via Fruit Bagging and High-Postharvest-Temperature Treatments. Genes (Basel) 2024; 15:97. [PMID: 38254986 PMCID: PMC10815172 DOI: 10.3390/genes15010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Light and temperature are key factors influencing the accumulation of anthocyanin in fruit crops. To assess the effects of fruit bagging during development and high post-ripening temperature on 'Hongyang' kiwifruit, we compared the pigmentation phenotypes and expression levels of anthocyanin-related genes between bagged and unbagged treatments, and between 25 °C and 37 °C postharvest storage temperatures. Both the bagging and 25 °C treatments showed better pigmentation phenotypes with higher anthocyanin concentrations. The results of the qRT-PCR analysis revealed that the gene expression levels of LDOX (leucoanthocyanidin dioxygenase), F3GT (UDP-flavonoid 3-O-glycosyltransferase ), AcMYB10, and AcbHLH42 were strongly correlated and upregulated by both the bagging treatment and 25 °C storage. The results of bimolecular fluorescence complementation and luciferase complementation imaging assays indicated an interaction between AcMYB10 and AcbHLH42 in plant cells, whereas the results of a yeast one-hybrid assay further demonstrated that AcMYB10 activated the promoters of AcLODX and AcF3GT. These results strongly suggest that enhanced anthocyanin synthesis is caused by the promoted expression of AcLODX and AcF3GT, regulated by the complex formed by AcMYB10-AcbHLH42.
Collapse
Affiliation(s)
- Min Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinyu Xiong
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Kun Dong
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Xin Quan
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Hao Guo
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Huo
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Dong Qin
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Yanchang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xuemei Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chenqiao Zhu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
7
|
Chen C, Zhang Y, Chen Y, Chen H, Gong R. Sweet cherry TCP gene family analysis reveals potential functions of PavTCP1, PavTCP2 and PavTCP3 in fruit light responses. BMC Genomics 2024; 25:3. [PMID: 38166656 PMCID: PMC10759647 DOI: 10.1186/s12864-023-09923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND TCP proteins are plant specific transcription factors that play important roles in plant growth and development. Despite the known significance of these transcription factors in general plant development, their specific role in fruit growth remains largely uncharted. Therefore, this study explores the potential role of TCP transcription factors in the growth and development of sweet cherry fruits. RESULTS Thirteen members of the PavTCP family were identified within the sweet cherry plant, with two, PavTCP1 and PavTCP4, found to contain potential target sites for Pav-miR159, Pav-miR139a, and Pav-miR139b-3p. Analyses of cis-acting elements and Arabidopsis homology prediction analyses that the PavTCP family comprises many light-responsive elements. Homologs of PavTCP1 and PavTCP3 in Arabidopsis TCP proteins were found to be crucial to light responses. Shading experiments showed distinct correlation patterns between PavTCP1, 2, and 3 and total anthocyanins, soluble sugars, and soluble solids in sweet cherry fruits. These observations suggest that these genes may contribute significantly to sweet cherry light responses. In particular, PavTCP1 could play a key role, potentially mediated through Pav-miR159, Pav-miR139a, and Pav-miR139b-3p. CONCLUSION This study is the first to unveil the potential function of TCP transcription factors in the light responses of sweet cherry fruits, paving the way for future investigations into the role of this transcription factor family in plant fruit development.
Collapse
Affiliation(s)
- Chaoqun Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Yao Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Yuanfei Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Hongxu Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, 6111130, China
| | - Ronggao Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu, 6111130, China.
| |
Collapse
|
8
|
Jue DW, Sang XL, Li ZX, Zhang WL, Liao QH, Tang J. Determination of the effects of pre-harvest bagging treatment on kiwifruit appearance and quality via transcriptome and metabolome analyses. Food Res Int 2023; 173:113276. [PMID: 37803588 DOI: 10.1016/j.foodres.2023.113276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
Bagging is an effective cultivation strategy to produce attractive and pollution-free kiwifruit. However, the effect and metabolic regulatory mechanism of bagging treatment on kiwifruit quality remain unclear. In this study, transcriptome and metabolome analyses were conducted to determine the regulatory network of the differential metabolites and genes after bagging. Using outer and inner yellow single-layer fruit bags, we found that bagging treatment improved the appearance of kiwifruit, increased the soluble solid content (SSC) and carotenoid and anthocyanin levels, and decreased the chlorophyll levels. We also identified 41 differentially expressed metabolites and 897 differentially expressed genes (DEGs) between the bagged and control 'Hongyang' fruit. Transcriptome and metabolome analyses revealed that the increase in SSC after bagging treatment was mainly due to the increase in D-glucosamine metabolite levels and eight DEGs involved in amino sugar and nucleotide sugar metabolic pathways. A decrease in glutamyl-tRNA reductase may be the main reason for the decrease in chlorophyll. Downregulation of lycopene epsilon cyclase and 9-cis-epoxycarotenoid dioxygenase increased carotenoid levels. Additionally, an increase in the levels of the taxifolin-3'-O-glucoside metabolite, flavonoid 3'-monooxygenase, and some transcription factors led to the increase in anthocyanin levels. This study provides novel insights into the effects of bagging on the appearance and internal quality of kiwifruit and enriches our theoretical knowledge on the regulation of color pigment synthesis in kiwifruit.
