1
|
Hong Y, Liu R, Xiang W, Lei P, Fang X. Emergent Plants Improve Nitrogen Uptake Rates by Regulating the Activity of Nitrogen Assimilation Enzymes. PLANTS (BASEL, SWITZERLAND) 2025; 14:1484. [PMID: 40431049 PMCID: PMC12114743 DOI: 10.3390/plants14101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 05/10/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025]
Abstract
Effectively utilizing aquatic plants to absorb nitrogen from water bodies and convert it into organic nitrogen via nitrogen assimilation enzyme activity reduces water nitrogen concentrations. This serves as a critical strategy for mitigating agricultural non-point source pollution in the Yellow River Basin However, emergent plants' rate and mechanism of uptake of different forms of nitrogen remain unclear. This study determined the nitrogen uptake rates, nitrogen assimilation activities, root properties, and photosynthetic parameters of four emergent plants, Phragmites australis, Typha orientalis, Scirpus validus, and Lythrum salicaria, under five NH4+/NO3- ratios (9:1, 7:3, 5:5, 3:7, and 1:9) using 15N hydroponic simulations. The results demonstrated that both the form of nitrogen and the plant species significantly influenced the nitrogen uptake rates of emergent plants. In water bodies with varying NH4+/NO3- ratios, P. australis and T. orientalis exhibited significantly higher inorganic nitrogen uptake rates than S. validus and L. salicaria, increasing by 11.83-114.69% and 14.07-130.46%, respectively. When the ratio of NH4+/NO3- in the water body was 9:1, the uptake rate of inorganic nitrogen by P. australis reached its peak, which was 729.20 μg·N·g-1·h-1 DW (Dry Weight). When the ratio of NH4+/NO3- was 5:5, the uptake rate of T. orientalis was the highest, reaching 763.71 μg·N·g-1·h-1 DW. The plants' preferences for different forms of nitrogen exhibited significant environmental plasticity. At an NH4+/NO3- ratio of 5:5, P. australis and T. orientalis preferred NO3--N, whereas S. validus and L. salicaria favored NH4+-N. The uptake rate of NH4+-N by the four plants was significantly positively correlated with glutamine synthetase and glutamate synthase activities, while the uptake rate of NO3--N was significantly positively correlated with NR activity. These findings indicate that the nitrogen uptake and assimilation processes of these four plant species involve synergistic mechanisms of environmental adaptation and physiological regulation, enabling more effective utilization of different nitrogen forms in water. Additionally, the uptake rate of NH4+-N by P. australis and T. orientalis was significantly positively correlated with glutamate dehydrogenase (GDH), suggesting that they are better adapted to eutrophication via the GDH pathway. The specific root surface area plays a crucial role in regulating the nitrogen uptake rates of plants. The amount of nitrogen uptake exerted the greatest total impact on the nitrogen uptake rate, followed by root traits and nitrogen assimilation enzymes. Therefore, there were significant interspecific differences in the uptake rates of and physiological response mechanisms of emergent plants to various nitrogen forms. It is recommended to prioritize the use of highly adaptable emergent plants such as P. australis and T. orientalis in the Yellow River irrigation area.
Collapse
Affiliation(s)
- Yu Hong
- College of Ecology and Environment, Central South University of Forestry and Technology, Changsha 410004, China; (Y.H.); (W.X.)
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750002, China;
| | - Ruliang Liu
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750002, China;
| | - Wenhua Xiang
- College of Ecology and Environment, Central South University of Forestry and Technology, Changsha 410004, China; (Y.H.); (W.X.)
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huaihua 438107, China
| | - Pifeng Lei
- College of Ecology and Environment, Central South University of Forestry and Technology, Changsha 410004, China; (Y.H.); (W.X.)
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huaihua 438107, China
| | - Xi Fang
- College of Ecology and Environment, Central South University of Forestry and Technology, Changsha 410004, China; (Y.H.); (W.X.)
