1
|
Zhang B, Wang D, Chen M, Yang J, Li J, Chen J, Yan F, Rao S. Transcriptome Analysis of Pepper Leaves in Response to Tomato Brown Rugose Fruit Virus Infection. PLANTS (BASEL, SWITZERLAND) 2025; 14:1280. [PMID: 40364309 PMCID: PMC12073185 DOI: 10.3390/plants14091280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/19/2025] [Accepted: 04/20/2025] [Indexed: 05/15/2025]
Abstract
Chili pepper (Capsicum annuum L.) is a very important vegetable crop, commonly used as a spice or seasoning in various dishes. With the growth of the global population, the demand for chili peppers has also increased exponentially. Tomato brown rugose fruit virus (ToBRFV) is an emerging tobamovirus that has spread to dozens of countries worldwide. Its infection in chili peppers can severely impact yield and quality, posing a significant threat to the chili pepper industry. However, the transcriptional response of chili peppers to ToBRFV infection has not been studied yet. This research utilized RNA-Seq technology to analyze the transcriptional profiles of chili pepper leaves ('Haonong 11') 13 days post-infection with ToBRFV or mock treatment, identifying a total of 1468 differentially expressed genes (DEGs), of which 1366 were upregulated and 102 were downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that the DEGs were involved in biological processes such as defense response, response to reactive oxygen species, protein folding, and plant-pathogen interaction. Twelve DEGs were validated by RT-qPCR, with their expression trends consistent with the transcriptome data, indicating the reliability of the high-throughput data. Our systematic analysis provides a molecular basis for the response of chili pepper leaves to ToBRFV infection at the transcriptomic level and offers potential candidate genes for further research into the interaction mechanisms between ToBRFV and plant hosts.
Collapse
Affiliation(s)
- Boshen Zhang
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Donghai Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Mangle Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jiali Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Junmin Li
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Fei Yan
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Shaofei Rao
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Shi F, Wang X, Wei M, Zhang X, Wang Z, Lu X, Zou C. Transcriptome analysis provides new insights into the resistance of pepper to Phytophthora capsici infection. BMC Genomics 2025; 26:311. [PMID: 40158192 PMCID: PMC11955139 DOI: 10.1186/s12864-025-11498-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Phytophthora blight is a highly destructive soil-borne disease caused by Phytophthora capsici Leonian, which threatens pepper production. The molecular mechanism of pepper resistance to phytophthora blight is unclear, and the excavation and functional analysis of resistant genes are the bases and prerequisites for phytophthora blight-resistant breeding. We aimed to analyze the expression patterns of key genes in the plant-pathogen interaction metabolic pathway and propose a working model of the pepper defense signal network against Phytophthora capsici infection. RESULTS The 'ZCM334' pepper material used in this study is a high-generation inbred line that is immune to Phytophthora capsici and shows no signs of infection after inoculation. Comparative transcriptome analysis of the roots of 'ZCM334' and the susceptible material 'Early Calwonder' revealed significant differences in their gene expression profiles at different stages after inoculation. Most differentially expressed genes were significantly enriched in the biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, plant-pathogen interaction, and fatty acid degradation metabolic pathways. Some defense genes and transcription factors significant in pepper resistance to phytophthora blight were identified, including PR1, RPP13, FLS2, CDPK, CML, MAPK, RLP, RLK, WRYK, ERF, MYB, and bHLH, most of which were regulated after inoculation. A working model was constructed for the defense signal network of pepper against Phytophthora capsici. CONCLUSIONS These data provide a valuable source of information for improving our understanding of the potential molecular mechanisms by which pepper plants resist infection by Phytophthora capsici. The identification of key genes and metabolic pathways provides avenues for further exploring the immune mechanism of 'ZCM334' resistance to phytophthora blight.
Collapse
Affiliation(s)
- Fengyan Shi
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenhe District, 84 Dongling Road, Shenyang, 110161, China
| | - Xiuxue Wang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenhe District, 84 Dongling Road, Shenyang, 110161, China
| | - Meijun Wei
- College of Horticulture, Shenyang Agricultural University, Shenhe District, 120 Dongling Road, Shenyang, 110866, China
| | - Xi Zhang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenhe District, 84 Dongling Road, Shenyang, 110161, China
| | - Zhidan Wang
- College of Horticulture, Shenyang Agricultural University, Shenhe District, 120 Dongling Road, Shenyang, 110866, China
| | - Xiaochun Lu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenhe District, 84 Dongling Road, Shenyang, 110161, China.
| | - Chunlei Zou
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenhe District, 84 Dongling Road, Shenyang, 110161, China.
