1
|
Tomar S, Subba A, Chatterjee Y, Singhal NK, Pareek A, Singla-Pareek SL. A cystathionine beta-synthase domain containing protein, OsCBSCBS4, interacts with OsSnRK1A and OsPKG and functions in abiotic stress tolerance in rice. PLANT, CELL & ENVIRONMENT 2025; 48:2630-2646. [PMID: 39073079 DOI: 10.1111/pce.15061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
The Cystathionine-β-Synthase (CBS) domain-containing proteins (CDCPs) constitute a functionally diverse protein superfamily, sharing an evolutionary conserved CBS domain either in pair or quad. Rice genome (Oryza sativa subsp. indica) encodes 42 CDCPs; their functions remain largely unexplored. This study examines OsCBSCBS4, a quadruple CBS domain containing protein towards its role in regulating the abiotic stress tolerance in rice. Gene expression analyses revealed upregulation of OsCBSCBS4 in response to diverse abiotic stresses. Further, the cytoplasm-localised OsCBSCBS4 showed interaction with two different kinases, a cytoplasmic localised cGMP-dependant protein kinase (OsPKG) and the nucleo-cytoplasmic catalytic subunit of sucrose-nonfermentation 1-related protein kinase 1 (OsSnRK1A). The interaction with the latter assisted in trafficking of OsCBSCBS4 to the nucleus as well. Overexpression of OsCBSCBS4 in rice resulted in enhanced tolerance to drought and salinity stress, via maintaining better physiological parameters and antioxidant activity. Additionally, OsCBSCBS4-overexpressing rice plants exhibited reduced yield penalty under stress conditions. The in silico docking and in vitro binding analyses of OsCBSCBS4 with ATP suggest its involvement in cellular energy balance. Overall, this study provides novel insight into the unexplored functions of OsCBSCBS4 and demonstrates it as a new promising target for augmenting crop resilience.
Collapse
Affiliation(s)
- Surabhi Tomar
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashish Subba
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yajnaseni Chatterjee
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, India
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
2
|
Furch ACU, Zimmermann MR, Noll GA, Wrobel LS, Scholz SS, Buxa-Kleeberg SV, Hafke JB, Fliegmann J, Mithöfer A, Ehlers K, Haufschild T, Nötzold J, Koch AM, Grabe V, Teutemacher F, Maaß JP, Prüfer D, Oelmüller R, Peiter E, Kogel KH, van Bel AJE. Transformation of flg22 perception into electrical signals decoded in vasculature leads to sieve tube blockage and pathogen resistance. SCIENCE ADVANCES 2025; 11:eads6417. [PMID: 40009682 PMCID: PMC11864193 DOI: 10.1126/sciadv.ads6417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025]
Abstract
This study focuses on the question how and where information acquired by FLS2 perception of flg22 is transformed into electrical signals crucial for generation of local and systemic defense responses. In Arabidopsis thaliana and Vicia faba leaves, FLS2 density was high in the epidermis and vascular parenchyma, low in mesophyll, and absent in sieve elements (SEs). Aequorin-based examinations disclosed dual cytosolic Ca2+ peaks shortly after flg22 application, which corresponded with two voltage shifts from the epidermis to SEs. These signals were converted into rapid long-range action potentials (APs) or slower short-range variation potentials (VPs). Modified phytohormone-levels demonstrated systemic AP effects. Jasmonic acid up-regulation was significantly higher in wild-type than Atseor1/2 mutants. Abundant Ca2+ influx associated with VPs was responsible for transient sieve element occlusion (SEO) near the flg22 perception site, whereas SEO was absent in Atseor1/2 and Atfls2 mutants. Biological relevance of SEO was demonstrated by higher susceptibility of Atseor1/2 mutants to Pseudomonas syringae than wild-type plants.