Collapse
Affiliation(s)
- Deng-Wei Jue
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China; Southwest University, College of Horticulture and Landscape, Chongqing 400715, China
| | - Xue-Lian Sang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Zhe-Xin Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Wen-Lin Zhang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Qin-Hong Liao
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Jianmin Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| |
Collapse
|
9
|
Cheng G, Wu D, Guo R, Li H, Wei R, Zhang J, Wei Z, Meng X, Yu H, Xie L, Lin L, Yao N, Zhou S. Chromosome-scale genomics, metabolomics, and transcriptomics provide insight into the synthesis and regulation of phenols in Vitis adenoclada grapes. FRONTIERS IN PLANT SCIENCE 2023; 14:1124046. [PMID: 36760645 PMCID: PMC9907855 DOI: 10.3389/fpls.2023.1124046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Vitis adenoclada is a wild grape unique to China. It exhibits well resistance to heat, humidity, fungal disease, drought, and soil infertility. Here, we report the high-quality, chromosome-level genome assembly of GH6 (V. adenoclada). The 498.27 Mb genome contained 221.78 Mb of transposable elements, 28,660 protein-coding genes, and 481.44 Mb of sequences associated with 19 chromosomes. GH6 shares a common ancestor with PN40024 (Vitis vinifera) from approximately 4.26-9.01 million years ago, whose divergence occurred later than Vitis rotundifolia and Vitis riparia. Widely-targeted metabolome and transcriptome analysis revealed that the profiles and metabolism of phenolic compounds in V. adenoclada varieties significantly were differed from other grape varieties. Specifically, V. adenoclada varieties were rich in phenolic acids and flavonols, whereas the flavan-3-ol and anthocyanin content was lower compared with other varieties that have V. vinifera consanguinity in this study. In addition, ferulic acid and stilbenes content were associated with higher expressions of COMT and STSs in V. adenoclada varieties. Furthermore, MYB2, MYB73-1, and MYB73-2 were presumably responsible for the high expression level of COMT in V. adenoclada berries. MYB12 (MYBF1) was positively correlated with PAL, CHS, FLS and UFGT.Meanwhile, MYB4 and MYBC2-L1 may inhibit the synthesis of flavan-3-ols and anthocyanins in two V. adenoclada varieties (YN2 and GH6). The publication of the V. adenoclada grape genome provides a molecular foundation for further revealing its flavor and quality characteristics, is also important for identifying favorable genes of the East Asian species for future breeding.
Collapse
Affiliation(s)
- Guo Cheng
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Daidong Wu
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Rongrong Guo
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hongyan Li
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Rongfu Wei
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jin Zhang
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhiyong Wei
- Bureau of Agriculture and Rural Affairs of Luocheng Mulao Autonomous County, Hechi, China
| | - Xian Meng
- Bureau of Agriculture and Rural Affairs of Luocheng Mulao Autonomous County, Hechi, China
| | - Huan Yu
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Linjun Xie
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ling Lin
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ning Yao
- Guangxi Luocheng Maoputao Experimental Station, Hechi, China
| | - Sihong Zhou
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
10
|
Li J, Javed HU, Wu Z, Wang L, Han J, Zhang Y, Ma C, Jiu S, Zhang C, Wang S. Improving berry quality and antioxidant ability in 'Ruidu Hongyu' grapevine through preharvest exogenous 2,4-epibrassinolide, jasmonic acid and their signaling inhibitors by regulating endogenous phytohormones. FRONTIERS IN PLANT SCIENCE 2022; 13:1035022. [PMID: 36531411 PMCID: PMC9755660 DOI: 10.3389/fpls.2022.1035022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Grape berries contain a variety of metabolites, such as anthocyanins, sugars, fatty acids, and antioxidants. Endogenous phytohormones strongly influence these metabolites, which regulate berry quality improvement. In this study, we evaluated the effects of 2,4-epibrassinolide (EBR, brassinolide (BR)-like growth regulator), jasmonic acid (JA), and their signaling inhibitors brassinazole (Brz), and sodium diethyldithiocarbamate (DIECA) on berry quality and antioxidant ability. Overall, the pre-harvest application of 0.5 mg L-1 EBR and 100 μmol L-1 JA significantly influences the quality of the grape berry. Results showed that EBR was superior to other treatments at enhancing the content of different metabolites, including anthocyanins, fructose, glucose, and a variety of fatty acids, in grapes. EBR and JA also enhanced the synthesis of gibberellin3 (GA3), cytokinin (CTK), salicylic acid (SA), JA, methyl jasmonate (MeJA), BR, and abscisic acid (ABA), while inhibiting the synthesis of auxin (IAA). Most genes related to BR/JA and anthocyanins/sugars/fatty acids biosynthesis were up-regulated. The effects of Brz and DIECA on the grape berry quality were totally reversed throughout the study, as shown by EBR and JA. According to correlation analysis, EBR and JA have a beneficial positive interaction that promotes the formation of strong coherences in grape berries between ABA/IAA/ZT-fruit expansion, BR/JA/MeJA/GA3/ZR-biochemical characteristics development, JA/MeJA/ABA/GA3/SA/ZR-antioxidant capacity enhancement, and JA/MeJA/IAA/GA3/ZT/ZR-fatty acids accumulation. In this regard, we concluded that preharvest exogenous 0.5 mg L-1 EBR and 100 μmol L-1 JA is a successful way to improve grape berry quality.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hafiz Umer Javed
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China
| | - Zishu Wu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayu Han
- Grape and Wine Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Ying Zhang
- Grape and Wine Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Effect of light-selective sunshade net on the quality and aromatic characteristics of Cabernet Sauvignon grapes and wine: Exploratory experiment on strong solar irradiance in northwestern China. Food Chem X 2022; 17:100510. [PMID: 36845475 PMCID: PMC9943764 DOI: 10.1016/j.fochx.2022.100510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The greenhouse effect is a global problem. In view of the intense sunlight radiation in Ningxia (an ideal wine-producing region in northwestern China), the effect of light-selective sunshade nets of different colors (black, red and white) on the quality and aromatic characteristics of grapes and wine was studied. With the treatments of different nets, the solar radiation intensity was significantly decreased. The sugar contents in both grapes and wines decreased, while the acid contents increased. The contents of total phenols, tannins and flavanols in grapes were increased, while the total flavonoids and anthocyanins were decreased. The contents of most phenolics in wine were increased. The contents of most aromas in grapes and wines under nets were higher than those in the control group. The black group usually possessed the highest variety and content. Red and black nets improved the fruity, floral and sweet aromas of grapes. The white net decreased the green and citrusy aromas.