| |
Collapse
|
3
|
Zhang B, Huang S, Guo S, Meng Y, Tian Y, Zhou Y, Chen H, Li X, Zhou J, Chen W. ATG6 interacting with NPR1 increases Arabidopsis thaliana resistance to Pst DC3000/ avrRps4 by increasing its nuclear accumulation and stability. eLife 2025; 13:RP97206. [PMID: 40036061 PMCID: PMC11879114 DOI: 10.7554/elife.97206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Autophagy-related gene 6 (ATG6) plays a crucial role in plant immunity. Nonexpressor of pathogenesis-related genes 1 (NPR1) acts as a signaling hub of plant immunity. However, the relationship between ATG6 and NPR1 is unclear. Here, we find that ATG6 directly interacts with NPR1. ATG6 overexpression significantly increased nuclear accumulation of NPR1. Furthermore, we demonstrate that ATG6 increases NPR1 protein levels and improves its stability. Interestingly, ATG6 promotes the formation of SINCs (SA-induced NPR1 condensates)-like condensates. Additionally, ATG6 and NPR1 synergistically promote the expression of pathogenesis-related genes. Further results showed that silencing ATG6 in NPR1-GFP exacerbates Pst DC3000/avrRps4 infection, while double overexpression of ATG6 and NPR1 synergistically inhibits Pst DC3000/avrRps4 infection. In summary, our findings unveil an interplay of NPR1 with ATG6 and elucidate important molecular mechanisms for enhancing plant immunity.
Collapse
Affiliation(s)
- Baihong Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal UniversityGuangzhouChina
| | - Shuqin Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal UniversityGuangzhouChina
| | - Shuyu Guo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia UniversityHohhotChina
- Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia UniversityHohhotChina
| | - Yixuan Meng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal UniversityGuangzhouChina
| | - Yuzhen Tian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal UniversityGuangzhouChina
| | - Yue Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal UniversityGuangzhouChina
| | - Hang Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal UniversityGuangzhouChina
| | - Xue Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal UniversityGuangzhouChina
| | - Jun Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal UniversityGuangzhouChina
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal UniversityGuangzhouChina
| |
Collapse
|
4
|
Wu Y, Wu Y, Wang C, Xiong N, Ji W, Fu M, Zhu J, Li Z, Lin J, Yang Q. A double-edged sword in antiviral defence: ATG7 binding dicer to promote virus replication. Cell Mol Life Sci 2025; 82:89. [PMID: 39985575 PMCID: PMC11846821 DOI: 10.1007/s00018-025-05603-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/24/2025]
Abstract
RNA interference (RNAi) and autophagy are two pivotal biological processes that regulate virus replication. This study explored the complex relationship between autophagy and RNAi in controlling influenza virus replication. Initially, we reported that influenza virus (H9N2) infection increases the viral load and the expression of autophagy markers while inhibiting the RNAi pathway. Subsequent studies employing autophagy enhancer and inhibitor treatments confirmed that avian influenza virus (AIV, H9N2) promotes viral replication by enhancing autophagy pathways. Further analysis revealed that ATG7, an autophagy protein, can interact with dicer to affect its antiviral functions. Finally, we discovered that infection with other avian RNA viruses, including infectious bursal disease virus (IBDV) and infectious bronchitis virus (IBV), induced the upregulation of ATG7, which blocked the RNAi pathway to facilitate virus replication. Our findings suggested that virus infection might trigger the upregulation of autophagy and downregulation of the RNAi pathway, revealing a complex interaction between these two biological processes in the defence against viral replication.
Collapse
Affiliation(s)
- Yaotang Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Yang Wu
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Chenlu Wang
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Ningna Xiong
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Wenxin Ji
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Mei Fu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Junpeng Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| | - Zhixin Li
- Ningxia Animal Disease Prevention and Control Center, Yinchuan Ningxia, 750000, China
| | - Jian Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China.
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
5
|
Lin W, Zhang S, Zhang H, Deng X, Jiang T, Chen X, Dong L, Yan Q, Zang L, Xing Y, Wang Z, Zhang Q, Du K, Shen H, Zhang J, Zhou T. The transcriptional analysis of pepper shed light on a proviral role of light-harvesting chlorophyll a/b binding protein 13 during infection of pepper mild mottle virus. FRONTIERS IN PLANT SCIENCE 2025; 16:1533151. [PMID: 39931497 PMCID: PMC11808148 DOI: 10.3389/fpls.2025.1533151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
Pepper mild mottle virus (PMMoV), a member of the genus Tobamovirus, causes severe damage on pepper worldwide. Despite its impact, the pathogenicity mechanisms of PMMoV and the pepper plant's response to infection remain poorly understood. Here, we compared the transcriptomic changes in a susceptible pepper inbred line 21C241 with a resistant inbred line 21C385 seedlings, following systemic PMMoV infection using RNA sequencing. Our results revealed that PMMoV induced more pronounced mosaic symptoms and higher viral accumulation levels in the susceptible line 21C241 compared to the resistant line 21C385. We identified 462 and 401 differentially expressed genes (DEGs) in the systemically-infected leaves of the susceptible and resistant lines, respectively, when compared to their healthy counterparts. The majority of these DEGs were involved in photosynthesis and the biosynthesis of secondary metabolites, with 28 DEGs exhibiting distinct expression patterns between the two lines. Notably, the expression level of the chlorophyll a-b binding protein 13 (CAB13) was significantly up-regulated in resistant line 21C385 following PMMoV infection. Functional analysis through silencing of CAB13 in pepper and Nicotiana benthamiana demonstrated a reduction in PMMoV accumulation, suggesting that CAB13 plays a positive role in facilitating PMMoV infection in pepper plants. Taken together, our findings highlight the distinct gene expression profiles between susceptible and resistant pepper lines in response to PMMoV infection and confirm the proviral role of CAB13. This study provides valuable insights into the molecular mechanisms underlying resistance and susceptibility in pepper plants and may inform future strategies for disease management.