Collapse
Affiliation(s)
- Alexandra C. U. Furch
- Department of Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Dornburger Straße 159, D-07743 Jena, Germany
| | - Matthias R. Zimmermann
- Department of Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Dornburger Straße 159, D-07743 Jena, Germany
| | - Gundula A. Noll
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143 Münster, Germany
| | - Lisa S. Wrobel
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Sandra S. Scholz
- Department of Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Dornburger Straße 159, D-07743 Jena, Germany
| | - Stefanie V. Buxa-Kleeberg
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Jens B. Hafke
- Institute of Botany, Justus Liebig University Giessen, Heinrich-Buff-Ring 38, D-35392 Giessen, Germany
- European School RheinMain, Theodor-Heuss-Straße 65, 61118 Bad Vilbel, Germany
| | - Judith Fliegmann
- Centre for Plant Molecular Biology, Eberhard-Karls-University Tübingen, D-72076 Tübingen, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Katrin Ehlers
- Institute of Botany, Justus Liebig University Giessen, Heinrich-Buff-Ring 38, D-35392 Giessen, Germany
| | - Tom Haufschild
- Department of Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Dornburger Straße 159, D-07743 Jena, Germany
| | - Jonas Nötzold
- Department of Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Dornburger Straße 159, D-07743 Jena, Germany
| | - Aline M. Koch
- Department of Cellbiology, Institute for Plant Sciences, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Veit Grabe
- Microscopic Imaging Service Group, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Florian Teutemacher
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Jan-Peter Maaß
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Dirk Prüfer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143 Münster, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Dornburger Straße 159, D-07743 Jena, Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Aart J. E. van Bel
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| |
Collapse
|
3
|
Bhattacharyya S, Bleker C, Meier B, Giridhar M, Rodriguez EU, Braun AM, Peiter E, Vothknecht UC, Chigri F. Ca 2+-dependent H 2O 2 response in roots and leaves of barley - a transcriptomic investigation. BMC PLANT BIOLOGY 2025; 25:232. [PMID: 39979811 PMCID: PMC11841189 DOI: 10.1186/s12870-025-06248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Ca2+ and H2O2 are second messengers that regulate a wide range of cellular events in response to different environmental and developmental cues. In plants, stress-induced H2O2 has been shown to initiate characteristic Ca2+ signatures; however, a clear picture of the molecular connection between H2O2-induced Ca2+ signals and H2O2-induced cellular responses is missing, particularly in cereal crops such as barley. Here, we employed RNA-seq analyses to identify transcriptome changes in roots and leaves of barley after H2O2 treatment under conditions that inhibited the formation of cytosolic Ca2+ transients. To that end, plasma membrane Ca2+ channels were blocked by LaCl3 application prior to stimulation of barley tissues with H2O2. RESULTS We examined the expression patterns of 4246 genes that had previously been shown to be differentially expressed upon H2O2 application. Here, we further compared their expression between H2O2 and LaCl3 + H2O2 treatment. Genes showing expression patterns different to the previous study were considered to be Ca2+-dependent H2O2-responsive genes. These genes, numbering 331 in leaves and 1320 in roots, could be classified in five and four clusters, respectively. Expression patterns of several genes from each cluster were confirmed by RT-qPCR. We furthermore performed a network analysis to identify potential regulatory paths from known Ca2+-related genes to the newly identified Ca2+-dependent H2O2 responsive genes, using the recently described Stress Knowledge Map. This analysis indicated several transcription factors as key points of the responses mediated by the cross-talk between H2O2 and Ca2+. CONCLUSION Our study indicates that about 70% of the H2O2-responsive genes in barley roots require a transient increase in cytosolic Ca2+ concentrations for alteration in their transcript abundance, whereas in leaves, the Ca2+ dependency was much lower at about 33%. Targeted gene analysis and pathway modeling identified not only known components of the Ca2+ signaling cascade in plants but also genes that are not yet connected to stimuli-associated signaling. Potential key transcription factors identified in this study can be further analyzed in barley and other crops to ultimately disentangle the underlying mechanisms of H2O2-associated signal transduction mechanisms. This could aid breeding for improved stress resistance to optimize performance and productivity under increasing climate challenges.