Collapse
|
12
|
Savoi S, Santiago A, Orduña L, Matus JT. Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. FRONTIERS IN PLANT SCIENCE 2022; 13:937927. [PMID: 36340350 PMCID: PMC9630917 DOI: 10.3389/fpls.2022.937927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Transcriptomics and metabolomics are methodologies being increasingly chosen to perform molecular studies in grapevine (Vitis vinifera L.), focusing either on plant and fruit development or on interaction with abiotic or biotic factors. Currently, the integration of these approaches has become of utmost relevance when studying key plant physiological and metabolic processes. The results from these analyses can undoubtedly be incorporated in breeding programs whereby genes associated with better fruit quality (e.g., those enhancing the accumulation of health-promoting compounds) or with stress resistance (e.g., those regulating beneficial responses to environmental transition) can be used as selection markers in crop improvement programs. Despite the vast amount of data being generated, integrative transcriptome/metabolome meta-analyses (i.e., the joint analysis of several studies) have not yet been fully accomplished in this species, mainly due to particular specificities of metabolomic studies, such as differences in data acquisition (i.e., different compounds being investigated), unappropriated and unstandardized metadata, or simply no deposition of data in public repositories. These meta-analyses require a high computational capacity for data mining a priori, but they also need appropriate tools to explore and visualize the integrated results. This perspective article explores the universe of omics studies conducted in V. vinifera, focusing on fruit-transcriptome and metabolome analyses as leading approaches to understand berry physiology, secondary metabolism, and quality. Moreover, we show how omics data can be integrated in a simple format and offered to the research community as a web resource, giving the chance to inspect potential gene-to-gene and gene-to-metabolite relationships that can later be tested in hypothesis-driven research. In the frame of the activities promoted by the COST Action CA17111 INTEGRAPE, we present the first grapevine transcriptomic and metabolomic integrated database (TransMetaDb) developed within the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz). This tool also enables the user to conduct and explore meta-analyses utilizing different experiments, therefore hopefully motivating the community to generate Findable, Accessible, Interoperable and Reusable (F.A.I.R.) data to be included in the future.
Collapse
Affiliation(s)
- Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
13
|
Cheng Y, Xiang N, Cheng X, Chen H, Guo X. Effect of photoperiod on polyphenol biosynthesis and cellular antioxidant capacity in mung bean (Vigna radiata) sprouts. Food Res Int 2022; 159:111626. [DOI: 10.1016/j.foodres.2022.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
|
14
|
Cheng J, Shi Y, Wang J, Duan C, Yu K. Transcription factor VvibHLH93 negatively regulates proanthocyanidin biosynthesis in grapevine. FRONTIERS IN PLANT SCIENCE 2022; 13:1007895. [PMID: 36092430 PMCID: PMC9449495 DOI: 10.3389/fpls.2022.1007895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Proanthocyanidins (PAs) derived from grape berries determine the astringency and bitterness of red wines. The two leucoanthocyanidin reductases (VviLAR1 and VviLAR2) are crucial for PA accumulation in grapevine. Our previous studies show that the promoter of VviLAR1 contains multiple proposed bHLH transcription factor binding sites, but the corresponding bHLH family regulators remain unknown. Here we identified and functionally characterized VvibHLH93 as a new bHLH transcription factor in PA pathway. Yeast one-hybrid and electrophoretic mobility shift assays showed that VvibHLH93 bound the E/G-box in VviLAR1 promoter. And VvibHLH93 gene was mainly expressed in grape flowers, tendrils, stems and berries at PA active stages. Overexpression of VvibHLH93 suppressed PA accumulation in grape callus, which was linked to the repression of the transcript levels of two VviLARs. The gene expression analysis in transgenic grape callus and the dual-luciferase assay in tobacco leaves together revealed that VvibHLH93 targeted a broad set of structural genes and transcription factors in flavonoid pathway. This research enriches the regulatory mechanism of the two VviLAR genes, and provides new insights into regulating PA content in grape berries.