| |
Collapse
|
2
|
Zhang J, Chen G, Li Y, Zhang J, Zhong L, Li L, Zhong S, Gu R. Phlomoides rotata adapts to low-nitrogen environments by promoting root growth and increasing root organic acid exudate. BMC PLANT BIOLOGY 2024; 24:1234. [PMID: 39710688 DOI: 10.1186/s12870-024-05962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Nitrogen (N) is one of the three major elements required for plant growth and development. It is of great significance to study the effects of different nitrogen application levels on the growth and root exudates of Phlomoides rotata, and can provide a theoretical basis for its scientific application of fertilizer to increase production. In this study, Phlomoides rotata were grown under different nitrogen conditions for two months. Soil and plant analyzer development (SPAD) values, bioaccumulation, root morphology, root exudate composition, nitrogen metabolism enzyme and antioxidant enzyme activity were evaluated. The results showed that compared with CK (no N fertilizer), N2 (CO(NH2)2 80 mg/kg) and N3 (CO(NH2)2 160 mg/kg) through significantly improved the activities of nitrogen metabolism enzyme nitrite reductase (NiR), glutamate dehydrogenase (GDH) and glutamine synthetase (GS), enhanced the nitrogen metabolism process, and increased the accumulation of plant soluble sugars (SS) and soluble protein (SP), thus improving Phlomoides rotata biomass yield. After 60 days of treatment, low nitrogen (N1, CO(NH2)2 40 mg/kg) increased root length, root volume, root surface area, average root diameter, significantly increased the diversity of organic acids in root exudates, and enhanced the activity of antioxidant enzymes to adapt the nitrogen deficiency environment. This study can provide new ideas for understanding the mechanism of nitrogen tolerance in Phlomoides rotata and developing scientific fertilization management strategies for plateau plants and medicinal plants.
Collapse
Affiliation(s)
- Jielin Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guopeng Chen
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jie Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liwen Zhong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ling Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shihong Zhong
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| | - Rui Gu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China.
| |
Collapse
|
3
|
Wang R, Tang G, Lu Y, Zhang D, Cai S, He H, Zhang H, Xiong Q. Root physiological and soil microbial mechanisms underlying responses to nitrogen deficiency and compensation in Indica and Japonica rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14549. [PMID: 39363670 DOI: 10.1111/ppl.14549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
Compensatory effects are common biological phenomena in nature. In this study, we investigated the changes in root nitrogen uptake, root morphological and physiological responses, and changes in the rhizosphere soil microbial communities of indica and japonica rice during a nitrogen deficiency-sensitive period and an effective compensation period with double the nitrogen supply. We conducted a bucket experiment using Suxiu 867 (a japonica rice variety) and Yangxian You 918 (an indica rice variety). Treatments included CK (constant distribution of nitrogen fertilizer at each growth stage, represented by CK867 and CK918) and NDC (nitrogen deficiency in the tillering stage, double nitrogen application in the ear differentiation stage to compensate, represented by NDC867 and NDC918) variations. Both varieties presented the highest δ15N and 15N abundances and Ndff (refers to the proportion of nitrogen in a plant's body that comes directly from the fertilizer applied.) in rice under the NDC treatment. Metagenomic sequencing of rhizospheric soil showed that the dominant bacterial groups at the phylum level among each treatment were Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria, Gemmatimonadetes, and Nitrospirae. The rhizosphere of indica rice was more enriched with the microbial communities involved in nitrogen metabolism, which contributed to higher nitrogen utilization efficiency. A correlation-based network was constructed and provides insights into the formation of nitrogen deficiency compensation effects and contributes to the enhancement of nitrogen uptake and utilization efficiency in rice production.
Collapse
Affiliation(s)
- Runnan Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Guoping Tang
- Jiangxi Academy of Agricultural Sciences Rice Research Institute, Nanchang, China
| | - Yanyao Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Dingshun Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Shuo Cai
- Jiangxi Irrigation Experiment Central Station, Nanchang, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Qiangqiang Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Jiangxi Irrigation Experiment Central Station, Nanchang, China
| |
Collapse
|
4
|
Aslam N, Li Q, Bashir S, Yuan L, Qiao L, Li W. Integrated Review of Transcriptomic and Proteomic Studies to Understand Molecular Mechanisms of Rice's Response to Environmental Stresses. BIOLOGY 2024; 13:659. [PMID: 39336087 PMCID: PMC11428526 DOI: 10.3390/biology13090659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Rice (Oryza sativa L.) is grown nearly worldwide and is a staple food for more than half of the world's population. With the rise in extreme weather and climate events, there is an urgent need to decode the complex mechanisms of rice's response to environmental stress and to breed high-yield, high-quality and stress-resistant varieties. Over the past few decades, significant advancements in molecular biology have led to the widespread use of several omics methodologies to study all aspects of plant growth, development and environmental adaptation. Transcriptomics and proteomics have become the most popular techniques used to investigate plants' stress-responsive mechanisms despite the complexity of the underlying molecular landscapes. This review offers a comprehensive and current summary of how transcriptomics and proteomics together reveal the molecular details of rice's response to environmental stresses. It also provides a catalog of the current applications of omics in comprehending this imperative crop in relation to stress tolerance improvement and breeding. The evaluation of recent advances in CRISPR/Cas-based genome editing and the application of synthetic biology technologies highlights the possibility of expediting the development of rice cultivars that are resistant to stress and suited to various agroecological environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenqiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China; (N.A.); (Q.L.); (S.B.); (L.Y.); (L.Q.)