Collapse
Affiliation(s)
- Sabarna Bhattacharyya
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Carissa Bleker
- Department of Biotechnology and Systems Biology, National Institute of Biology (NIB), Večna pot 111, Ljubljana, SI-1000, Slovenia
| | - Bastian Meier
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | - Maya Giridhar
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner- Strasse 34, D-85354, Freising, Germany
| | - Elena Ulland Rodriguez
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Adrian Maximilian Braun
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Edgar Peiter
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120, Halle (Saale), Germany
| | - Ute C Vothknecht
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| | - Fatima Chigri
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| |
Collapse
|
4
|
Xie Q, Jiang Z, Yu C, Wang Q, Dai W, Wu J, Yu W. Integrated metabolomics and transcriptomics reveal the role of calcium sugar alcohol in the regulation of phenolic acid biosynthesis in Torreya grandis nuts. BMC PLANT BIOLOGY 2025; 25:97. [PMID: 39844048 PMCID: PMC11756137 DOI: 10.1186/s12870-025-06113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Torreya grandis, a prominent tree species of the autochthonous subtropical region of China, possesses a drupe-like fruit containing a nut that is rich in nutrients and bioactive compounds. However, the effect of calcium (Ca2+) sugar alcohol (CSA), a newly developed chelated Ca2+-fertilizer, on the secondary metabolism of phenolics in T. grandis nuts is largely unknown, for which transcriptomic and metabolomic analysis was carried out. RESULTS Transcriptome sequencing detected 47,064 transcripts, and several phenolic acid biosynthesis pathway-related genes were identified. Correlation analysis showed that the four transcription factors, TgWRKY1, TgAP2-1, TgAP2-3, and TgAP2-4, were positively associated with the accumulation of phenolic acids. Furthermore, the binding of TgAP2-1 to the TgHCT promoter was confirmed using yeast one hybrid and dual-luciferase assays. Furthermore, the expression of TgHCT in Nicotiana enhanced the total flavonoid content. CONCLUSIONS Our results indicated that a new regulatory module, Ca2+-AP2-HCT, involved in the regulation of phenolic acid biosynthesis was revealed, expanding the understanding of the role of Ca2+ fertilizers in plant secondary metabolism.
Collapse
Affiliation(s)
- Qiandan Xie
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Zhengchu Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Chenliang Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China.
| | - Qi Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Wensheng Dai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
- Department of Landscape Architecture, Jiyang College, Zhejiang A&F NFGA Engineering Research Center for Torreya Grandis 'Merrillii', Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China.
- Provincial Key Laboratory for Non-Wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou, 311300, China.
- Department of Landscape Architecture, Jiyang College, Zhejiang A&F NFGA Engineering Research Center for Torreya Grandis 'Merrillii', Zhejiang A&F University, Hangzhou, People's Republic of China.
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China.
- Provincial Key Laboratory for Non-Wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou, 311300, China.
- Department of Landscape Architecture, Jiyang College, Zhejiang A&F NFGA Engineering Research Center for Torreya Grandis 'Merrillii', Zhejiang A&F University, Hangzhou, People's Republic of China.
| |
Collapse
|
5
|
Panicucci G, Barreto P, Herzog M, Lichtenauer S, Schwarzländer M, Pedersen O, Weits DA. Tools to understand hypoxia responses in plant tissues. PLANT PHYSIOLOGY 2024; 197:kiae624. [PMID: 39576019 DOI: 10.1093/plphys/kiae624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
Our understanding of how low oxygen (O2) conditions arise in plant tissues and how they shape specific responses has seen major advancement in recent years. Important drivers have been (1) the discovery of the molecular machinery that underpins plant O2 sensing; and (2) a growing set of dedicated tools to define experimental conditions and assess plant responses with increasing accuracy and resolution. While some of those tools, such as the Clark-type O2 electrode, were established decades ago, recent customization has set entirely new standards and enabled novel research avenues in plant hypoxia research. Other tools, such as optical hypoxia reporters and O2 biosensor systems, have been introduced more recently. Yet, their adoption into plant hypoxia research has started to generate novel insight into hypoxia physiology at the tissue and cellular levels. The aim of this update is to provide an overview of the currently available and emerging tools for O2 hypoxia measurements in plants, with an emphasis on high-resolution analyses in living plant tissues and cells. Furthermore, it offers directions for future development and deployment of tools to aid progress with the most pressing questions in plant hypoxia research.