Collapse
Affiliation(s)
- Jing Cheng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
15
|
Han X, Wang Y, Lu HC, Yang HY, Li HQ, Gao XT, Pei XX, He F, Duan CQ, Wang J. The combined influence of rootstock and vintage climate on the grape and wine flavonoids of Vitis vinifera L. cv. Cabernet Sauvignon in eastern China. FRONTIERS IN PLANT SCIENCE 2022; 13:978497. [PMID: 36051296 PMCID: PMC9424884 DOI: 10.3389/fpls.2022.978497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Rootstocks are commonly utilized owing to their resistance to abiotic and biotic stress in viticulture. This study evaluated the effects of three rootstocks (1103P, SO4, and 5A) on the Cabernet Sauvignon (CS) vine growth, and their berries and wines flavonoids profiles in four consecutive vintages. The results showed that 1103P increased the pruning weight of CS and decreased the anthocyanin concentration in berries and wines, especially in the vintages with more rainy and cloudy days. 5A tended to decrease the pruning weight of CS and increase the anthocyanin concentration in berries and wines. Orthogonal partial least squares discriminant analysis (OPLS-DA) showed that the concentrations of total anthocyanins, F3'H-anthocyanins, malvidin-3-O-glucoside (Mv-glu), and malvidin-3-O-acetylglucoside (Mv-acglu) were the key substances affected by the rootstocks in CS berries and were significantly decreased by 1103P. Total anthocyanins, pinotins, Mv-glu, epicatechin, and vitisins were the rootstock-sensitive compounds that commonly differed in wines among the three comparison groups in the two vintages. Furthermore, 1103P brought more brightness to the wine and 5A gave the wine more red tones. In conclusion, rootstock 5A was recommended in the rainy and cloudy climate regions with regard to the berry flavonoids accumulation and the wine color.
Collapse
Affiliation(s)
- Xiao Han
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yu Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hao-Cheng Lu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hang-Yu Yang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hui-Qing Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiao-Tong Gao
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xuan-Xuan Pei
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Fei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
16
|
Effects of Fruit Bagging Treatment with Different Types of Bags on the Contents of Phenolics and Monoterpenes in Muscat-Flavored Table Grapes. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of fruit bagging treatments with seven different types of bags on the physicochemical characteristics of three table grape cultivars: RuiduZaohong (RDZH), RuiduHongyu (RDHY), and RuiduHongmei (RDHM) were investigated. Headspace-solid-phase micro-extraction combined with gas chromatography mass spectrometry (HS-SPME-GC-MS) was used to determine the compositions of monoterpenes in the fruit. The results showed that the total soluble solids in RDZH and RDHY fruits treated with the transparent, mesh, yellow, white, and blue bags were significantly higher than the control. The sugar–acid ratio of RDZH was optimized under the transparent bag and yellow bag treatments, and both significantly increased the sugar-acid ratio of RDHY and RDHM. Additionally, mesh bag, transparent bag, and white bag improved the contents of phenolics to a certain extent. The most abundant volatiles were linalool, geraniol, β-myrcene, β-cis-ocimene, and β-trans-ocimene, of which linalool was the main aroma component. The least squares discriminant analysis results showed that linalool, 4-terpineol, and terpinolen could be used to distinguish the main contribution of different bagging treatments for RDZH. Trans-isogeraniol, α-terpineol, and terpinolen could be used for RDHY. Trans-isogeraniol, β-myrcene, and terpinolen could be used for RDHM. In conclusion, transparent and white bags promoted the accumulation of phenolics and monoterpenes while pink and blue bags showed inhibitory effects.
Collapse
|
17
|
Application of metabolomics to decipher the role of bioactive compounds in plant and animal foods. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Zhang F, Zhong H, Zhou X, Pan M, Xu J, Liu M, Wang M, Liu G, Xu T, Wang Y, Wu X, Xu Y. Grafting with rootstocks promotes phenolic compound accumulation in grape berry skin during development based on integrative multi-omics analysis. HORTICULTURE RESEARCH 2022; 9:uhac055. [PMID: 35664240 PMCID: PMC9154076 DOI: 10.1093/hr/uhac055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/21/2022] [Indexed: 06/01/2023]
Abstract
In viticulture, grafting has been practiced widely and influences grape development as well as berry and wine quality. However, there is limited understanding of the effects of rootstocks on grape phenolic compounds, which are located primarily in the berry skin and contribute to certain sensory attributes of wine. In this study, scion-rootstock interactions were investigated at the green-berry stage and the veraison stage when grapevines were hetero-grafted with three commonly used rootstock genotypes (5BB, 101-14MG, and SO4). Physiological investigations showed that hetero-grafts, especially CS/5BB, contained higher concentrations of total proanthocyanidins (PAs) and various PA components in berry skins compared with the auto-grafted grapevines. Further metabolomics analysis identified 105 differentially accumulated flavonoid compounds, the majority of which, including anthocyanins, PAs, and flavonols, were significantly increased in the berry skins of hetero-grafted grapevines compared with auto-grafted controls. In addition, transcriptomic analysis of the same samples identified several thousand differentially expressed genes between hetero-grafted and auto-grafted vines. The three rootstocks not only increased the transcript levels of stilbene, anthocyanin, PA, and flavonol synthesis genes but also affected the expression of numerous transcription factor genes. Taken together, our results suggest that hetero-grafting can promote phenolic compound accumulation in grape berry skin during development. These findings provide new insights for improving the application value of grafting by enhancing the accumulation of nutritious phenolic components in grape.
