1
|
Li N, Li J, Xie J, Rui W, Pu K, Gao Y, Wang T, Zhang M. Glycine betaine and plant abiotic stresses: Unravelling physiological and molecular responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112479. [PMID: 40132665 DOI: 10.1016/j.plantsci.2025.112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Plants are constantly subjected to various abiotic stresses (drought, salinity, heavy metals and low temperature) throughout their life cycle, which significantly hinder their growth and productivity. Key abiotic stresses include drought, salinity, heavy metals, and extreme temperatures. In response, plants modulate glycine betaine (GB) levels, a vital compatible solute that influences growth and stress tolerance by interacting with phytohormones and cellular signaling pathways. Not all species can synthesize endogenous GB; however, some non-GB accumulating plants have been genetically modified to enhance GB production through the overexpression of synthesis genes such as choline oxidase, choline monooxygenase, and betaine aldehyde dehydrogenase. Exogenous GB treatment can mitigate stress effects by improving nutritional balance, reducing reactive oxygen species (ROS), minimizing membrane damage, and alleviating photoinhibition. Nonetheless, the specificity of GB application, transport, and accumulation across species, as well as its interaction with phytohormones in stress alleviation, remains uncertain. This review focuses on GB's role as an antioxidant, osmo-regulator, and nitrogen source, evaluating the physiological, biochemical, and molecular mechanisms by which GB mitigates abiotic stresses, aiming to develop GB-based strategies for enhancing plant stress resilience.
Collapse
Affiliation(s)
- Nenghui Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China.
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China.
| | - Wenjing Rui
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Kaiguo Pu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Yanqiang Gao
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Tiantian Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| | - Miao Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, PR China
| |
Collapse
|
2
|
Nyzhnyk T, Kiedrzyński M, Kiedrzyńska E, Kots S. Salicylic and succinic acids as inducers of phytoimmunity in winter wheat for the management of powdery mildew (Blumeria graminis (DC) Speer f. sp. tritici). BMC PLANT BIOLOGY 2025; 25:376. [PMID: 40128680 PMCID: PMC11934661 DOI: 10.1186/s12870-025-06403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/13/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Growth regulators play an important role in activating the main signal transduction pathways in response to stress, and their activity is key in the general mechanism to understanding the formation of phytoimmunity under biotic stress. The study investigates the specificity of stress-protective reactions in winter wheat varieties with varying degrees of sensitivity to the phytopathogen Blumeria graminis (DC) Speer f. sp. tritici, and determined the effectiveness of exogenous salicylic and succinic acids as inducers of resistance to powdery mildew. RESULTS Exogenous application of 0.1 mM salicylic acid induced stress-protective reactions in the resistant wheat, characterised by increased ethylene release, and phenylalanine amino-lyase and ascorbate peroxidase activity in the flag leaves. These steps help optimize its physiological state and productivity by preserving the integrity of cell membranes and its chlorophyll content. Exogenous succinic acid at a concentration of 0.1 mM also led to the activation of protective antioxidant systems, which did not have a positive effect on plant physiology or productivity during infection. The susceptible variety of winter wheat was unable to mobilize the necessary stress-protective systems, regardless of salicylic or succinic acid treatment, resulting in the spread of infection and reduced productivity. CONCLUSIONS The resistance of winter wheat to phytopathogen damage (Blumeria graminis (DC) Speer f. sp. tritici) is determined by the capacity of the plant to mobilize stress-protective reactions and optimize its metabolism. Salicylic acid (0.1 mM) effectively enhances plant defence systems, thus improving plant physiology and productivity during the spread of powdery mildew.
Collapse
Affiliation(s)
- Tetiana Nyzhnyk
- Department of Symbiotic Nitrogen Fixation, Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine, Vasylkivska 31/17, Kyiv, 03022, Ukraine.