Collapse
Affiliation(s)
- Gabriele Panicucci
- Experimental and Computational Plant Development, Institute of Environment Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands
| | - Pedro Barreto
- Plant Energy Biology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Max Herzog
- Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
| | - Sophie Lichtenauer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Markus Schwarzländer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Daan A Weits
- Experimental and Computational Plant Development, Institute of Environment Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands
| |
Collapse
|
6
|
van Dieren A, Schwarzenbacher RE, Sonnewald S, Bittner A, Vothknecht UC. Analysis of abiotic and biotic stress-induced Ca 2+ transients in the crop species Solanum tuberosum. Sci Rep 2024; 14:27625. [PMID: 39528594 PMCID: PMC11555376 DOI: 10.1038/s41598-024-79134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Secondary messengers, such as calcium ions (Ca2+), are integral parts of a system that transduces environmental stimuli into appropriate cellular responses. Different abiotic and biotic stresses as well as developmental processes trigger temporal increases in cytosolic free Ca2+ levels by an influx from external and internal stores. Stimulus-specificity is obtained by a certain amplitude, duration, oscillation and localisation of the response. Most knowledge on stress-specific Ca2+ transient, called calcium signatures, has been gained in the model plant Arabidopsis thaliana, while reports about stress-related Ca2+ signalling in crop plants are comparatively scarce. In this study, we introduced the Ca2+ biosensor apoaequorin into potato (Solanum tuberosum, Lcv. Désirée). We observed dose-dependent calcium signatures in response to a series of stress stimuli, including H2O2, NaCl, mannitol and pathogen-associated molecular patterns (PAMPs) with stimuli-specific kinetics. Direct comparison with Arabidopsis revealed differences in the kinetics and amplitude of Ca2+ transients between both species, implying species-specific sensitivity for different stress conditions. The potato line generated in this work provides a useful tool for further investigations on stress-induced signalling pathways, which could contribute to the generation of novel, stress-tolerant potato varieties.
Collapse
Affiliation(s)
- Annelotte van Dieren
- Institute for Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | | | - Sophia Sonnewald
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstraße 5, Erlangen, 91058, Germany
| | - Andras Bittner
- Institute for Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Ute C Vothknecht
- Institute for Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
7
|
Chen W, Xu J, Chen J, Wang JF, Zhang S, Pei ZM. Acidic Stress Induces Cytosolic Free Calcium Oscillation, and an Appropriate Low pH Helps Maintain the Circadian Clock in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3107. [PMID: 39520026 PMCID: PMC11548685 DOI: 10.3390/plants13213107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Acidic stress is a formidable environmental factor that exerts adverse effects on plant growth and development, ultimately leading to a potential reduction in agricultural productivity. A low pH triggers Ca2+ influx across the plasma membrane (PM), eliciting distinct responses under various acidic pH levels. However, the underlying mechanisms by which Arabidopsis plant cells generate stimulus-specific Ca2+ signals in response to acidic stress remain largely unexplored. The experimentally induced stimulus may elicit spikes in cytosolic free Ca2+ concentration ([Ca2+]i) spikes or complex [Ca2+]i oscillations that persist for 20 min over a long-term of 24 h or even several days within the plant cytosol and chloroplast. This study investigated the increase in [Ca2+]i under a gradient of low pH stress ranging from pH 3.0 to 6.0. Notably, the peak of [Ca2+]i elevation was lower at pH 4.0 than at pH 3.0 during the initial 8 h, while other pH levels did not significantly increase [Ca2+]i compared to low acidic stress conditions. Lanthanum chloride (LaCl3) can effectively suppress the influx of [Ca2+]i from the apoplastic to the cytoplasm in plants under acid stress, with no discernible difference in intracellular calcium levels observed in Arabidopsis. Following 8 h of acid treatment in the darkness, the intracellular baseline Ca2+ levels in Arabidopsis were significantly elevated when exposed to low pH stress. A moderately low pH, specifically 4.0, may function as a spatial-temporal input into the circadian clock system. These findings suggest that acid stimulation can exert a continuous influence on intracellular calcium levels, as well as plant growth and development.