Collapse
Affiliation(s)
- Fuchun Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Haixia Zhong
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Xiaoming Zhou
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Mingqi Pan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Juan Xu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Mingbo Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Min Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), 830091, Urumqi, Xinjiang, China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Tengfei Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | | | - Yan Xu
- Corresponding author: E-mail: ;
| |
Collapse
|
19
|
Yang N, Zhou Y, Wang Z, Zhang Z, Xi Z, Wang X. Emerging roles of brassinosteroids and light in anthocyanin biosynthesis and ripeness of climacteric and non-climacteric fruits. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34793267 DOI: 10.1080/10408398.2021.2004579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Anthocyanins are important pigments that contribute to fruit quality. The regulation of anthocyanin biosynthesis by several transcription factors via sophisticated regulatory networks has been studied in various plants. Brassinosteroids (BRs), a new class of plant hormone, are involved in regulating anthocyanin biosynthesis in fruits. Furthermore, light directly affects the synthesis and distribution of anthocyanins. Here, we summarize the recent progress toward understanding the impact of BR and light on anthocyanin biosynthesis in climacteric and non-climacteric fruits. We review the BR and light signaling pathways and highlight the important transcription factors that are associated with the synthesis of anthocyanins, such as BZR1 (brassinazole-resistant 1, BR signaling pathway), HY5 (elongated hypocotyl 5) and COP1 (constitutively photomorphogenic 1, light signal transduction pathway), which bind with the target genes involved in anthocyanin synthesis. In addition, we review the mechanism by which light signals interact with hormonal signals to regulate anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Ni Yang
- College of Enology, Northwest A&F University, Yangling, China
| | - Yali Zhou
- College of Enology, Northwest A&F University, Yangling, China.,College of Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Zhaoxiang Wang
- College of Enology, Northwest A&F University, Yangling, China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Zhumei Xi
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Xuefei Wang
- College of Enology, Northwest A&F University, Yangling, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|
20
|
Yue X, Zhao Y, Ma X, Jiao X, Fang Y, Zhang Z, Ju Y. Effects of leaf removal on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in Cabernet Sauvignon (Vitis vinifera L.) grapes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3214-3224. [PMID: 33211320 DOI: 10.1002/jsfa.10951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/11/2020] [Accepted: 11/19/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Anthocyanins, a major flavonoid class, determine the color and quality of wine. Recent research revealed that basal leaf removal can increase the content of these compounds. This study determined the effects of basal leaf removal on the anthocyanin profiles of Cabernet Sauvignon grapes. RESULTS The effects of basal leaf removal on anthocyanin composition in Cabernet Sauvignon grapes were investigated over two growing seasons. Leaf removal at 5% veraison (VB6) and at 100% veraison (VC6) was compared with a control. Reducing sugar and total anthocyanin contents in the leaf removal group were significantly higher than in the control group at harvest for both vintages. Leaf removal increased the content of individual anthocyanins and significantly improved the malvidin-3-O-glucoside (Mv-3-glc), peonidin-3-O-glucoside (Pn-3-glc), and malvidin-3-O-(6-acetyl)-glucoside (Mv-3-acglc) content of the VB6 group. At harvest, VB6 treatment increased the transcript abundance of structural and regulator genes in the anthocyanin pathway, especially VvF3'5'H, VvLDOX, and VvDFR. CONCLUSIONS Our results suggest that leaf removal at 5% veraison may be useful for improving the anthocyanin content in grapes. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaofeng Yue
- College of Enology, Northwest A&F University, Yangling, P.R. China
| | - Yameng Zhao
- College of Enology, Northwest A&F University, Yangling, P.R. China
| | - Xin Ma
- College of Enology, Northwest A&F University, Yangling, P.R. China
| | - Xuliang Jiao
- Sino-French Joint Venture Dynasty Winery LTD, Tianjin, P.R. China
| | - Yulin Fang
- College of Enology, Northwest A&F University, Yangling, P.R. China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, P.R. China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling, P.R. China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, P.R. China
| | - Yanlun Ju
- College of Enology, Northwest A&F University, Yangling, P.R. China
| |
Collapse
|
21
|
Gao XT, Sun D, Wu MH, Li HQ, Liu FQ, He F, Pan QH, Wang J. Influence of cluster positions in the canopy and row orientation on the flavonoid and volatile compound profiles in Vitis vinifera L. Cabernet franc and Chardonnay berries. Food Res Int 2021; 143:110306. [PMID: 33992326 DOI: 10.1016/j.foodres.2021.110306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 01/23/2023]
Abstract
Sunlight conditions around grape clusters vary with their positions, and can have a significant effect on grape berry compounds. This study investigated the influence of cluster positions in the canopy (interior and two exterior canopy sides) and vineyard row orientation (north-south and east-west) on flavonoid and volatile compound profiles of Vitis vinifera L. cvs 'Cabernet franc' (CF) and 'Chardonnay' (CH) berries in two consecutive years. The experimental vineyard was located in Jiaodong Peninsula of China, which is characterized by a temperate monsoon-type climate and relatively short sunlight duration. Clusters located in the interior of the canopy received less sunlight irradiation than the exterior positions, and the average temperature around clusters located in different positions differed slightly. The results showed that over two years, the positions of clusters in the canopy had no consistent impact on cluster weight, berry weight, juice total soluble solids or titratable acidity for either cultivar. For both cultivars, the interior clusters had lower total flavonol concentrations than the exterior clusters, while the position of clusters in the canopy had no major impacts on the composition of anthocyanins and flavan-3-ols. The volatile compounds were somewhat influenced by the positions of clusters in the canopy, while some bound norisoprenoids and terpenoids had lower levels in interior clusters than in exterior clusters. These results will help winegrowers make decisions regarding harvest strategies.