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, Lodz, 90-364, Poland.
| | - Marcin Kiedrzyński
- Faculty of Biology and Environmental Protection, Department of Biogeography, Paleoecology and Nature Conservation, University of Lodz, Banacha 1/3, Lodz, 90-237, Poland.
| | - Edyta Kiedrzyńska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, Lodz, 90-364, Poland
- Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Sergii Kots
- Department of Symbiotic Nitrogen Fixation, Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine, Vasylkivska 31/17, Kyiv, 03022, Ukraine
| |
Collapse
|
3
|
Zhou Y, Guo L, Chen Z, Wang P, Zhang X, Zhao L. Enhancement of cold tolerance in tea plants (Camellia sinensis) by glycine betaine accumulation through CsBADH overexpression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109454. [PMID: 39731981 DOI: 10.1016/j.plaphy.2024.109454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Cold stress significantly limits the growth and yield of tea plants (Camellia sinensis (L.) O. Kuntze), particularly in northern China, may lead to huge economic losses. Glycine betaine (GB), an osmotic regulator, is widely applied in crop resistance to abiotic stress. This study investigates the role of GB and its biosynthetic enzyme CsBADH in enhancing cold tolerance in tea plants. Two cultivars, 'Shuchazao' (cold-resistant) and 'Baiye 1' (cold-sensitive), were subjected to low temperature stress (0 °C). GB accumulation was measured, revealing that 'Shuchazao' exhibited 1.4-fold higher GB levels than 'Baiye 1', suggesting a link between higher GB accumulation and cold tolerance. Exogenous GB treatment improved cold resistance, especially in the cold-sensitive cultivar 'Baiye 1'. The CsBADH gene, a key enzyme in GB biosynthesis, was cloned and expressed in Escherichia coli, confirming its activity. Transgenic Arabidopsis thaliana, Nicotiana tabacum, and C. sinensis plants overexpressing CsBADH showed increased GB levels (1.5- to 2.4-fold), proline content, peroxidase (POD) activities, and enhanced cold tolerance, while silencing CsBADH decreased GB accumulation and cold resistance. These findings demonstrate that CsBADH plays a critical role in cold stress response by promoting GB accumulation, offering potential strategies for improving the resilience of tea and other leaf crops to cold stress.
Collapse
Affiliation(s)
- Yuqi Zhou
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Lifan Guo
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Zhenbin Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Peiqiang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xinfu Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Lei Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
4
|
Zhou M, Yong X, Zhu J, Xu Q, Liu X, Zhang L, Mou L, Zeng L, Wu M, Jiang B, Jia Y, Zhang P, Pan Y. Chromosomal analysis of progenies between Lilium intersectional hybrids and wild species using ND-FISH and GISH. FRONTIERS IN PLANT SCIENCE 2024; 15:1461798. [PMID: 39502926 PMCID: PMC11534598 DOI: 10.3389/fpls.2024.1461798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Introduction Intersectional hybrids in lilies possess significant breeding value, but the lack of complete lily genomes and complex genotypes pose challenges for early identification of lily hybrids. This study aimed to use intersectional hybrid cultivars as female parents and wild lilies as male parents to facilitate early identification of hybrid offsprings and enhance the efficiency and convenience of the process. Methods We investigated the nature of cross combinations using Non-denaturing Fluorescence In Situ Hybridization (ND-FISH) and Genomic In Situ Hybridization (GISH) techniques. Three novel oligonucleotide probes-Oligo-pTa794, Oligo-pITS and Oligo-telo-were developed for lily chromosome research. Results Our results demonstrated successful hybridization between wild lilies and intersectional hybrid cultivars, producing a total of 130 hybrid progenies. The combination of ND-FISH and GISH analyses effectively revealed the genomic composition of the hybrid progeny and determined the parental origin of specific chromosomes. Discussion This research provides significant guidance for lily breeding practices and offers a valuable reference for the application of ND-FISH and GISH techniques in interspecific hybridization breeding and molecular cytogenetic research across various plant species. The methods developed enable more precise, efficient, and convenient identification of hybrid offsprings.