Collapse
Affiliation(s)
- Wei Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
- Center on Plant Environmental Sensing, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jing Xu
- Center on Plant Environmental Sensing, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jia Chen
- Center on Plant Environmental Sensing, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jun-Feng Wang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shu Zhang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
8
|
Zhou Y, Feng C, Wang Y, Yun C, Zou X, Cheng N, Zhang W, Jing Y, Li H. Understanding of Plant Salt Tolerance Mechanisms and Application to Molecular Breeding. Int J Mol Sci 2024; 25:10940. [PMID: 39456729 PMCID: PMC11507592 DOI: 10.3390/ijms252010940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Soil salinization is a widespread hindrance that endangers agricultural production and ecological security. High salt concentrations in saline soils are primarily caused by osmotic stress, ionic toxicity and oxidative stress, which have a negative impact on plant growth and development. In order to withstand salt stress, plants have developed a series of complicated physiological and molecular mechanisms, encompassing adaptive changes in the structure and function of various plant organs, as well as the intricate signal transduction networks enabling plants to survive in high-salinity environments. This review summarizes the recent advances in salt perception under different tissues, physiological responses and signaling regulations of plant tolerance to salt stress. We also examine the current knowledge of strategies for breeding salt-tolerant plants, including the applications of omics technologies and transgenic approaches, aiming to provide the basis for the cultivation of salt-tolerant crops through molecular breeding. Finally, future research on the application of wild germplasm resources and muti-omics technologies to discover new tolerant genes as well as investigation of crosstalk among plant hormone signaling pathways to uncover plant salt tolerance mechanisms are also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan Jing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.Z.); (C.F.); (Y.W.); (C.Y.); (X.Z.); (N.C.); (W.Z.)
| | - Haiyan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.Z.); (C.F.); (Y.W.); (C.Y.); (X.Z.); (N.C.); (W.Z.)
| |
Collapse
|
9
|
Bohle F, Klaus A, Ingelfinger J, Tegethof H, Safari N, Schwarzländer M, Hochholdinger F, Hahn M, Meyer AJ, Acosta IF, Müller-Schüssele SJ. Contrasting cytosolic glutathione redox dynamics under abiotic and biotic stress in barley as revealed by the biosensor Grx1-roGFP2. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2299-2312. [PMID: 38301663 DOI: 10.1093/jxb/erae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Barley is a staple crop of major global importance and relatively resilient to a wide range of stress factors in the field. Transgenic reporter lines to investigate physiological parameters during stress treatments remain scarce. We generated and characterized transgenic homozygous barley lines (cv. Golden Promise Fast) expressing the genetically encoded biosensor Grx1-roGFP2, which indicates the redox potential of the major antioxidant glutathione in the cytosol. Our results demonstrated functionality of the sensor in living barley plants. We determined the glutathione redox potential (EGSH) of the cytosol to be in the range of -308 mV to -320 mV. EGSH was robust against a combined NaCl (150 mM) and water deficit treatment (-0.8 MPa) but responded with oxidation to infiltration with the phytotoxic secretome of the necrotrophic fungus Botrytis cinerea. The generated reporter lines are a novel resource to study biotic and abiotic stress resilience in barley, pinpointing that even severe abiotic stress leading to a growth delay does not automatically induce cytosolic EGSH oxidation, while necrotrophic pathogens can undermine this robustness.
Collapse
Affiliation(s)
- Finja Bohle
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633 Kaiserslautern, Germany
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Alina Klaus
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Julian Ingelfinger
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633 Kaiserslautern, Germany
| | - Hendrik Tegethof
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Nassim Safari
- Phytopathology, Department of Biology, RPTU Kaiserslautern-Landau, D-67633 Kaiserslautern, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143 Münster, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Matthias Hahn
- Phytopathology, Department of Biology, RPTU Kaiserslautern-Landau, D-67633 Kaiserslautern, Germany
| | - Andreas J Meyer
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113 Bonn, Germany
| | - Ivan F Acosta
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | | |
Collapse
|
10
|
Hudson A, Mullens A, Hind S, Jamann T, Balint‐Kurti P. Natural variation in the pattern-triggered immunity response in plants: Investigations, implications and applications. MOLECULAR PLANT PATHOLOGY 2024; 25:e13445. [PMID: 38528659 PMCID: PMC10963888 DOI: 10.1111/mpp.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
The pattern-triggered immunity (PTI) response is triggered at the plant cell surface by the recognition of microbe-derived molecules known as microbe- or pathogen-associated molecular patterns or molecules derived from compromised host cells called damage-associated molecular patterns. Membrane-localized receptor proteins, known as pattern recognition receptors, are responsible for this recognition. Although much of the machinery of PTI is conserved, natural variation for the PTI response exists within and across species with respect to the components responsible for pattern recognition, activation of the response, and the strength of the response induced. This review describes what is known about this variation. We discuss how variation in the PTI response can be measured and how this knowledge might be utilized in the control of plant disease and in developing plant varieties with enhanced disease resistance.