Collapse
Affiliation(s)
- Weihong Lin
- Key Laboratory for Pest Monitoring and Green Management of Ministry of Agriculture and Rural Affairs, and Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Shugen Zhang
- Laboratory of Plant Tissue Culture Technology of Haidian District, Beijing, China
| | - Hao Zhang
- Key Laboratory for Pest Monitoring and Green Management of Ministry of Agriculture and Rural Affairs, and Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xiaomei Deng
- Laboratory of Plant Tissue Culture Technology of Haidian District, Beijing, China
| | - Tong Jiang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Xifeng Chen
- Key Laboratory for Pest Monitoring and Green Management of Ministry of Agriculture and Rural Affairs, and Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Laihua Dong
- Key Laboratory for Pest Monitoring and Green Management of Ministry of Agriculture and Rural Affairs, and Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Qin Yan
- Key Laboratory for Pest Monitoring and Green Management of Ministry of Agriculture and Rural Affairs, and Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Lianyi Zang
- Key Laboratory for Pest Monitoring and Green Management of Ministry of Agriculture and Rural Affairs, and Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Yongping Xing
- Laboratory of Plant Tissue Culture Technology of Haidian District, Beijing, China
| | - Zhenquan Wang
- Laboratory of Plant Tissue Culture Technology of Haidian District, Beijing, China
| | - Qin Zhang
- Laboratory of Plant Tissue Culture Technology of Haidian District, Beijing, China
| | - Kaitong Du
- Key Laboratory for Pest Monitoring and Green Management of Ministry of Agriculture and Rural Affairs, and Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Huolin Shen
- College of Horticulture, China Agricultural University, Beijing, China
| | - Junmin Zhang
- Laboratory of Plant Tissue Culture Technology of Haidian District, Beijing, China
| | - Tao Zhou
- Key Laboratory for Pest Monitoring and Green Management of Ministry of Agriculture and Rural Affairs, and Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Mukherjee S, Verma A, Kong L, Rengan AK, Cahill DM. Advancements in Green Nanoparticle Technology: Focusing on the Treatment of Clinical Phytopathogens. Biomolecules 2024; 14:1082. [PMID: 39334849 PMCID: PMC11430415 DOI: 10.3390/biom14091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Opportunistic pathogenic microbial infections pose a significant danger to human health, which forces people to use riskier, more expensive, and less effective drugs compared to traditional treatments. These may be attributed to several factors, such as overusing antibiotics in medicine and lack of sanitization in hospital settings. In this context, researchers are looking for new options to combat this worrying condition and find a solution. Nanoparticles are currently being utilized in the pharmaceutical sector; however, there is a persistent worry regarding their potential danger to human health due to the usage of toxic chemicals, which makes the utilization of nanoparticles highly hazardous to eukaryotic cells. Multiple nanoparticle-based techniques are now being developed, offering essential understanding regarding the synthesis of components that play a crucial role in producing anti-microbial nanotherapeutic pharmaceuticals. In this regard, green nanoparticles are considered less hazardous than other forms, providing potential options for avoiding the extensive harm to the human microbiome that is prevalent with existing procedures. This review article aims to comprehensively assess the current state of knowledge on green nanoparticles related to antibiotic activity as well as their potential to assist antibiotics in treating opportunistic clinical phytopathogenic illnesses.
Collapse
Affiliation(s)
- Sunny Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Anamika Verma
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - David Miles Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
7
|
Wang D, Chen M, Peng J, Zheng H, Lu Y, Wu G, Wu J, Li J, Chen J, Yan F, Rao S. Transcriptome Analysis of Tomato Leaves Reveals Candidate Genes Responsive to Tomato Brown Rugose Fruit Virus Infection. Int J Mol Sci 2024; 25:4012. [PMID: 38612822 PMCID: PMC11012278 DOI: 10.3390/ijms25074012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Tomato brown rugose fruit virus (ToBRFV) is a newly-emerging tobamovirus which was first reported on tomatoes in Israel and Jordan, and which has now spread rapidly in Asia, Europe, North America, and Africa. ToBRFV can overcome the resistance to other tobamoviruses conferred by tomato Tm-1, Tm-2, and Tm-22 genes, and it has seriously affected global crop production. The rapid and comprehensive transcription reprogramming of host plant cells is the key to resisting virus attack, but there have been no studies of the transcriptome changes induced by ToBRFV in tomatoes. Here, we made a comparative transcriptome analysis between tomato leaves infected with ToBRFV for 21 days and those mock-inoculated as controls. A total of 522 differentially expressed genes were identified after ToBRFV infection, of which 270 were up-regulated and 252 were down-regulated. Functional analysis showed that DEGs were involved in biological processes such as response to wounding, response to stress, protein folding, and defense response. Ten DEGs were selected and verified by qRT-PCR, confirming the reliability of the high-throughput sequencing data. These results provide candidate genes or signal pathways for the response of tomato leaves to ToBRFV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (D.W.); (H.Z.); (J.L.)