Collapse
Affiliation(s)
- Xiao-Tong Gao
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Dan Sun
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ming-Hui Wu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hui-Qing Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Fan-Qi Liu
- Shandong Taila Winery, Shandong 264500, China
| | - Fei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
22
|
Mucalo A, Budić-Leto I, Lukšić K, Maletić E, Zdunić G. Early Defoliation Techniques Enhance Yield Components, Grape and Wine Composition of cv. Trnjak ( Vitis vinifera L.) in Dalmatian Hinterland Wine Region. PLANTS 2021; 10:plants10030551. [PMID: 33804094 PMCID: PMC8000892 DOI: 10.3390/plants10030551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/26/2023]
Abstract
Defoliation and cluster thinning are of practical importance in a control of the grapevine source-sink balance, cluster architecture, microclimate and berry composition. Nevertheless, their effectiveness on wine composition is unexplored. In this work, the impacts of preflowering (T1), after berry set (T2), and veraison defoliation (T3) and cluster thinning (T4), on yield components, grape and wine composition of cv. Trnjak are given. Implemented techniques significantly reduced yield and affected grape and wine components in comparison to untreated control (C). Despite lowest number of clusters ensured by cluster thinning, defoliation at veraison had lowest yield. Defoliations improved cluster architecture parameters. Highest berry per se was in preflowering T1 and lowest at veraison T3 defoliation. Berries of T1 had lowest sugar content (19.47 °Brix) while T3 had highest (22.3 °Brix), and the reverse is seen in total acidity highest in T1 (6.12 g/L) and lowest in T3 (5.01 g/L). Wines of early defoliations (T1 and T2) had lowest alcohol and highest anthocyanin concentration. Both techniques applied at veraison produced wines with lower anthocyanins and flavonols than those obtained without any intervention (C). In conclusion, the early defoliations (T1 and T2) improve yield and wine composition of cv. Trnjak in the Mediterranean region of Croatia.
Collapse
Affiliation(s)
- Ana Mucalo
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia; (I.B.-L.); (K.L.); (G.Z.)
- Correspondence: ; Tel.: +38-521-434-496
| | - Irena Budić-Leto
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia; (I.B.-L.); (K.L.); (G.Z.)
| | - Katarina Lukšić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia; (I.B.-L.); (K.L.); (G.Z.)
| | - Edi Maletić
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Goran Zdunić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia; (I.B.-L.); (K.L.); (G.Z.)
| |
Collapse
|
23
|
Wang Z, Luo Z, Liu Y, Li Z, Liu P, Bai G, Zhou Z, Xie H, Yang J. Molecular cloning and functional characterization of NtWRKY11b in promoting the biosynthesis of flavonols in Nicotiana tabacum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110799. [PMID: 33568298 DOI: 10.1016/j.plantsci.2020.110799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The biosynthesis of flavonols and anthocyanins is precisely regulated by different transcription factors in plants. WRKY11 promotes the biosynthesis of flavonoids in apple, but the molecular mechanism of WRKY11 regulating flavonols biosynthesis, and whether WRKY11 plays the same roles in other plants species remains to be further studied. Here, we cloned four NtWRKY11 genes from tobacco, which all contained the conserved WRKYGQK heptapeptide and a zinc-finger motif. The NtWRKY11b showed higher expression levels than the other NtWRKY11 genes in all the tobacco tissues examined, especially in tobacco leaves. Silencing of NtWRKY11b in tobacco leaves reduced the content of flavonols to 45.2 %-69.8 % of that in the WT plants, but overexpression of NtWRKY11b increased the flavonols content by 37.8 %-80.7 %. Transcriptome analysis revealed 8 flavonoids related differentially expressed genes (DEGs) between NtWRKY11b-OE and WT plants, among which the transcription of NtMYB12, NtFLS, NtGT5, and NtUFGT was significantly induced by posttranslational activation of NtWRKY11b with the presence of protein synthesis inhibitor, indicating a putative direct promotion of NtWRKY11b on the transcription of these flavonoids related genes. Chromatin immunoprecipitation assays further demonstrated that NtWRKY11b could bind to the promoter regions of NtMYB12, NtFLS, NtGT5, and NtUFGT to activate the transcription of these genes. Moreover, ectopic expression of NtWRKY11b also promoted the expression levels of NtCML38, NtCTL1, NtWRKY44, and NtCML37 genes, which have been shown to enhance plant resistance to various stresses. Our findings revealed the molecular mechanism of NtWRKY11b regulating flavonols biosynthesis, and provided a promising target for increasing flavonols content in tobacco.
Collapse
Affiliation(s)
- Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Yongjun Liu
- Hunan Tobacco Research Institute, Changsha, 410004, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Ge Bai
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Zhicheng Zhou
- Hunan Tobacco Research Institute, Changsha, 410004, China
| | - He Xie
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China.
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
24
|
Ali MM, Anwar R, Yousef AF, Li B, Luvisi A, De Bellis L, Aprile A, Chen F. Influence of Bagging on the Development and Quality of Fruits. PLANTS (BASEL, SWITZERLAND) 2021; 10:358. [PMID: 33668522 PMCID: PMC7918571 DOI: 10.3390/plants10020358] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
Fruit quality is certainly influenced by biotic and abiotic factors, and a main quality attribute is the external appearance of the fruit. Various possible agronomical approaches are able to regulate the fruit microenvironment and, consequently, improve fruit quality and market value. Among these, fruit bagging has recently become an integral part of fruits' domestic and export markets in countries such as Japan, China, Korea Australia and the USA because it is a safe and eco-friendly technique to protect fruits from multiple stresses, preserving or improving the overall quality. Despite increasing global importance, the development of suitable bagging materials and, above all, their use in the field is quite laborious, so that serious efforts are required to enhance and standardize bagging material according to the need of the crops/fruits. This review provides information about the effects of bagging technique on the fruit aspect and texture, which are the main determinants of consumer choice.
Collapse
Affiliation(s)
- Muhammad Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (A.F.Y.); (B.L.)
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Punjab 38040, Pakistan;
| | - Raheel Anwar
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Punjab 38040, Pakistan;
| | - Ahmed F. Yousef
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (A.F.Y.); (B.L.)