Collapse
Affiliation(s)
- Asher Hudson
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Alexander Mullens
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Sarah Hind
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Tiffany Jamann
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Plant Science Research UnitUSDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
11
|
Pecherina A, Dimitrieva A, Mudrilov M, Ladeynova M, Zanegina D, Brilkina A, Vodeneev V. Salt-Induced Early Changes in Photosynthesis Activity Caused by Root-to-Shoot Signaling in Potato. Int J Mol Sci 2024; 25:1229. [PMID: 38279229 PMCID: PMC10816847 DOI: 10.3390/ijms25021229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
Salinity is one of the most dangerous types of stress in agriculture. Acting on the root, salinity causes changes in physiological processes in the shoot, especially photosynthesis, which is crucial for plant productivity. In our study, we used potato plants, the most important crop, to investigate the role of salt-induced signals in changes in photosynthesis activity. We found a salt-induced polyphasic decrease in photosynthesis activity, and the earliest phase started several minutes after salt addition. We found that salt addition triggered rapid hydraulic and calcium waves from root to shoot, which occurred earlier than the first phase of the photosynthesis response. The inhibition of calcium signals by lanthanum decreased with the formation of rapid changes in photosynthesis. In addition to this, a comparison of the characteristic times of signal propagation and the formation of a response revealed the role of calcium waves in the modulation of rapid changes in photosynthesis. Calcium waves are activated by the ionic component of salinity. The salt-induced decrease in transpiration corresponds in time to the second phase of the photosynthetic response, and it can be the cause of this change. The accumulation of sodium in the leaves occurs a few hours after salt addition, and it can be the cause of the long-term suppression of photosynthesis. Thus, salinity modulates photosynthetic activity in plants in different ways: both through the activation of rapid distant signals and by reducing the water input and sodium accumulation.
Collapse
Affiliation(s)
- Anna Pecherina
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| | - Anastasia Dimitrieva
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| | - Maxim Mudrilov
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| | - Maria Ladeynova
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| | - Daria Zanegina
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (D.Z.); (A.B.)
| | - Anna Brilkina
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (D.Z.); (A.B.)
| | - Vladimir Vodeneev
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| |
Collapse
|
12
|
Bhattacharyya S, Giridhar M, Meier B, Peiter E, Vothknecht UC, Chigri F. Global transcriptome profiling reveals root- and leaf-specific responses of barley ( Hordeum vulgare L.) to H 2O 2. FRONTIERS IN PLANT SCIENCE 2023; 14:1223778. [PMID: 37771486 PMCID: PMC10523330 DOI: 10.3389/fpls.2023.1223778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
In cereal crops, such as barley (Hordeum vulgare L.), the ability to appropriately respond to environmental cues is an important factor for yield stability and thus for agricultural production. Reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), are key components of signal transduction cascades involved in plant adaptation to changing environmental conditions. H2O2-mediated stress responses include the modulation of expression of stress-responsive genes required to cope with different abiotic and biotic stresses. Despite its importance, knowledge of the effects of H2O2 on the barley transcriptome is still scarce. In this study, we identified global transcriptomic changes induced after application of 10 mM H2O2 to five-day-old barley plants. In total, 1883 and 1001 differentially expressed genes (DEGs) were identified in roots and leaves, respectively. Most of these DEGs were organ-specific, with only 209 DEGs commonly regulated and 37 counter-regulated between both plant parts. A GO term analysis further confirmed that different processes were affected in roots and leaves. It revealed that DEGs in leaves mostly comprised genes associated with hormone signaling, response to H2O2 and abiotic stresses. This includes many transcriptions factors and small heat shock proteins. DEGs in roots mostly comprised genes linked to crucial aspects of H2O2 catabolism and oxidant detoxification, glutathione metabolism, as well as cell wall modulation. These categories include many peroxidases and glutathione transferases. As with leaves, the H2O2 response category in roots contains small heat shock proteins, however, mostly different members of this family were affected and they were all regulated in the opposite direction in the two plant parts. Validation of the expression of the selected commonly regulated DEGs by qRT-PCR was consistent with the RNA-seq data. The data obtained in this study provide an insight into the molecular mechanisms of oxidative stress responses in barley, which might also play a role upon other stresses that induce oxidative bursts.
Collapse
Affiliation(s)
| | - Maya Giridhar
- Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Bastian Meier
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Edgar Peiter
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ute C. Vothknecht
- Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Fatima Chigri
- Institute for Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|