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (D.W.); (H.Z.); (J.L.)
| |
Collapse
|
8
|
Zheng X, Li Y, Liu Y. Plant Immunity against Tobamoviruses. Viruses 2024; 16:530. [PMID: 38675873 PMCID: PMC11054417 DOI: 10.3390/v16040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Tobamoviruses are a group of plant viruses that pose a significant threat to agricultural crops worldwide. In this review, we focus on plant immunity against tobamoviruses, including pattern-triggered immunity (PTI), effector-triggered immunity (ETI), the RNA-targeting pathway, phytohormones, reactive oxygen species (ROS), and autophagy. Further, we highlight the genetic resources for resistance against tobamoviruses in plant breeding and discuss future directions on plant protection against tobamoviruses.
Collapse
Affiliation(s)
- Xiyin Zheng
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yiqing Li
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
9
|
Shen C, Wei C, Wu Y. Barley yellow dwarf Virus-GAV movement protein activating wheat TaATG6-Mediated antiviral autophagy pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107771. [PMID: 37247558 DOI: 10.1016/j.plaphy.2023.107771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Barley yellow dwarf virus-GAV (BYDV-GAV) is a highly destructive virus that is transmitted by aphids and can cause substantial yield losses in crops such as wheat (Triticum aestivum), barley (Hordeum vulgare) and oat (Avena sativa). Autophagy is an evolutionarily conserved degradation process that eliminates damaged or harmful intracellular substances during stress conditions or specific developmental processes. However, the mechanism of autophagy involved in disease resistance in wheat remains unknown. In this study, we demonstrate that BYDV-GAV infection could induces the upregulation of genes related to the autophagy pathway in wheat, accompanied by the production of autophagosomes. Furthermore, we confirmed the direct interaction between the viral movement protein (MP) and wheat autophagy-related gene 6 (TaATG6) both in vivo and in vitro. Through yeast function complementation experiments, we determined that TaATG6 can restore the autophagy function in a yeast mutant, atg6. Additionally, we identified the interaction between TaATG6 and TaATG8, core factors of the autophagic pathway, using the yeast two-hybrid system. TaATG6 and TaATG8-silenced wheat plants exhibited a high viral content. Overall, our findings suggest that wheat can recognize BYDV-GAV infection and activate the MP-TaATG6-TaATG8 regulatory network of defense responses through the induction of the autophagy pathway.
Collapse
Affiliation(s)
- Chuan Shen
- Shaannan Eco-economy Research Center, Ankang University, 725000, Ankang, China.
| | - Caiyan Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100, Yangling, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, 712100, Yangling, China
| |
Collapse
|
10
|
Escalante C, Sela N, Valverde RA. Transcriptome analysis of two near-isogenic lines of bell pepper ( Capsicum annuum) infected with bell pepper endornavirus and pepper mild mottle virus. Front Genet 2023; 14:1182578. [PMID: 37124621 PMCID: PMC10133535 DOI: 10.3389/fgene.2023.1182578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Affiliation(s)
- Cesar Escalante
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Agricultural Center, Baton Rouge, LA, United States
- *Correspondence: Cesar Escalante,
| | - Noa Sela
- Department of Plant Pathology and Weed Research, The Volcani Center-ARO, Bet-Dagan, Israel
| | - Rodrigo A. Valverde
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
11
|
Zhang Z, Chang X, Luo S, Wang Y, Xuan S, Zhao J, Shen S, Ma W, Chen X. Transcriptome analysis of two pepper genotypes infected with pepper mild mottle virus. Front Genet 2023; 14:1164730. [PMID: 37152997 PMCID: PMC10156976 DOI: 10.3389/fgene.2023.1164730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Pepper mild mottle virus (PMMoV) poses a significant threat to pepper production because it is highly contagious and extremely persistent in soil. Despite this threat, little is known about the molecular processes that underlie plant responses to pepper mild mottle virus. Here, we performed RNA sequencing of tolerant ("17-p63") and susceptible ("16-217") pepper genotypes after pepper mild mottle virus or mock inoculation. Viral accumulation in systemic leaves was lower in the pepper mild mottle virus-resistant 17-p63 genotype than in the pepper mild mottle virus-sensitive 16-217 genotype, and infection symptoms were more apparent in systemic leaves of 16-217 than in those of 17-p63 at the same timepoints during the infection process. We identified 2,959 and 2,159 differentially expressed genes (DEGs) in systemic leaves of infected 16-217 and 17-p63, respectively. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed genes from both genotypes revealed significant enrichment of the MAPK signaling pathway, plant-pathogen interaction, and flavonoid biosynthesis. A number of differentially expressed genes showed opposite trends in relation to stress resistance and disease defense in the two genotypes. We also performed weighted gene co-expression network analysis (WGCNA) of all samples and identified modules associated with resistance to pepper mild mottle virus, as well as seven hub genes. These results identify candidate virus resistance genes and provide insight into pepper defense mechanisms against pepper mild mottle virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Ma