- Department of Horticulture, College of Agriculture, University of Al-Azhar (branch Assiut), Assiut 71524, Egypt
| | - Binqi Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (A.F.Y.); (B.L.)
| | - Andrea Luvisi
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy; (A.L.); (A.A.)
| | - Luigi De Bellis
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy; (A.L.); (A.A.)
| | - Alessio Aprile
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy; (A.L.); (A.A.)
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (A.F.Y.); (B.L.)
| |
Collapse
|
25
|
VanderWeide J, Tombesi S, Castellarin SD, Sabbatini P. Canopy architecture and fruit microclimate, not ripening-related phytohormones, control phenylpropanoid accumulation in response to early leaf removal in 'Merlot' (Vitis vinifera L.) grapevines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:291-302. [PMID: 33157421 DOI: 10.1016/j.plaphy.2020.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Early leaf removal (ELR) applied in the grapevine cluster zone at bloom or pre-bloom (PB) is a vineyard practice commonly utilized to reduce fruit disease and yield. In addition, the literature reports that ELR enhances fruit quality, however, little research has deciphered the potential factors regulating this response. In this work, the objective was to understand whether the increase in fruit quality in response to manual or mechanical leaf removal is due to changes in fruit-zone microclimate, vine physiology, or ripening/stress related hormone biosynthesis. In 'Merlot' (Vitis vinifera L.) vines, 60% of leaf area was removed from shoots in three ways: 1) manual removal of 5 leaves (PB-MA), 2) mechanical removal (PB-ME), and 3) simulated mechanical removal (PB-SIM), which was implemented by removing the distal portion of leaves on the first eight nodes to understand whether PB-ME improves fruit quality via enhanced microclimate conditions or plant stress. Yield was reduced in PB-ME and PB-SIM, while total soluble solids was not different at harvest; meaning that ELR decreased the partitioning of carbohydrates to fruit. Anthocyanins and flavonols were enhanced by PB-ME, however neither ABA nor ethylene were similarly altered. Instead, the leaf area at nodes above the fruit-zone was lower in PB-ME compared to non-defoliated ones, which increased post-veraison fruit temperature (+2.8 °C). These parameters correlated with anthocyanins at harvest. In conclusion, skin phenylpropanoid concentrations were influenced by canopy density above the fruit-zone. Additionally, ripening-related phytohormones were not involved in the response of phenylpropanoid biosynthesis in vine subjected to ELR.
Collapse
Affiliation(s)
- Joshua VanderWeide
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Sergio Tombesi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 20122, Piacenza, Italy
| | - Simone D Castellarin
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Paolo Sabbatini
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
26
|
Li C, Xin M, Li L, He X, Liu G, Li J, Sheng J, Sun J. Transcriptome profiling helps to elucidate the mechanisms of ripening and epidermal senescence in passion fruit (Passiflora edulia Sims). PLoS One 2020; 15:e0236535. [PMID: 32976483 PMCID: PMC7518611 DOI: 10.1371/journal.pone.0236535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/11/2020] [Indexed: 11/19/2022] Open
Abstract
Passion fruit (Passiflora edulia Sims), an important tropical and subtropical species, is classified as a respiration climacteric fruit, and its quality deteriorates rapidly after harvest. To elucidate the mechanisms involved in ripening and rapid fruit senescence, phytochemical characteristic analysis and RNA sequencing were performed in purple passion fruit with different treatments, that is, 1-methylcyclopropene (1-MCP) and preservative film (PF). Comprehensive functional annotation and KEGG enrichment analysis showed that starch and sucrose metabolism, plant hormone signal transduction, phenylpropanoid biosynthesis, flavonoid biosynthesis, and carotenoid biosynthesis were involved in fruit ripening. Treatment with PF and 1-MCP significantly affected the transcription levels of passion fruit during postharvest storage. A large number of differentially expressed unigenes (DEGs) were identified as significantly enriched in starch and sucrose metabolism, plant hormone signal transduction and phenylpropanoid biosynthesis at the postharvest stage. The PF and 1-MCP treatments increased superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) gene expression levels and enzyme activities, accelerated lignin accumulation, and decreased β-galactosidase (β-Gal), polygalacturonase (PG) and cellulose activities and gene expression levels to delay cell wall degradation during fruit senescence. The RNA sequencing data for cell wall metabolism and hormone signal transduction pathway-related unigenes were verified by RT-qPCR. The results of this study indicate that the cell wall metabolism and hormone signaling pathways are closely related to passion fruit ripening. PF and 1-MCP treatment might inhibit ethylene signaling and regulate cell wall metabolism pathways to inhibit cell wall degradation. Our results demonstrate the involvement of ripening- and senescence-related networks in passion fruit ripening and may establish a foundation for future research investigating the effects of PF and 1-MCP treatment on fruit ripening.