| |
Collapse
|
5
|
Li J, Li Q, Guo N, Xian Q, Lan B, Nangia V, Mo F, Liu Y. Polyamines mediate the inhibitory effect of drought stress on nitrogen reallocation and utilization to regulate grain number in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1016-1035. [PMID: 37813095 DOI: 10.1093/jxb/erad393] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Drought stress poses a serious threat to grain formation in wheat. Nitrogen (N) plays crucial roles in plant organ development; however, the physiological mechanisms by which drought stress affects plant N availability and mediates the formation of grains in spikes of winter wheat are still unclear. In this study, we determined that pre-reproductive drought stress significantly reduced the number of fertile florets and the number of grains formed. Transcriptome analysis demonstrated that this was related to N metabolism, and in particular, the metabolism pathways of arginine (the main precursor for synthesis of polyamine) and proline. Continuous drought stress restricted plant N accumulation and reallocation rates, and plants preferentially allocated more N to spike development. As the activities of amino acid biosynthesis enzymes and catabolic enzymes were inhibited, more free amino acids accumulated in young spikes. The expression of polyamine synthase genes was down-regulated under drought stress, whilst expression of genes encoding catabolic enzymes was enhanced, resulting in reductions in endogenous spermidine and putrescine. Treatment with exogenous spermidine optimized N allocation in young spikes and leaves, which greatly alleviated the drought-induced reduction in the number of grains per spike. Overall, our results show that pre-reproductive drought stress affects wheat grain numbers by regulating N redistribution and polyamine metabolism.
Collapse
Affiliation(s)
- Juan Li
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| | - Qi Li
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| | - Nian Guo
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| | - Qinglin Xian
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| | - Bing Lan
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| | - Vinay Nangia
- International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 6299-10112, Rabat, Morocco
| | - Fei Mo
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| | - Yang Liu
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| |
Collapse
|
6
|
Saini H, Panthri M, Khan E, Saxena S, Pandey A, Gupta M. Metabolomic profiling reveals key factors and associated pathways regulating the differential behavior of rice (Oryza sativa L.) genotypes exposed to geogenic arsenic. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:119. [PMID: 38183498 DOI: 10.1007/s10661-024-12300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Arsenic (As) toxicity is an escalating problem; however, information about the metabolic events controlling the varied pattern of As accumulation in rice genotypes within their natural environment is still lacking. The present study is thus an advancement in unravelling the response of such rice genotypes. Soil-water-rice samples were analyzed for As accumulation using ICP-MS. Furthermore, we implemented metabolomics through LC-MS/MS and UHPLC to identify metabolic signatures regulating As content by observing the metalloid's composition in rice agrosystem. Results showed that rice genotypes differed significantly in their levels of metabolites, with Mini mansoori and Pioneer having the highest levels. Mini mansoori contained least As which might have been regulated by Ala, Ser, Glu, Phe, Asn, His, Ile, Lys, Gln, Trp, Tyr, chlorogenic, p-coumaric, trans-ferulic, rutin, morin, naringenin, kampferol, and myricetin, while Asp, Arg, Met, syringic, epigalocatechin, and apigenin contributed to the greater As acclimatization ability of Pioneer. Multivariate tools separated the rice genotypes into two major clusters: Pioneer-Mini mansoori and Damini-Sampoorna-Chintu. KEGG identified three major metabolic pathways (aminoacyl-tRNA, phenylpropanoid, and secondary metabolites biosynthesis route) linked with As tolerance and adaptation mechanisms in rice. Overall, these two genotypes symbolize their As hostile and accommodating attitudes probably due to the accumulated metabolites and the physicochemical attributes of the soil-water. Thus, thorough understanding of the metabolic reactions to As may facilitate the emergence of As tolerant/resilient genotypes. This will aid in the selection of molecular markers to cultivate healthier rice genotypes in As-contaminated areas.