Collapse
Affiliation(s)
- Mei Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xue Yong
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jungang Zhu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Qian Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xiaodan Liu
- Chengdu Botanical Garden, Chengdu, Sichuan, China
| | - Lu Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lisha Mou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lijia Zeng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Peihua Zhang
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Yuanzhi Pan
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Tadvani HK, Bijanzadeh E, Najafi-Ghiri M. Synergistic effect of salicylic acid and biochar on biochemical properties, yield and nutrient uptake of triticale under water stress. Heliyon 2024; 10:e37152. [PMID: 39296113 PMCID: PMC11408057 DOI: 10.1016/j.heliyon.2024.e37152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
In arid regions, one of the practical solutions to overcome the water shortage and increasing soil fertility is application of salicylic acid (SA) with biochar. A pot experiment was conducted to consider the combination of SA with biochar on biochemical and physiological parameters of triticale as a factorial experiment using a completely randomized design (RCD) with four replicates. Treatments consisted of irrigation regime (normal irrigation and irrigation according to 50 % field capacity), salicylic acid application [without SA (SA0) and 3 mM SA (SA3)] and fertilizer type including without fertilizer (control), application of 50 kg ha-1 phosphorus (P), and application of wheat biochar (WB), cotton biochar (CB) and sesame biochar (SB) (2 % w/w). Under water stress, CB at SA0 and SA3 could improve the total chlorophyll by 119.4 and 70.6 %, compared to control, respectively. Also, carotenoid content in SA3 treatments increased in the range of 75.8 to 34.6 % compared to SA0. CB at SA3, increased catalase activity by 11.4 % compared to SB. At SA3, the highest RWC was observed in WB and CB by 26.7 and 18.1 % increases compared to SA0, respectively. At SA3, CB could enhance grain yield by 24.8 % under water stress. Under water stress, at SA3, remobilization efficiency from 63.2 % in control was enhanced to 69.2, 74.3 and 68.1 % in WB, CB and SB, respectively. CB and WB had better chemical properties in terms of EC, N, P, K and micronutrients compared to SB. These properties of BC and WB enhanced their ability to increase the nutrient availability, biochemical properties and consequently the grain yield enhancement, especially when applied with SA3.
Collapse
Affiliation(s)
- Hesameddin Khajepour Tadvani
- Agroecology Department, College of Agriculture and Natural Resources of Darab, Shiraz University, Agroecology Dep. BOX: 7459117666, Shiraz, Iran
| | - Ehsan Bijanzadeh
- Agroecology Department, College of Agriculture and Natural Resources of Darab, Shiraz University, Agroecology Dep. BOX: 7459117666, Shiraz, Iran
| | - Mahdi Najafi-Ghiri
- Oil Science Department, College of Agriculture and Natural Resources of Darab, Shiraz University, Agroecology Dep. BOX: 7459117666, Shiraz, Iran
| |
Collapse
|
6
|
Moustakas M, Panteris E, Moustaka J, Aydın T, Bayçu G, Sperdouli I. Modulation of Photosystem II Function in Celery via Foliar-Applied Salicylic Acid during Gradual Water Deficit Stress. Int J Mol Sci 2024; 25:6721. [PMID: 38928427 PMCID: PMC11203862 DOI: 10.3390/ijms25126721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Water deficit is the major stress factor magnified by climate change that causes the most reductions in plant productivity. Knowledge of photosystem II (PSII) response mechanisms underlying crop vulnerability to drought is critical to better understanding the consequences of climate change on crop plants. Salicylic acid (SA) application under drought stress may stimulate PSII function, although the exact mechanism remains essentially unclear. To reveal the PSII response mechanism of celery plants sprayed with water (WA) or SA, we employed chlorophyll fluorescence imaging analysis at 48 h, 96 h, and 192 h after watering. The results showed that up to 96 h after watering, the stroma lamellae of SA-sprayed leaves appeared dilated, and the efficiency of PSII declined, compared to WA-sprayed plants, which displayed a better PSII function. However, 192 h after watering, the stroma lamellae of SA-sprayed leaves was restored, while SA boosted chlorophyll synthesis, and by ameliorating the osmotic potential of celery plants, it resulted in higher relative leaf water content compared to WA-sprayed plants. SA, by acting as an antioxidant under drought stress, suppressed phototoxicity, thereby offering PSII photoprotection, together with enhanced effective quantum yield of PSII photochemistry (ΦPSII) and decreased quantity of singlet oxygen (1O2) generation compared to WA-sprayed plants. The PSII photoprotection mechanism induced by SA under drought stress was triggered by non-photochemical quenching (NPQ), which is a strategy to protect the chloroplast from photo-oxidative damage by dissipating the excess light energy as heat. This photoprotective mechanism, triggered by NPQ under drought stress, was adequate in keeping, especially in high-light conditions, an equal fraction of open PSII reaction centers (qp) as of non-stress conditions. Thus, under water deficit stress, SA activates a regulatory network of stress and light energy partitioning signaling that can mitigate, to an extent, the water deficit stress on PSII functioning.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.M.); (E.P.)
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.M.); (E.P.)