Collapse
Affiliation(s)
- Changbao Li
- Institute of Agricultural Products Processing, Guangxi Academy of Agricultural Sciences, Guangxi, Nangning, China
- Guangxi Key Laboratory of New Technologies for Storage and Processing of Fruits and Vegetables, Guangxi, Nanning, China
| | - Ming Xin
- Institute of Agricultural Products Processing, Guangxi Academy of Agricultural Sciences, Guangxi, Nangning, China
- Guangxi Key Laboratory of New Technologies for Storage and Processing of Fruits and Vegetables, Guangxi, Nanning, China
- * E-mail: (JS); (MX)
| | - Li Li
- Institute of Agricultural Products Processing, Guangxi Academy of Agricultural Sciences, Guangxi, Nangning, China
- Guangxi Key Laboratory of New Technologies for Storage and Processing of Fruits and Vegetables, Guangxi, Nanning, China
| | - Xuemei He
- Institute of Agricultural Products Processing, Guangxi Academy of Agricultural Sciences, Guangxi, Nangning, China
- Guangxi Key Laboratory of New Technologies for Storage and Processing of Fruits and Vegetables, Guangxi, Nanning, China
| | - Guoming Liu
- Institute of Agricultural Products Processing, Guangxi Academy of Agricultural Sciences, Guangxi, Nangning, China
- Guangxi Key Laboratory of New Technologies for Storage and Processing of Fruits and Vegetables, Guangxi, Nanning, China
| | - Jiemin Li
- Institute of Agricultural Products Processing, Guangxi Academy of Agricultural Sciences, Guangxi, Nangning, China
- Guangxi Key Laboratory of New Technologies for Storage and Processing of Fruits and Vegetables, Guangxi, Nanning, China
| | - Jinfeng Sheng
- Institute of Agricultural Products Processing, Guangxi Academy of Agricultural Sciences, Guangxi, Nangning, China
- Guangxi Key Laboratory of New Technologies for Storage and Processing of Fruits and Vegetables, Guangxi, Nanning, China
| | - Jian Sun
- Institute of Agricultural Products Processing, Guangxi Academy of Agricultural Sciences, Guangxi, Nangning, China
- Guangxi Key Laboratory of New Technologies for Storage and Processing of Fruits and Vegetables, Guangxi, Nanning, China
- * E-mail: (JS); (MX)
| |
Collapse
|
27
|
Meng N, Wei Y, Gao Y, Yu K, Cheng J, Li XY, Duan CQ, Pan QH. Characterization of Transcriptional Expression and Regulation of Carotenoid Cleavage Dioxygenase 4b in Grapes. FRONTIERS IN PLANT SCIENCE 2020; 11:483. [PMID: 32457771 PMCID: PMC7227400 DOI: 10.3389/fpls.2020.00483] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/31/2020] [Indexed: 05/23/2023]
Abstract
Norisoprenoids are important aromatic volatiles contributing to the pleasant floral/fruity odor in grapes and wine. They are produced from carotenoids through the cleavage of carotenoid cleavage dioxygenases (CCDs). However, the underlying mechanisms regulating VvCCD expression remain poorly understood. In this study, we showed that VvCCD4b expression was positively correlated with the accumulation of β-damascenone, β-ionone, 6-methyl-5-hepten-2-one, geranylacetone, dihydroedulan I, and total norisoprenoids in developing grapes in two vintages from two regions. VvCCD4b was found to be principally expressed in flowers, mature leaves, and berries. Abscisic acid strongly induced the expression of this gene. Additionally, the present study preliminarily indicated that the activity of the VvCCD4b promoter was dropped under 37°C treatment and also responded to the illumination change. VvCCD4b was expressed in parallel with VvMADS4 in developing grape berries. The latter is a MADS family transcription factor and nucleus-localized protein that was captured by yeast one-hybrid. A dual-luciferase reporter assay in tobacco leaves revealed that VvMADS4 downregulated the activity of the VvCCD4b promoter. VvMADS4 overexpression in grape calli and Vitis quinquangularis Rehd. leaves repressed the VvCCD4b expression. In summary, this work demonstrates that VvCCD4b expression is positively correlated with the accumulation of norisoprenoids, and VvMADS4 is a potential negative regulator of VvCCD4b. Our results provide a new perspective for understanding the regulation of VvCCD4b expression and norisoprenoid accumulation in grapes.
Collapse
Affiliation(s)
- Nan Meng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Yi Wei
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Yuan Gao
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Jing Cheng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Xiang-Yi Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing, China
| |
Collapse
|
28
|
Cheng J, Yu K, Shi Y, Wang J, Duan C. Transcription Factor VviMYB86 Oppositely Regulates Proanthocyanidin and Anthocyanin Biosynthesis in Grape Berries. FRONTIERS IN PLANT SCIENCE 2020; 11:613677. [PMID: 33519871 PMCID: PMC7838568 DOI: 10.3389/fpls.2020.613677] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/22/2020] [Indexed: 05/07/2023]
Abstract
Proanthocyanidins (PAs) and anthocyanins are two vital groups of flavonoid compounds for grape berries and red wines. Several transcription factors (TFs) have been identified to be involved in regulating PA and anthocyanin biosynthesis in grape berries. However, research on TFs with different regulatory mechanisms for these two biosynthesis branches in grapes remains limited. In this study, we identified an R2R3-MYB TF, VviMYB86, whose spatiotemporal gene expression pattern in grape berries coincided well with PA accumulation but contrasted with anthocyanin synthesis. Both in vivo and in vitro experiments verified that VviMYB86 positively regulated PA biosynthesis, primarily by upregulating the expression of the two leucoanthocyanidin reductase (LAR) genes in the Arabidopsis protoplast system, as well as in VviMYB86-overexpressing grape callus cultured under 24 h of darkness. Moreover, VviMYB86 was observed to repress the anthocyanin biosynthesis branch in grapes by downregulating the transcript levels of VviANS and VviUFGT. Overall, VviMYB86 is indicated to have a broad effect on flavonoid synthesis in grape berries. The results of this study will help elucidate the regulatory mechanism governing the expression of the two LAR genes in grape berries and provide new insights into the regulation of PA and anthocyanin biosynthesis in grape berries.
Collapse
Affiliation(s)
- Jing Cheng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Changqing Duan,
| |
Collapse
|