Collapse
Affiliation(s)
- Himanshu Saini
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi-25, India
| | - Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi-25, India
| | - Ehasanullah Khan
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi-25, India
| | - Samiksha Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-67, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-67, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi-25, India.
| |
Collapse
|
7
|
Zhou H, Liu Y, Mu B, Wang F, Feng N, Zheng D. Nitrogen limitation affects carbon and nitrogen metabolism in mung bean (Vigna radiata L.). JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154105. [PMID: 37871476 DOI: 10.1016/j.jplph.2023.154105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/25/2023]
Abstract
Studying the effects of nitrogen limitation on carbon, nitrogen metabolism, and nutrient uptake of mung bean is a scientific issue. In this study, urea (CO(NH2)2, 125 kg hm-2) was applied at the V2, V6, R1, R2, and R4 stages, respectively, to ensure sufficient N resources during the growth process of mung beans. This study found that nitrogen limitation inhibited mung bean photosynthesis and reduced photosynthetic efficiency, which was manifested by reducing Pn (net photosynthetic rate), Gs (stomatal conductance), Tr (transpiration rate), and Ci (intercellular carbon dioxide concentration). Second, nitrogen limitation reduced N metabolism-related enzyme activity, such as NR (nitrate reductase), GOGAT (glutamate synthase), and GDH (glutamate dehydrogenase), indicating that nitrogen limitation inhibited the process of nitrogen metabolism, reducing nitrogen assimilation. Meanwhile, topdressing N fertilizer can promote the P and K uptake, and improve the partial factor productivity of P and K, which suggests that nitrogen limitation reduced P and K use efficiency. In addition, this study found that Lvfeng5 responded more significantly to nitrogen fertilizers, and had higher nitrogen use efficiency or better adaptability compared with Lvfeng2. This study provided valuable insights into the physiological and metabolic responses of mung beans to nutrient deficiency.
Collapse
Affiliation(s)
- Hang Zhou
- Physiology and Ecology Laboratory, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ya Liu
- Rice Physiology and Ecology Research Laboratory, College of Agriculture, Shenyang Agricultural University, Shenyang, 110000, China
| | - Baomin Mu
- Physiology and Ecology Laboratory, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Fei Wang
- Lindian Meteorological Bureau, Daqing, 166399, China
| | - Naijie Feng
- Physiology and Ecology Laboratory, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Dianfeng Zheng
- Physiology and Ecology Laboratory, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
8
|
Zhang C, Li Y, Yang T, Shi M. Overexpression of PsAMT1.2 in poplar enhances nitrogen utilization and resistance to drought stress. TREE PHYSIOLOGY 2023; 43:1796-1810. [PMID: 37384396 DOI: 10.1093/treephys/tpad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Ammonium is an important form of inorganic nitrogen, which is essential for plant growth and development, and the uptake of ammonium is mediated by different members of ammonium transporters (AMTs). It is reported that PsAMT1.2 is specially expressed in the root of poplar, and the overexpression of PsAMT1.2 could improve plant growth and the salt tolerance of poplar. However, the role of AMTs in plant drought and low nitrogen (LN) resistance remains unclear. To understand the role of PsAMT1.2 in drought and LN tolerance, the response of PsAMT1.2-overexpression poplar to polyethylene glycol (PEG)-simulated drought stress (5% PEG) under LN (0.001 mM NH4NO3) and moderate nitrogen (0.5 mM NH4NO3) conditions was investigated. The PsAMT1.2-overexpression poplar showed better growth with increased stem increment, net photosynthetic rate, chlorophyll content, root length, root area, average root diameter and root volume under drought and/or LN stress compared with the wild type (WT). Meanwhile, the content of malondialdehyde significantly decreased, and the activities of superoxide dismutase and catalase significantly increased in the roots and leaves of PsAMT1.2-overexpression poplar compared with WT. The content of NH4+ and NO2- in the roots and leaves of PsAMT1.2-overexpression poplar was increased, and nitrogen metabolism-related genes, such as GS1.3, GS2, Fd-GOGAT and NADH-GOGAT, were significantly upregulated in the roots and/or leaves of PsAMT1.2-overexpression poplar compared with WT under drought and LN stress. The result of this study would be helpful for understanding the function of PsAMT1.2 in plant drought and LN tolerance and also provides a new insight into improving the drought and LN tolerance of Populus at the molecular level.