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | - Tuğba Aydın
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (T.A.); (G.B.)
| | - Gülriz Bayçu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (T.A.); (G.B.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter (ELGO-Dimitra), 57001 Thermi, Greece
| |
Collapse
|
7
|
Jing J, Qian F, Chang X, Li Z, Li W. Narrowing row spacing and adding inter-block promote the grain filling and flag leaf photosynthetic rate of wheat under enlarged drip tube spacing system. FRONTIERS IN PLANT SCIENCE 2024; 15:1368410. [PMID: 38903419 PMCID: PMC11188436 DOI: 10.3389/fpls.2024.1368410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024]
Abstract
Enlarging the lateral space of drip tubes saves irrigation equipment costs (drip tubes and bypass), but it will lead to an increased risk of grain yield heterogeneity between wheat rows. Adjusting wheat row spacing is an effective cultivation measure to regulate a row's yield heterogeneity. During a 2-year field experiment, we investigated the variations in yield traits and photosynthetic physiology by utilizing two different water- and fertilizer-demanding spring wheat cultivars (NS22 and NS44) under four kinds of drip irrigation patterns with different drip tube lateral spacing and wheat row spacing [① TR4, drip tube spacing (DTS) was 60 cm, wheat row horizontal spacing (WRHS) was 15 cm; ② TR6, DTS was 90 cm, WRHS was 15 cm; ③ TR6L, DTS was 90 cm, WRHS was 10 cm, inter-block spacing (IBS) was 35 cm; and ④ TR6S, DTS was 80 cm, WRHS was 10 cm, IBS was 25 cm]. The results showed that under 15-cm equal row spacing condition, after the number of wheat rows served by a single tube increased from four (TR4, control) to six (TR6), NS22 and NS44 exhibited a marked decline in yield. The decline of NS22 (9.93%) was higher than that of NS44 (9.04%), and both cultivars also showed a greater decrease in grain weight and average grain-filling rate (AGFR) of inferior grains (NS22: 23.19%, 13.97%; NS44: 7.78%, 5.86%) than the superior grains (NS22: 10.60%, 8.33%; NS44: 4.89%, 4.62%). After the TR6 was processed to narrow WRHS (from 15 to 10 cm) and add IBS (TR6L: 35 cm; TR6S: 25 cm), the grain weight per panicle (GWP) and AGFR of superior and inferior grains in the third wheat row (RW3) of NS22 and NS44 under TR6L increased significantly by 26.05%, 8.22%, 14.05%, 10.50%, 5.09%, and 5.01%, respectively, and under TR6S, they significantly increased by 20.78%, 9.91%, 16.19%, 9.28%, 5.01%, and 4.14%, respectively. The increase in GWP and AGFR was related to the increase in flag leaf area, net photosynthetic rate, chlorophyll content, relative water content, actual photochemical efficiency of PSII, and photochemical quenching coefficient. Among TR4, TR6, TR6L, and TR6S, for both NS22 and NS44, the yield of TR6S was significantly higher than that of TR6 and TR6L. Furthermore, TR6S showed the highest economic benefit.
Collapse
Affiliation(s)
| | | | | | | | - Weihua Li
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, China
| |
Collapse
|
8
|
Dai T, Ban S, Han L, Li L, Zhang Y, Zhang Y, Zhu W. Effects of exogenous glycine betaine on growth and development of tomato seedlings under cold stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1332583. [PMID: 38584954 PMCID: PMC10995342 DOI: 10.3389/fpls.2024.1332583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
Low temperature is a type of abiotic stress affecting the tomato (Solanum lycopersicum) growth. Understanding the mechanisms and utilization of exogenous substances underlying plant tolerance to cold stress would lay the foundation for improving temperature resilience in this important crop. Our study is aiming to investigate the effect of exogenous glycine betaine (GB) on tomato seedlings to increase tolerance to low temperatures. By treating tomato seedlings with exogenous GB under low temperature stress, we found that 30 mmol/L exogenous GB can significantly improve the cold tolerance of tomato seedlings. Exogenous GB can influence the enzyme activity of antioxidant defense system and ROS levels in tomato leaves. The seedlings with GB treatment presented higher Fv/Fm value and photochemical activity under cold stress compared with the control. Moreover, analysis of high-throughput plant phenotyping of tomato seedlings also supported that exogenous GB can protect the photosynthetic system of tomato seedlings under cold stress. In addition, we proved that exogenous GB significantly increased the content of endogenous abscisic acid (ABA) and decreased endogenous gibberellin (GA) levels, which protected tomatoes from low temperatures. Meanwhile, transcriptional analysis showed that GB regulated the expression of genes involved in antioxidant capacity, calcium signaling, photosynthesis activity, energy metabolism-related and low temperature pathway-related genes in tomato plants. In conclusion, our findings indicated that exogenous GB, as a cryoprotectant, can enhance plant tolerance to low temperature by improving the antioxidant system, photosynthetic system, hormone signaling, and cold response pathway and so on.