- *Correspondence: Xueping Chen, ; Wei Ma,
| | | |
Collapse
|
12
|
Bi X, Guo H, Li X, Zheng L, An M, Xia Z, Wu Y. A novel strategy for improving watermelon resistance to cucumber green mottle mosaic virus by exogenous boron application. MOLECULAR PLANT PATHOLOGY 2022; 23:1361-1380. [PMID: 35671152 PMCID: PMC9366068 DOI: 10.1111/mpp.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The molecular mode controlling cucumber green mottle mosaic virus (CGMMV)-induced watermelon blood flesh disease (WBFD) is largely unknown. In this study, we have found that application of exogenous boron suppressed CGMMV infection in watermelon fruit and alleviated WBFD symptoms. Our transcriptome analysis showed that the most up-regulated differentially expressed genes (DEGs) were associated with polyamine and auxin biosynthesis, abscisic acid catabolism, defence-related pathways, cell wall modification, and energy and secondary metabolism, while the down-regulated DEGs were mostly involved in ethylene biosynthesis, cell wall catabolism, and plasma membrane functions. Our virus-induced gene silencing results showed that silencing of SPDS expression in watermelon resulted in a higher putrescine content and an inhibited CGMMV infection correlating with no WBFD symptoms. SBT and TUBB1 were also required for CGMMV infection. In contrast, silencing of XTH23 and PE/PEI7 (low-level lignin, cellulose and pectin) and ATPS1 (low-level glutathione) promoted CGMMV accumulation. Furthermore, RAP2-3, MYB6, WRKY12, H2A, and DnaJ11 are likely to participate in host antiviral resistance. In addition, a higher (spermidine + spermine):putrescine ratio, malondialdehyde content, and lactic acid content were responsible for fruit decay and acidification. Our results provide new knowledge on the roles of boron in watermelon resistance to CGMMV-induced WBFD. This new knowledge can be used to design better control methods for CGMMV in the field and to breed CGMMV resistant watermelon and other cucurbit crops.
Collapse
Affiliation(s)
- Xinyue Bi
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Huiyan Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Xiaodong Li
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
- Centre for Biological Disaster Prevention and ControlNational Forestry and Grassland AdministrationShenyangChina
| | - Lijiao Zheng
- Xinmin City Agricultural Technology Extension CentreShenyangChina
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
13
|
Shi J, He H, Liu Z, Hu D. Pepper Mild Mottle Virus Coat Protein as a Novel Target to Screen Antiviral Drugs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8233-8242. [PMID: 35770794 DOI: 10.1021/acs.jafc.2c02667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pepper mild mottle virus (PMMoV) has caused serious economic losses to crop production in many countries. The coat protein (CP) of PMMoV is a multifunctional protein proved to be a determining factor in the assignment of virulence type. Therefore, we studied the interaction between drugs and PMMoV CP as a method to screen anti-PMMoV agents. In this study, vanisulfane (6f) exhibited good inactivation activity (68.5%) by biological activity screening. Meanwhile, the green fluorescent protein and PMMoV CP expression changes of vanisulfane against PMMoV were verified by western blot and qRT-PCR experiments. The affinity between vanisulfane and PMMoV CP was predicted to be the best by autodocking and molecular dynamics simulation. PMMoV CP was purified for the first time from the soluble fraction, and the strong affinity between vanisulfane and CP was further verified by interaction experiments. Therefore, this study found that vanisulfane is a potential anti-PMMoV drug targeting PMMoV CP.
Collapse
Affiliation(s)
- Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hongfu He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengjun Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
14
|
Yang Y, Hu D, Wang S, Wang Z, Zu G, Song B. First Discovery of Novel Cytosine Derivatives Containing a Sulfonamide Moiety as Potential Antiviral Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6026-6036. [PMID: 35575698 DOI: 10.1021/acs.jafc.2c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A series of cytosine derivatives containing a sulfonamide moiety were designed and synthesized, and their antiviral activities against pepper mild mottle virus (PMMoV) were systematically evaluated. Then, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model was constructed to study the structure-activity relationship according to the pEC50 of the compounds' protective activities. Next, compound A32 with preferable antiviral activity on PMMoV was obtained based on the CoMSIA and CoMFA models, with an EC50 of 19.5 μg/mL, which was superior to the template molecule A25 (21.3 μg/mL) and ningnanmycin (214.0 μg/mL). In addition, further studies showed that the antiviral activity of compound A32 against PMMoV was in accord with the up-regulation of proteins expressed in the defense response and carbon fixation in photosynthetic organisms. These results indicated that cytosine derivatives containing a sulfonamide moiety could be used as novel potential antiviral agents for further research and development.