Collapse
Affiliation(s)
- Chunxia Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi Province, China
| | - Yang Li
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi Province, China
| | - Tianli Yang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi Province, China
| | - Mengting Shi
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
9
|
Chen K, Ma L, Chen C, Liu N, Wang B, Bao Y, Liu Z, Zhou G. Long-Term Impact of N, P, K Fertilizers in Different Rates on Yield and Quality of Anisodus tanguticus (Maxinowicz) Pascher. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112102. [PMID: 37299083 DOI: 10.3390/plants12112102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
Anisodus tanguticus (Maxinowicz) Pascher (Solanaceae) is a traditional Chinese herb that is widely used in folklore and clinical practice. In recent years, wild populations have been severely impacted to the point of extinction due to over-harvesting and reclamation. Therefore, artificial cultivation is important to relieve the pressure of market demand and protect wild plant resources. Using a "3414" fertilization design, i.e., 3 factors (N, P, and K), 4 levels, and 14 fertilization treatments, with 3 replicates and a total of 42 experimental plots, A. tanguticus was harvested in October 2020, June 2021, August 2021, and October 2021, and the yield and alkaloid content were determined. The study aimed to provide a theoretical basis and technical reference for the standardization of A. tanguticus cultivation. Biomass accumulation and alkaloid content showed a trend of increasing and then decreasing with the application of nitrogen, phosphorus, and potassium, and the biomass accumulation was the highest at the application levels of nitrogen and phosphorus in T6 and T9 and at the application levels of medium and low potassium. The alkaloid content showed an increasing trend between October of the first year and June of the second year and a decreasing trend in the second year with the increase in the harvesting period. Yield and alkaloid yield showed a decreasing trend between October of the first year and June of the second year and an increasing trend in the second year with the increase in the harvesting period. The recommended application rates are 225-300 kg/ha2 for nitrogen, 850-960 kg/ha2 for phosphorus, and 65-85 kg/ha2 for potassium.
Collapse
Affiliation(s)
- Kaiyang Chen
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Ma
- Qinghai Research and of Environmental Sciences, Xining 810008, China
| | - Chen Chen
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Liu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Bo Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuying Bao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Zhengrong Liu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Guoying Zhou
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Wang H, Zhong L, Fu X, Huang S, Zhao D, He H, Chen X. Physiological analysis reveals the mechanism of accelerated growth recovery for rice seedlings by nitrogen application after low temperature stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1133592. [PMID: 36875613 PMCID: PMC9978396 DOI: 10.3389/fpls.2023.1133592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Low temperature and overcast rain are harmful to directly seeding early rice, it can hinder rice growth and lower rice biomass during the seedling stage, which in turn lowers rice yield. Farmers usually use N to help rice recuperate after stress and minimize losses. However, the effect of N application on the growth recovery for rice seedlings after such low temperature stress and its associated physiological changes remain unclearly. Two temperature settings and four post-stress N application levels were used in a bucket experiment to compare B116 (strong growth recovery after stress) with B144 (weak growth recovery). The results showed that the stress (average daily temperature at 12°C for 4 days) inhibited the growth of rice seedlings. Compared to the zero N group, the N application group's seedling height, fresh weight and dry weight significantly increased after 12 days. In particular, the increases in all three growth indicators were relatively higher than that of N application at normal temperature, indicating the importance of N application to rice seedlings after low temperature stress. The antioxidant enzyme activity of rice seedlings increased significantly after N application, which reduced the damaging effect of ROS (reactive oxygen species) to rice seedlings. At the same time, the soluble protein content of seedlings showed a slow decrease, while the H2O2 and MDA (malondialdehyde) content decreased significantly. Nitrogen could also promote nitrogen uptake and utilization by increasing the expression of genes related to NH 4 + and NO 3 - uptake and transport, as well as improving the activity of NR (nitrate reductase) and GS (glutamine synthetase) in rice. N could affect GA3 (gibberellin A3) and ABA (abscisic acid) levels by regulating the anabolism of GA3 and ABA. The N application group maintained high ABA levels as well as low GA3 levels from day 0 to day 6, and high GA3 levels as well as low ABA levels from day 6 to day 12. The two rice varieties showed obvious characteristics of accelerated growth recovery and positive physiological changes by nitrogen application after stress, while B116 generally showed more obvious growth recovery and stronger growth-related physiological reaction than that of B144. The N application of 40 kg hm-2 was more conducive to the rapid recovery of rice growth after stress. The above results indicated that appropriate N application promoted rice seedling growth recovery after low temperature stress mainly by increasing the activities of antioxidant enzymes and nitrogen metabolizing enzymes as well as regulating the levels of GA3 and ABA. The results of this study will provide a reference for the regulation of N on the recovery of rice seedling growth after low temperature and weak light stress.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang, China