Collapse
Affiliation(s)
- Taoyu Dai
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Songtao Ban
- Key Laboratory of Intelligent Agricultural Technology (Yangtze River Delta), Ministry of Agriculture and Rural Affairs, Agricultural Information Institute of Science and Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liyuan Han
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Linyi Li
- Key Laboratory of Intelligent Agricultural Technology (Yangtze River Delta), Ministry of Agriculture and Rural Affairs, Agricultural Information Institute of Science and Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yingying Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yuechen Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Intelligent Agricultural Technology (Yangtze River Delta), Ministry of Agriculture and Rural Affairs, Agricultural Information Institute of Science and Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
9
|
Dong X, Ma X, Zhao Z, Ma M. Exogenous betaine enhances salt tolerance of Glycyrrhiza uralensis through multiple pathways. BMC PLANT BIOLOGY 2024; 24:165. [PMID: 38431542 PMCID: PMC10908008 DOI: 10.1186/s12870-024-04851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Glycyrrhiza uralensis Fisch., a valuable medicinal plant, shows contrasting salt tolerance between seedlings and perennial individuals, and salt tolerance at seedling stage is very weak. Understanding this difference is crucial for optimizing cultivation practices and maximizing the plant's economic potential. Salt stress resistance at the seedling stage is the key to the cultivation of the plant using salinized land. This study investigated the physiological mechanism of the application of glycine betaine (0, 10, 20, 40, 80 mM) to seedling stages of G. uralensis under salt stress (160 mM NaCl). RESULTS G. uralensis seedlings' growth was severely inhibited under NaCl stress conditions, but the addition of GB effectively mitigated its effects, with 20 mM GB had showing most significant alleviating effect. The application of 20 mM GB under NaCl stress conditions significantly increased total root length (80.38%), total root surface area (93.28%), and total root volume (175.61%), and significantly increased the GB content in its roots, stems, and leaves by 36.88%, 107.05%, and 21.63%, respectively. The activity of betaine aldehyde dehydrogenase 2 (BADH2) was increased by 74.10%, 249.38%, and 150.60%, respectively. The 20 mM GB-addition treatment significantly increased content of osmoregulatory substances (the contents of soluble protein, soluble sugar and proline increased by 7.05%, 70.52% and 661.06% in roots, and also increased by 30.74%, 47.11% and 26.88% in leaves, respectively.). Furthermore, it markedly enhanced the activity of antioxidant enzymes and the content of antioxidants (SOD, CAT, POD, APX and activities and ASA contents were elevated by 59.55%, 413.07%, 225.91%, 300.00% and 73.33% in the root, and increased by 877.51%, 359.89%, 199.15%, 144.35%, and 108.11% in leaves, respectively.), and obviously promoted salt secretion capacity of the leaves, which especially promoted the secretion of Na+ (1.37 times). CONCLUSIONS In summary, the exogenous addition of GB significantly enhances the salt tolerance of G. uralensis seedlings, promoting osmoregulatory substances, antioxidant enzyme activities, excess salt discharge especially the significant promotion of the secretion of Na+Future studies should aim to elucidate the molecular mechanisms that operate when GB regulates saline stress tolerance.
Collapse
Affiliation(s)
- Xinping Dong
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
- Ministry of Education Key Laboratory of Xinjiang Phytomedicine Resource Utilization, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xiaomei Ma
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
- Ministry of Education Key Laboratory of Xinjiang Phytomedicine Resource Utilization, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Zhilong Zhao
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
- Ministry of Education Key Laboratory of Xinjiang Phytomedicine Resource Utilization, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Miao Ma
- College of Life Sciences, Shihezi University, Shihezi, 832003, China.