Collapse
Affiliation(s)
- Yuyuan Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shaobo Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhijia Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Guangcheng Zu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
15
|
Tomato zonate spot virus induced hypersensitive resistance via an auxin-related pathway in pepper. Gene 2022; 823:146320. [PMID: 35218893 DOI: 10.1016/j.gene.2022.146320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 11/20/2022]
Abstract
Tomato zonate spotvirus (TZSV) often incurs significant losses in many food and ornamental crops in Yunnan province, China, and the surrounding areas. The pepper (Capsicum chinensePI152225)can develop hypersensitive resistance following infection with TZSV, through an as yet unknown mechanism. The transcriptome dataset showed a total of 45.81 GB of clean data were obtained from six libraries, and the average percentage of the reads mapped to the pepper genome was over 90.00 %. A total of 1403 differentially expressed genes (DEGs) were obtained after TZSV infection, including 825significantly up-regulated genes and 578 down-regulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that most up-regulated DEGs were involved in basal defenses. RT-qPCR, and virus induced gene silencing (VIGS) were used preliminarily to identifyBBC_22506 and BBC_18917, among total of 71 differentially expressed genes (DEGs), that play a key role in mediating the auxin-induced signaling pathway that might take part in hypersensitive response (HR) conferred resistance to viral infection in pepper (PI152225) byTZSV. This is the first study on the mechanism of auxin resistance, involved in defense responses of pepper against viral diseases, which lay the foundation for further study on the pathogenic mechanism of TZSV, as well as the mechanism of resistance to TZSV, in peppers.
Collapse
|
16
|
Wang J, Miao S, Liu Y, Wang Y. Linking Autophagy to Potential Agronomic Trait Improvement in Crops. Int J Mol Sci 2022; 23:ijms23094793. [PMID: 35563184 PMCID: PMC9103229 DOI: 10.3390/ijms23094793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process in eukaryotic cells, by which the superfluous or damaged cytoplasmic components can be delivered into vacuoles or lysosomes for degradation and recycling. Two decades of autophagy research in plants uncovers the important roles of autophagy during diverse biological processes, including development, metabolism, and various stress responses. Additionally, molecular machineries contributing to plant autophagy onset and regulation have also gradually come into people’s sights. With the advancement of our knowledge of autophagy from model plants, autophagy research has expanded to include crops in recent years, for a better understanding of autophagy engagement in crop biology and its potentials in improving agricultural performance. In this review, we summarize the current research progress of autophagy in crops and discuss the autophagy-related approaches for potential agronomic trait improvement in crop plants.
Collapse
|
17
|
Yang M, Liu Y. Autophagy in plant viral infection. FEBS Lett 2022; 596:2152-2162. [PMID: 35404481 DOI: 10.1002/1873-3468.14349] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/08/2022]
Abstract
Autophagy is a conserved degradation pathway that delivers dysfunctional cellular organelles or other cytosol components to degradative vesicular structures (vacuoles in plants and yeasts, lysosomes in mammals) for degradation and recycling. Viruses are intracellular parasites that hijack their host to live. Research on regulation of the trade-off between plant cells and viruses has indicated that autophagy is an integral part of the host responses to virus infection. Meanwhile, plants have evolved a diverse array of defense responses to counter pathogenic viruses. In this review, we focus on the roles of autophagy in plant virus infection and offer a glimpse of recent advances about how plant viruses evade autophagy or manipulate host autophagy pathways to complete their replication cycle.
Collapse
Affiliation(s)
- Meng Yang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
18
|
Wang Y, Sun X, Zhang Z, Pan B, Xu W, Zhang S. Revealing the early response of pear (Pyrus bretschneideri Rehd) leaves during Botryosphaeria dothideainfection by transcriptome analysis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111146. [PMID: 35067309 DOI: 10.1016/j.plantsci.2021.111146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Ring rot disease, which is caused by Botryosphaeria dothidea (B. dothidea), is one of the most serious diseases affecting the pear industry. Currently, knowledge of the mechanism about pear-pathogen interactions is unclear. To explore the early response of pear leaves to B. dothidea infection, we compared the early transcriptome of pear leaves infected with B. dothidea. The results revealed 3248 differentially expressed genes (DEGs) and 4862 DEGs at D2 and D4, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation of DEGs showed that these genes were predominately involved in plant-pathogen interactions, hormone signal transduction and other biosynthesis-related metabolic processes, including glucosinolate accumulation and flavonoid pathway enhancement. However, many hormone- and disease resistance-related genes and transcription factors (TFs) were differentially expressed during B. dothidea infection. These results were consistent with the changes in the physiological characteristics of B. dothidea. In addition, the expression of PbrPUB29, an E3 ubiquitin ligase with a U-box domain, was significantly higher than it was at 0 dpi. PbrPUB29 silencing enhanced the sensitivity of pear leaves to B. dothidea, reflected by more severe symptoms and higher reactive oxygen species (ROS) content in the defective pear seedlings after inoculation, revealing that PbrPUB29 has a significant role in pear disease resistance. In brief, we explored the interaction between pear leaves and B. dothidea at the transcriptome level, implied the early response of pear leaves to pathogens, and identified a hub gene in a B. dothidea-infected pear. These results provide a basis and new strategy for exploring the molecular mechanisms underlying pear-pathogen interactions and disease resistance breeding.