| | - Lei Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoquan Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang, China
| | - Shiying Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang, China
| | - Desheng Zhao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang, China
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
11
|
Wu C, Wang Y, Sun H. Targeted and untargeted metabolomics reveals deep analysis of drought stress responses in needles and roots of Pinus taeda seedlings. FRONTIERS IN PLANT SCIENCE 2023; 13:1031466. [PMID: 36798806 PMCID: PMC9927248 DOI: 10.3389/fpls.2022.1031466] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/28/2022] [Indexed: 06/01/2023]
Abstract
Drought stress is one of major environmental stresses affecting plant growth and yield. Although Pinus taeda trees are planted in rainy southern China, local drought sometime occurs and can last several months, further affecting their growth and resin production. In this study, P. taeda seedlings were treated with long-term drought (42 d), and then targeted and untargeted metabolomics analysis were carried out to evaluate drought tolerance of P. taeda. Targeted metabolomics analysis showed that levels of some sugars, phytohormones, and amino acids significantly increased in the roots and needles of water-stressed (WS) P. taeda seedlings, compared with well-watered (WW) pine seedlings. These metabolites included sucrose in pine roots, the phytohormones abscisic acid and sacylic acid in pine needles, the phytohormone gibberellin (GA4) and the two amino acids, glycine and asparagine, in WS pine roots. Compared with WW pine seedlings, the neurotransmitter acetylcholine significantly increased in needles of WS pine seedlings, but significantly reduced in their roots. The neurotransmitters L-glutamine and hydroxytyramine significantly increased in roots and needles of WS pine seedlings, respectively, compared with WW pine seedlings, but the neurotransmitter noradrenaline significantly reduced in needles of WS pine seedlings. Levels of some unsaturated fatty acids significantly reduced in roots or needles of WS pine seedlings, compared with WW pine seedlings, such as linoleic acid, oleic acid, myristelaidic acid, myristoleic acid in WS pine roots, and palmitelaidic acid, erucic acid, and alpha-linolenic acid in WS pine needles. However, three saturated fatty acids significantly increased in WS pine seedlings, i.e., dodecanoic acid in WS pine needles, tricosanoic acid and heptadecanoic acid in WS pine roots. Untargeted metabolomics analysis showed that levels of some metabolites increased in WS pine seedlings, especially sugars, long-chain lipids, flavonoids, and terpenoids. A few of specific metabolites increased greatly, such as androsin, piceatanol, and panaxatriol in roots and needles of WS pine seedlings. Comparing with WW pine seedlings, it was found that the most enriched pathways in WS pine needles included flavone and flavonol biosynthesis, ABC transporters, diterpenoid biosynthesis, plant hormone signal transduction, and flavonoid biosynthesis; in WS pine roots, the most enriched pathways included tryptophan metabolism, caffeine metabolism, sesquiterpenoid and triterpenoid biosynthesis, plant hormone signal transduction, biosynthesis of phenylalanine, tyrosine, and tryptophan. Under long-term drought stress, P. taeda seedlings showed their own metabolomics characteristics, and some new metabolites and biosynthesis pathways were found, providing a guideline for breeding drought-tolerant cultivars of P. taeda.
Collapse
Affiliation(s)
- Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yun Wang
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Honggang Sun
- Institute of Subtropic Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, China
| |
Collapse
|
12
|
Chen L, Liang Z, Xie S, Liu W, Wang M, Yan J, Yang S, Jiang B, Peng Q, Lin Y. Responses of differential metabolites and pathways to high temperature in cucumber anther. FRONTIERS IN PLANT SCIENCE 2023; 14:1131735. [PMID: 37123826 PMCID: PMC10140443 DOI: 10.3389/fpls.2023.1131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Cucumber is one of the most important vegetable crops, which is widely planted all over the world. Cucumber always suffers from high-temperature stress in South China in summer. In this study, liquid chromatography-mass spectrometry (LC-MS) analysis was used to study the differential metabolites of cucumber anther between high-temperature (HT) stress and normal condition (CK). After HT, the pollen fertility was significantly reduced, and abnormal anther structures were observed by the paraffin section. In addition, the metabolomics analysis results showed that a total of 125 differential metabolites were identified after HT, consisting of 99 significantly upregulated and 26 significantly downregulated metabolites. Among these differential metabolites, a total of 26 related metabolic pathways were found, and four pathways showed significant differences, namely, porphyrin and chlorophyll metabolism; plant hormone signal transduction; amino sugar and nucleotide sugar metabolism; and glycine, serine, and threonine metabolism. In addition, pollen fertility was decreased by altering the metabolites of plant hormone signal transduction and amino acid and sugar metabolism pathway under HT. These results provide a comprehensive understanding of the metabolic changes in cucumber anther under HT.