- Ministry of Education Key Laboratory of Xinjiang Phytomedicine Resource Utilization, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
10
|
Gao Q, Liu Y, Liu Y, Dai C, Zhang Y, Zhou F, Zhu Y. Salicylic Acid Modulates the Osmotic System and Photosynthesis Rate to Enhance the Drought Tolerance of Toona ciliata. PLANTS (BASEL, SWITZERLAND) 2023; 12:4187. [PMID: 38140515 PMCID: PMC10747095 DOI: 10.3390/plants12244187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Toona ciliata M. Roem. is a valuable and fast-growing timber species which is found in subtropical regions; however, drought severely affects its growth and physiology. Although the exogenous application of salicylic acid (SA) has been proven to enhance plant drought tolerance by regulating the osmotic system and photosynthesis rate, the physiological processes involved in the regulation of drought tolerance by SA in various plants differ. Therefore, drought mitigation techniques tailored for T. ciliata should be explored or developed for the sustainable development of the timber industry. We selected 2-year-old T. ciliata seedlings for a potting experiment, set the soil moisture at 45%, and subjected some of the T. ciliata seedlings to a moderate drought (MD) treatment; to others, 0.5 mmol/L exogenous SA (MD + SA) was applied as a mitigation test, and we also conducted a control using a normal water supply at 70% soil moisture (CK). Our aim was to investigate the mitigating effects of exogenous SA on the growth condition, osmotic system, and photosynthesis rate of T. ciliata under drought stress conditions. OPLS-VIP was used to analyze the main physiological factors that enable exogenous SA to alleviate drought-induced injury in T. ciliata. The results indicated that exogenous SA application increased the growth of the ground diameter, plant height, and leaf blades and enhanced the drought tolerance of the T. ciliata seedlings by maintaining the balance of their osmotic systems, improving their gas exchange parameters, and restoring the activity of their PSII reaction centers. The seven major physiological factors that enabled exogenous SA to mitigate drought-induced injury in the T. ciliata seedlings were the soluble proteins (Sp), net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), stomatal opening window (Sow), activity of the photosystem II reaction center (ΦPSII), and electron transfer rate (ETR). Of these, Sp was the most dominant factor. There was a synergistic effect between the osmotic system and the photosynthetic regulation of drought injury in the T. ciliata seedlings. Overall, our study confirms that exogenous SA enhances the drought tolerance of T. ciliata by modulating the osmotic system and photosynthesis rate.
Collapse
Affiliation(s)
- Qi Gao
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yamin Liu
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yumin Liu
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Chongwen Dai
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yulin Zhang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Fanbo Zhou
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yating Zhu
- College of Resources and Environment, Southwest University, Chongqing 400715, China; (Q.G.); (Y.L.); (C.D.); (Y.Z.); (F.Z.); (Y.Z.)
- Key Laboratory of Ecological Environment in Three Gorges Reservoir Area, Ministry of Education, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Shang G, Meng Z, Qinyue Z, Feng X, Zhang W. Effects of exogenous zinc (ZnSO 4·7H 2O) on photosynthetic characteristics and grain quality of hybrid rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108049. [PMID: 37948977 DOI: 10.1016/j.plaphy.2023.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 11/12/2023]
Abstract
Rice is an important food crop and zinc (Zn) is a beneficial microelement. However, there are few reports on the effect of zinc on yield and physiological characteristics of rice. In this study, exogenous zinc (ZnSO4·7H2O) was applied on plant to explore the effects of zinc on rice yield, quality and photosynthetic capacity. The results showed that appropriate concentration of zinc could increase the net photosynthetic rate (Pn) of rice leaves, and Zn2 (2 mg/L ZnSO4•7H2O) treatment was the most significant. However, the Zn treatment had no positive effect on rice yield except under the concentration of Zn2. Meanwhile, the result showed that Zn treatment could increase chalkiness degree (CD) and chalky grain rate (CGR), decreased amylose content (AC), increased protein content and changed protein composition of rice. The above indexes were most significant in Zn2 treatment. In addition, the Zn2 treatment significantly increased rapid viscosity analyzer (RVA) of rice. In conclusion, the results of this study suggested that Zn treatment could enhance the photosynthetic capacity of rice leaves, and improve the processing quality, taste quality and nutritional quality of rice. However, it will have a negative impact on the appearance quality of rice and cannot be used to increase rice production. This study will provide a basis for the application of zinc in rice production.
Collapse
Affiliation(s)
- Gao Shang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China.
| | - Zhou Meng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China.
| | - Zhou Qinyue
- Anhui Agricultural University, 230000, Hefei, PR China
| | - Xu Feng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China.