Collapse
Affiliation(s)
- Yun Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xun Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhenwu Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bisheng Pan
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyu Xu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
19
|
Jiao Y, Zhao X, Hao K, Gao X, Xing D, Wang Z, An M, Xia Z, Wu Y. Characterization of small interfering RNAs derived from pepper mild mottle virus in infected pepper plants by high-throughput sequencing. Virus Res 2022; 307:198607. [PMID: 34688783 DOI: 10.1016/j.virusres.2021.198607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 11/25/2022]
Abstract
Pepper mild mottle virus (PMMoV) infects pepper plants and induces severe yield losses in China. However, the molecular interaction between PMMoV and pepper plants is largely unknown. RNA silencing is a eukaryotically conserved mechanism against viruses mediated by virus-derived small interfering RNAs (vsiRNAs) in plants. In this study, the profiles of vsiRNAs from PMMoV in infected pepper plants were obtained by high-throughput sequencing. The results showed that vsiRNAs were predominantly 21 and 22 nucleotides (nts) in length, and had a U bias at the 5'-terminal. The single-nucleotide resolution maps revealed that vsiRNAs were heterogeneously distributed throughout PMMoV genomic RNAs and hotspots of sense and antisense strands were mainly located in the RdRp and CP coding regions. The host transcripts targeted by vsiRNAs were predicted and they are mainly involved in physiological pathways related to stress response, cell regulation, and metabolism process. In addition, PMMoV infection induced significant up-regulation of CaAGO1a/1b/2, CaDCL2 and CaRDR1 gene transcripts in pepper plants, which are important components involved in antiviral RNA silencing pathway. Taken together, our results suggest the possible roles of vsiRNAs in PMMoV-pepper interactions.
Collapse
Affiliation(s)
- Yubing Jiao
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiuxiang Zhao
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Kaiqiang Hao
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xinran Gao
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Dan Xing
- Institute of Pepper, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
20
|
Effects of the noncoding subgenomic RNA of red clover necrotic mosaic virus in virus infection. J Virol 2021; 96:e0181521. [PMID: 34851690 PMCID: PMC8826918 DOI: 10.1128/jvi.01815-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In recent years, a new class of viral noncoding subgenomic RNA (ncsgRNA) has been identified. This RNA is generated as a stable degradation product via an exoribonuclease-resistant RNA (xrRNA) structure, which blocks the progression of 5′→3′ exoribonuclease on viral RNAs in infected cells. Here, we assess the effects of the ncsgRNA of red clover necrotic mosaic virus (RCNMV), called SR1f, in infected plants. We demonstrate the following: (i) the absence of SR1f reduces symptoms and decreases viral RNA accumulation in Nicotiana benthamiana and Arabidopsis thaliana plants; (ii) SR1f has an essential function other than suppression of RNA silencing; and (iii) the cytoplasmic exoribonuclease involved in mRNA turnover, XRN4, is not required for SR1f production or virus infection. A comparative transcriptomic analysis in N. benthamiana infected with wild-type RCNMV or an SR1f-deficient mutant RCNMV revealed that wild-type RCNMV infection, which produces SR1f and much higher levels of virus, has a greater and more significant impact on cellular gene expression than the SR1f-deficient mutant. Upregulated pathways include plant hormone signaling, plant-pathogen interaction, MAPK signaling, and several metabolic pathways, while photosynthesis-related genes were downregulated. We compare this to host genes known to participate in infection by other tombusvirids. Viral reads revealed a 10- to 100-fold ratio of positive to negative strand, and the abundance of reads of both strands mapping to the 3′ region of RCNMV RNA1 support the premature transcription termination mechanism of synthesis for the coding sgRNA. These results provide a framework for future studies of the interactions and functions of noncoding RNAs of plant viruses. IMPORTANCE Knowledge of how RNA viruses manipulate host and viral gene expression is crucial to our understanding of infection and disease. Unlike viral protein-host interactions, little is known about the control of gene expression by viral RNA. Here, we begin to address this question by investigating the noncoding subgenomic RNA (ncsgRNA) of red clover necrotic mosaic virus (RCNMV), called SR1f. Similar exoribonuclease-resistant RNAs of flaviviruses are well studied, but the roles of plant viral ncsgRNAs, and how they arise, are poorly understood. Surprisingly, we find the likely exonuclease candidate, XRN4, is not required to generate SR1f, and we assess the effects of SR1f on virus accumulation and symptom development. Finally, we compare the effects of infection by wild-type RCNMV versus an SR1f-deficient mutant on host gene expression in Nicotiana benthamiana, which reveals that ncsgRNAs such as SR1f are key players in virus-host interactions to facilitate productive infection.