Collapse
Affiliation(s)
- Lin Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Zhaojun Liang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Shuyan Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Songguang Yang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Qingwu Peng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
| | - Yu’e Lin
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, China
- *Correspondence: Yu’e Lin,
| |
Collapse
|
13
|
Ren J, Guo P, Zhang H, Shi X, Ai X, Wang J, Jiang C, Zhao X, Liu X, Yu H. Comparative physiological and coexpression network analyses reveal the potential drought tolerance mechanism of peanut. BMC PLANT BIOLOGY 2022; 22:460. [PMID: 36162997 PMCID: PMC9511739 DOI: 10.1186/s12870-022-03848-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Drought stress has negative effects on plant growth and productivity. In this study, a comprehensive analysis of physiological responses and gene expression was performed. The responses and expressions were compared between drought-tolerant (DT) and drought-sensitive (DS) peanut varieties to investigate the regulatory mechanisms and hub genes involved in the impact of drought stress on culture. RESULTS The drought-tolerant variety had robust antioxidative capacities with higher total antioxidant capacity and flavonoid contents, and it enhanced osmotic adjustment substance accumulation to adapt to drought conditions. KEGG analysis of differentially expressed genes demonstrated that photosynthesis was strongly affected by drought stress, especially in the drought-sensitive variety, which was consistent with the more severe suppression of photosynthesis. The hub genes in the key modules related to the drought response, including genes encoding protein kinase, E3 ubiquitin-protein ligase, potassium transporter, pentatricopeptide repeat-containing protein, and aspartic proteinase, were identified through a comprehensive combined analysis of genes and physiological traits using weighted gene co-expression network analysis. There were notably differentially expressed genes between the two varieties, suggesting the positive roles of these genes in peanut drought tolerance. CONCLUSION A comprehensive analysis of physiological traits and relevant genes was conducted on peanuts with different drought tolerances. The findings revealed diverse drought-response mechanisms and identified candidate genes for further research.
Collapse
Affiliation(s)
- Jingyao Ren
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Pei Guo
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - He Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xiaolong Shi
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xin Ai
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jing Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Chunji Jiang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xinhua Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xibo Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China.
| | - Haiqiu Yu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
14
|
Zhou R, Jiang F, Niu L, Song X, Yu L, Yang Y, Wu Z. Increase Crop Resilience to Heat Stress Using Omic Strategies. FRONTIERS IN PLANT SCIENCE 2022; 13:891861. [PMID: 35656008 PMCID: PMC9152541 DOI: 10.3389/fpls.2022.891861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Varieties of various crops with high resilience are urgently needed to feed the increased population in climate change conditions. Human activities and climate change have led to frequent and strong weather fluctuation, which cause various abiotic stresses to crops. The understanding of crops' responses to abiotic stresses in different aspects including genes, RNAs, proteins, metabolites, and phenotypes can facilitate crop breeding. Using multi-omics methods, mainly genomics, transcriptomics, proteomics, metabolomics, and phenomics, to study crops' responses to abiotic stresses will generate a better, deeper, and more comprehensive understanding. More importantly, multi-omics can provide multiple layers of information on biological data to understand plant biology, which will open windows for new opportunities to improve crop resilience and tolerance. However, the opportunities and challenges coexist. Interpretation of the multidimensional data from multi-omics and translation of the data into biological meaningful context remained a challenge. More reasonable experimental designs starting from sowing seed, cultivating the plant, and collecting and extracting samples were necessary for a multi-omics study as the first step. The normalization, transformation, and scaling of single-omics data should consider the integration of multi-omics. This review reports the current study of crops at abiotic stresses in particular heat stress using omics, which will help to accelerate crop improvement to better tolerate and adapt to climate change.