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
12
|
Song M, Hu N, Zhou S, Xie S, Yang J, Ma W, Teng Z, Liang W, Wang C, Bu M, Zhang S, Yang X, He D. Physiological and RNA-Seq Analyses on Exogenous Strigolactones Alleviating Drought by Improving Antioxidation and Photosynthesis in Wheat ( Triticum aestivum L.). Antioxidants (Basel) 2023; 12:1884. [PMID: 37891963 PMCID: PMC10604895 DOI: 10.3390/antiox12101884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Drought poses a significant challenge to global wheat production, and the application of exogenous phytohormones offers a convenient approach to enhancing drought tolerance of wheat. However, little is known about the molecular mechanism by which strigolactones (SLs), newly discovered phytohormones, alleviate drought stress in wheat. Therefore, this study is aimed at elucidating the physiological and molecular mechanisms operating in wheat and gaining insights into the specific role of SLs in ameliorating responses to the stress. The results showed that SLs application upregulated the expression of genes associated with the antioxidant defense system (Fe/Mn-SOD, PER1, PER22, SPC4, CAT2, APX1, APX7, GSTU6, GST4, GOR, GRXC1, and GRXC15), chlorophyll biogenesis (CHLH, and CPX), light-harvesting chlorophyll A-B binding proteins (WHAB1.6, and LHC Ib-21), electron transfer (PNSL2), E3 ubiquitin-protein ligase (BB, CHIP, and RHY1A), heat stress transcription factor (HSFA1, HSFA4D, and HSFC2B), heat shock proteins (HSP23.2, HSP16.9A, HSP17.9A, HSP21, HSP70, HSP70-16, HSP70-17, HSP70-8, HSP90-5, and HSP90-6), DnaJ family members (ATJ1, ATJ3, and DJA6), as well as other chaperones (BAG1, CIP73, CIPB1, and CPN60I). but the expression level of genes involved in chlorophyll degradation (SGR, NOL, PPH, PAO, TIC55, and PTC52) as well as photorespiration (AGT2) was found to be downregulated by SLs priming. As a result, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced, and chlorophyll content and photosynthetic rate were increased, which indicated the alleviation of drought stress in wheat. These findings demonstrated that SLs alleviate drought stress by promoting photosynthesis through enhancing chlorophyll levels, and by facilitating ROS scavenging through modulation of the antioxidant system. The study advances understandings of the molecular mechanism underlying SLs-mediated drought alleviation and provides valuable insights for implementing sustainable farming practice under water restriction.
Collapse
Affiliation(s)
- Miao Song
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| | - Naiyue Hu
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Sumei Zhou
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| | - Songxin Xie
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Jian Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Wenqi Ma
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Zhengkai Teng
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Wenxian Liang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Chunyan Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Mingna Bu
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Shuo Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Xiwen Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| | - Dexian He
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| |
Collapse
|
13
|
Salsinha YCF, Rini DS, Indradewa D, Rachmawati D, Alam T, Purwestri YA. Exogenously applied Casuarina equisetifolia leaf extracts act as an osmoprotectant on proline accumulation under drought stress in local rice from Indonesia. FRONTIERS IN PLANT SCIENCE 2023; 14:1210241. [PMID: 37600188 PMCID: PMC10437820 DOI: 10.3389/fpls.2023.1210241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023]
Abstract
The effects of exogenously supplied osmoprotectants in crops have not yet been extensively studied. In this study, an osmoprotectant containing a high concentration of proline (2.5 g mol-1 FW) was obtained from a Casuarina equisetifolia leaf extract. The effect of the extract was evaluated in local Indonesian rice cultivars Boawae Seratus Malam (BSM), Gogo Jak (GJ), Situ Bagendit (SB) (drought-tolerant), Kisol Manggarai (KM) and Ciherang (drought-susceptible) cultivars under drought at the morphological, physiological, and genetic levels. Under drought, the KM showed an increased level of OsWRKY, OsNAC, OsDREB1A, and OsDREB2A expression after application of the osmoprotectant, leading to the activation of proline synthesis genes including OsP5CS1, OsP5CR, and OsProDH, while the tolerant cultivars (BSM, GJ, and SB) showed no difference. The content of chlorophyll, carotenoids, anthocyanins, ascorbate peroxidase, catalase, and superoxide dismutase activities also increased in GJ and KM, during drought stress and applied osmoprotectants, but remained low in the BSM. We conclude that the foliar application of osmoprotectants derived from C.equisetifolia caused an accumulation of proline in susceptible plants. The existence of these extracts stabilizes leaf cells and supports photosynthetic compartments and carbon assimilation in plants, leading to growth.