Collapse
|
21
|
Kalapos B, Juhász C, Balogh E, Kocsy G, Tóbiás I, Gullner G. Transcriptome profiling of pepper leaves by RNA-Seq during an incompatible and a compatible pepper-tobamovirus interaction. Sci Rep 2021; 11:20680. [PMID: 34667194 PMCID: PMC8526828 DOI: 10.1038/s41598-021-00002-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
Upon virus infections, the rapid and comprehensive transcriptional reprogramming in host plant cells is critical to ward off virus attack. To uncover genes and defense pathways that are associated with virus resistance, we carried out the transcriptome-wide Illumina RNA-Seq analysis of pepper leaves harboring the L3 resistance gene at 4, 8, 24 and 48 h post-inoculation (hpi) with two tobamoviruses. Obuda pepper virus (ObPV) inoculation led to hypersensitive reaction (incompatible interaction), while Pepper mild mottle virus (PMMoV) inoculation resulted in a systemic infection without visible symptoms (compatible interaction). ObPV induced robust changes in the pepper transcriptome, whereas PMMoV showed much weaker effects. ObPV markedly suppressed genes related to photosynthesis, carbon fixation and photorespiration. On the other hand, genes associated with energy producing pathways, immune receptors, signaling cascades, transcription factors, pathogenesis-related proteins, enzymes of terpenoid biosynthesis and ethylene metabolism as well as glutathione S-transferases were markedly activated by ObPV. Genes related to photosynthesis and carbon fixation were slightly suppressed also by PMMoV. However, PMMoV did not influence significantly the disease signaling and defense pathways. RNA-Seq results were validated by real-time qPCR for ten pepper genes. Our findings provide a deeper insight into defense mechanisms underlying tobamovirus resistance in pepper.
Collapse
Affiliation(s)
- Balázs Kalapos
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Brunszvik utca 2, Martonvásár, 2462, Hungary
| | - Csilla Juhász
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Herman Ottó út 15, Budapest, 1022, Hungary
| | - Eszter Balogh
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Brunszvik utca 2, Martonvásár, 2462, Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Brunszvik utca 2, Martonvásár, 2462, Hungary
| | - István Tóbiás
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Herman Ottó út 15, Budapest, 1022, Hungary
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Herman Ottó út 15, Budapest, 1022, Hungary.
| |
Collapse
|
22
|
Zhou T, Zhang M, Gong P, Li F, Zhou X. Selective autophagic receptor NbNBR1 prevents NbRFP1-mediated UPS-dependent degradation of βC1 to promote geminivirus infection. PLoS Pathog 2021; 17:e1009956. [PMID: 34570833 PMCID: PMC8496818 DOI: 10.1371/journal.ppat.1009956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/07/2021] [Accepted: 09/13/2021] [Indexed: 01/03/2023] Open
Abstract
Autophagy is an evolutionarily conserved, lysosomal/vacuolar degradation mechanism that targets cell organelles and macromolecules. Autophagy and autophagy-related genes have been studied for their antiviral and pro-viral roles in virus-infected plants. Here, we demonstrate the pro-viral role of a selective autophagic receptor NbNBR1 in geminivirus-infected Nicotiana benthamiana plants. The βC1 protein encoded by tomato yellow leaf curl China betasatellite (TYLCCNB) that is associated with tomato yellow leaf curl China virus (TYLCCNV) enhanced the expression level of NbNBR1. Then NbNBR1 interacted with βC1 to form cytoplasmic granules. Interaction of NbNBR1 with βC1 could prevent degradation of βC1 by the NbRFP1, an E3 ligase. Overexpression of NbNBR1 in N. benthamiana plants increased βC1 accumulation and promoted virus infection. In contrast, silencing or knocking out NbNBR1 expression in N. benthamiana suppressed βC1 accumulation and inhibited virus infection. A single amino acid substitution in βC1 (βC1K4A) abolished its interaction with NbNBR1, leading to a reduced level of βC1K4A. The TYLCCNV/TYLCCNBK4A mutant virus caused milder disease symptoms and accumulated much less viral genomic DNAs in the infected plants. Collectively, the results presented here show how a viral satellite-encoded protein hijacks host autophagic receptor NbNBR1 to form cytoplasmic granules to protect itself from NbRFP1-mediated degradation and facilitate viral infection.
Collapse
Affiliation(s)
- Tingting Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingzhen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|