Collapse
Affiliation(s)
- Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lifei Niu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Lu Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuwen Yang
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Zargar SM, Mir RA, Ebinezer LB, Masi A, Hami A, Manzoor M, Salgotra RK, Sofi NR, Mushtaq R, Rohila JS, Rakwal R. Physiological and Multi-Omics Approaches for Explaining Drought Stress Tolerance and Supporting Sustainable Production of Rice. FRONTIERS IN PLANT SCIENCE 2022; 12:803603. [PMID: 35154193 PMCID: PMC8829427 DOI: 10.3389/fpls.2021.803603] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/14/2021] [Indexed: 05/12/2023]
Abstract
Drought differs from other natural disasters in several respects, largely because of the complexity of a crop's response to it and also because we have the least understanding of a crop's inductive mechanism for addressing drought tolerance among all abiotic stressors. Overall, the growth and productivity of crops at a global level is now thought to be an issue that is more severe and arises more frequently due to climatic change-induced drought stress. Among the major crops, rice is a frontline staple cereal crop of the developing world and is critical to sustaining populations on a daily basis. Worldwide, studies have reported a reduction in rice productivity over the years as a consequence of drought. Plants are evolutionarily primed to withstand a substantial number of environmental cues by undergoing a wide range of changes at the molecular level, involving gene, protein and metabolite interactions to protect the growing plant. Currently, an in-depth, precise and systemic understanding of fundamental biological and cellular mechanisms activated by crop plants during stress is accomplished by an umbrella of -omics technologies, such as transcriptomics, metabolomics and proteomics. This combination of multi-omics approaches provides a comprehensive understanding of cellular dynamics during drought or other stress conditions in comparison to a single -omics approach. Thus a greater need to utilize information (big-omics data) from various molecular pathways to develop drought-resilient crop varieties for cultivation in ever-changing climatic conditions. This review article is focused on assembling current peer-reviewed published knowledge on the use of multi-omics approaches toward expediting the development of drought-tolerant rice plants for sustainable rice production and realizing global food security.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, India
| | - Leonard Barnabas Ebinezer
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Najeebul Rehman Sofi
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Roohi Mushtaq
- Department of Biotechnology and Bioinformatics, SP College, Cluster University Srinagar, Srinagar, India
| | - Jai Singh Rohila
- Dale Bumpers National Rice Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Stuttgart, AR, United States
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
16
|
Iqbal Z, Iqbal MS, Khan MIR, Ansari MI. Toward Integrated Multi-Omics Intervention: Rice Trait Improvement and Stress Management. FRONTIERS IN PLANT SCIENCE 2021; 12:741419. [PMID: 34721467 PMCID: PMC8554098 DOI: 10.3389/fpls.2021.741419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 05/04/2023]
Abstract
Rice (Oryza sativa) is an imperative staple crop for nearly half of the world's population. Challenging environmental conditions encompassing abiotic and biotic stresses negatively impact the quality and yield of rice. To assure food supply for the unprecedented ever-growing world population, the improvement of rice as a crop is of utmost importance. In this era, "omics" techniques have been comprehensively utilized to decipher the regulatory mechanisms and cellular intricacies in rice. Advancements in omics technologies have provided a strong platform for the reliable exploration of genetic resources involved in rice trait development. Omics disciplines like genomics, transcriptomics, proteomics, and metabolomics have significantly contributed toward the achievement of desired improvements in rice under optimal and stressful environments. The present review recapitulates the basic and applied multi-omics technologies in providing new orchestration toward the improvement of rice desirable traits. The article also provides a catalog of current scenario of omics applications in comprehending this imperative crop in relation to yield enhancement and various environmental stresses. Further, the appropriate databases in the field of data science to analyze big data, and retrieve relevant information vis-à-vis rice trait improvement and stress management are described.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | | | | | | |
Collapse
|
17
|
Zandalinas SI, Fritschi FB, Mittler R. Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. TRENDS IN PLANT SCIENCE 2021; 26:588-599. [PMID: 33745784 DOI: 10.1016/j.tplants.2021.02.011] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 05/19/2023]
Abstract
Global warming, climate change, and environmental pollution present plants with unique combinations of different abiotic and biotic stresses. Although much is known about how plants acclimate to each of these individual stresses, little is known about how they respond to a combination of many of these stress factors occurring together, namely a multifactorial stress combination. Recent studies revealed that increasing the number of different co-occurring multifactorial stress factors causes a severe decline in plant growth and survival, as well as in the microbiome biodiversity that plants depend upon. This effect should serve as a dire warning to our society and prompt us to decisively act to reduce pollutants, fight global warming, and augment the tolerance of crops to multifactorial stress combinations.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA
| | - Felix B Fritschi
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA
| | - Ron Mittler
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA; Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA.
| |
Collapse
|