Collapse
Affiliation(s)
- Yustina Carolina Febrianti Salsinha
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, West Java, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Setyo Rini
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, West Java, Indonesia
| | - Didik Indradewa
- Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Diah Rachmawati
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Taufan Alam
- Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yekti Asih Purwestri
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
14
|
Prakash V, Nihranz CT, Casteel CL. The Potyviral Protein 6K2 from Turnip Mosaic Virus Increases Plant Resilience to Drought. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:189-197. [PMID: 36534062 DOI: 10.1094/mpmi-09-22-0183-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Virus infection can increase drought tolerance of infected plants compared with noninfected plants; however, the mechanisms mediating virus-induced drought tolerance remain unclear. In this study, we demonstrate turnip mosaic virus (TuMV) infection increases Arabidopsis thaliana survival under drought compared with uninfected plants. To determine if specific TuMV proteins mediate drought tolerance, we cloned the coding sequence for each of the major viral proteins and generated transgenic A. thaliana that constitutively express each protein. Three TuMV proteins, 6K1, 6K2, and NIa-Pro, enhanced drought tolerance of A. thaliana when expressed constitutively in plants compared with controls. While in the control plant, transcripts related to abscisic acid (ABA) biosynthesis and ABA levels were induced under drought, there were no changes in ABA or related transcripts in plants expressing 6K2 under drought compared with well-watered conditions. Expression of 6K2 also conveyed drought tolerance in another host plant, Nicotiana benthamiana, when expressed using a virus overexpression construct. In contrast to ABA, 6K2 expression enhanced salicylic acid (SA) accumulation in both Arabidopsis and N. benthamiana. These results suggest 6K2-induced drought tolerance is mediated through increased SA levels and SA-dependent induction of plant secondary metabolites, osmolytes, and antioxidants that convey drought tolerance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Ved Prakash
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, U.S.A
| | - Chad T Nihranz
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, U.S.A
| | - Clare L Casteel
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, U.S.A
| |
Collapse
|
15
|
Huang HX, Cao Y, Xin KJ, Liang RH, Chen YT, Qi JJ. Morphological and physiological changes in Artemisia selengensis under drought and after rehydration recovery. FRONTIERS IN PLANT SCIENCE 2022; 13:851942. [PMID: 35991406 PMCID: PMC9389366 DOI: 10.3389/fpls.2022.851942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Changes in global climate and precipitation patterns have exacerbated the existing uneven distribution of water, causing many plants to face the alternate situation of drought and water flooding. We studied the growth and physiological response of the wetland plant Artemisia selengensis to drought and rehydration. In this study, Artemisia selengensis seedlings were subjected to 32.89% (SD), 47.36 % (MD), 60.97% (MID), and 87.18 % (CK) field water holding capacity for 70 days, followed by 14 days of rehydration. The results showed that drought inhibited the increase of plant height, basal diameter, and biomass accumulation under SD and MD, but the root shoot ratio (R/S) increased. Drought stress also decreased the content of total chlorophyll (Chl), chlorophyll a (Chl-a), chlorophyll b (Chl-b), and carotenoid (Car). Soluble sugar (SS) and proline (Pro) were accumulated rapidly under drought, and the relative water content (RWC) of leaves was kept at a high level of 80%. After rehydration, the plant height, basal diameter, biomass, and R/S ratio could not be recovered under SD and MD, but these indicators were completely recovered under MID. The RWC, Chl, Chl-a, Chl-b, Car, and osmotic substances were partially or completely recovered. In conclusion, Artemisia selengensis not only can improve drought resistance by increasing the R/S ratio and osmotic substances but also adopt the compensatory mechanism during rehydration. It is predictable that A. selengensis may benefit from possible future aridification of wetlands and expand population distribution.
Collapse
Affiliation(s)
- Hui-Xiong Huang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
- Nanchang Base of International Centre on Space Technologies for Natural and Cultural Heritage Under the Auspices of UNESCO, Nanchang, China
| | - Yun Cao
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
- Nanchang Base of International Centre on Space Technologies for Natural and Cultural Heritage Under the Auspices of UNESCO, Nanchang, China
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Nanchang, China
| | - Kai-Jing Xin
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
| | - Rong-Hua Liang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
| | - Yi-Ting Chen
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
| | - Jia-Jun Qi
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
| |
Collapse
|