1
|
Liu S, An X, Xu C, He D, Li X, Chen C, Guo B, Xu D, Huang J. Integrative transcriptomic-physiological analysis deciphers nitrogen-mediated carbon reallocation balancing growth and flavonoid metabolism in Epimedium pubescens. FRONTIERS IN PLANT SCIENCE 2025; 16:1539445. [PMID: 40406714 PMCID: PMC12095337 DOI: 10.3389/fpls.2025.1539445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/14/2025] [Indexed: 05/26/2025]
Abstract
Nitrogen availability critically shapes medicinal plant quality by coordinating the "growth-secondary metabolism" trade-off, yet its regulatory mechanisms remain elusive in the non-model species Epimedium pubescens. Through physiological-transcriptomic integration under five nitrogen levels (0, 3.5, 7.5,15, 22.5 mM NO3 -), we demonstrated that moderate nitrogen (MN: 7.5 mM NO3 -) optimally balanced biomass accumulation (22%-53% higher than low nitrogen [LN: 0 mM NO3 -] and high nitrogen [HN: 22.5 mM NO3 -]) with maximal Icariin-type flavonoid production (19%-34% higher than LN/HN). Extreme nitrogen stresses (LN/HN) impaired photosynthetic efficiency (18%-20% reduction), disrupted carbon-nitrogen homeostasis, and restricted flavonoid biosynthesis by hindering carbon reallocation (soluble sugars reduced by 26%-27%, starch by 30%-43%). Time-series transcriptomics revealed distinct response dynamics: LN triggered active transcriptional reprogramming at mid-stage (36 days after treatment, DAT), whereas HN responses were delayed to late-stage (48 DAT). Weighted gene co-expression network analysis (WGCNA) identified the grey60 module as a hub coordinating carbon-nitrogen metabolism and mRNA processing. A tripartite regulatory network linking nitrogen-responsive genes (e.g., EpF3H, UGT), Icariin-type flavonoid/carbon metabolism (e.g., icariin, soluble sugars), and growth phenotypes (e.g., biomass, photosynthesis) elucidated how nitrogen optimizes the trade-off between medicinal quality and yield in E. pubescens. This study provides molecular targets for precision nitrogen management to enhance both medicinal quality and yield, while establishing an integrative framework combining physiological and transcriptomic analyses to investigate metabolic trade-offs in non-model plants.
Collapse
Affiliation(s)
- Shangnian Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaojing An
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaoqun Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Dongmei He
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianen Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Caixia Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Baolin Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - De Xu
- Institute of Chinese Materia Medica, Dazhou Academy of Agricultural Sciences, Dazhou, China
| | - Juan Huang
- Institute of Chinese Materia Medica, Dazhou Academy of Agricultural Sciences, Dazhou, China
| |
Collapse
|
2
|
Fan L, Zhang B, Ning M, Quan S, Guo C, Cui K, Chen L, Yan M, Ren X. Responses of transcriptome and metabolome in peanut leaves to dibutyl phthalate during whole growth period. FRONTIERS IN PLANT SCIENCE 2024; 15:1448971. [PMID: 39372850 PMCID: PMC11452913 DOI: 10.3389/fpls.2024.1448971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024]
Abstract
Introduction The application of agricultural film mulching technology has significantly contributed to increasing crop yield and income, but the pollution caused by residual film has seriously affected agricultural production and the natural environment. Agricultural film is commonly employed to enhance the yield of peanuts; its use may lead to excessive dibutyl phthalate (DBP) residues in peanut kernels. But, limited investigations have been conducted on the regulatory mechanism of peanut leaves in response to DBP exposure throughout the entire growth period. Methods To bridge this knowledge gap, we investigated the differences in transcriptome and metabolome of peanut leaves under DBP stress. Results According to visual observations, the results of morphological response showed that the growth of peanut plants was significantly inhibited from seedling to pod stage under DBP treatment. Transcriptomic analysis results showed that the genes AH19G05510 (LRR receptor-like serine threonine-protein kinase) and AH20G31870 (disease resistance), belonging to the FAR1 family and bZIP family respectively, may be key genes involved in the resistance to DBP stress throughout its growth stages. Metabolomic analysis results showed that during the initial stage of DBP stress, the key metabolites in peanut leaves response to stress were carboxylic acids and derivatives, as well as fatty acyls. As peanut growth progressed, flavonoids gradually became more prominent in the resistance to DBP stress. By integrating metabolomics and transcriptomics analysis, we have identified that purine metabolism during seedling and flowering stages, as well as the flavone and flavonol biosynthesis pathways during pod and maturity stages, played a crucial role in response to DBP stress. Discussion These findings not only provide valuable key gene and metabolic information for studying anti-plasticizer pollution throughout the entire growth period of peanuts, but also offer reference for enhancing crop resistance to plasticizer pollution through genetic modification and metabolic regulation.
Collapse
Affiliation(s)
- Lixia Fan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Bingchun Zhang
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Mingxiao Ning
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | | | - Changying Guo
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Kai Cui
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Xianfeng Ren
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| |
Collapse
|
3
|
Zhang H, Tang Y, Yue Y, Chen Y. Advances in the evolution research and genetic breeding of peanut. Gene 2024; 916:148425. [PMID: 38575102 DOI: 10.1016/j.gene.2024.148425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Peanut is an important cash crop used in oil, food and feed in our country. The rapid development of sequencing technology has promoted the research on the related aspects of peanut genetic breeding. This paper reviews the research progress of peanut origin and evolution, genetic breeding, molecular markers and their applications, genomics, QTL mapping and genome selection techniques. The main problems of molecular genetic breeding in peanut research worldwide include: the narrow genetic resources of cultivated species, unstable genetic transformation and unclear molecular mechanism of important agronomic traits. Considering the severe challenges regarding the supply of edible oil, and the main problems in peanut production, the urgent research directions of peanut are put forward: The de novo domestication and the exploitation of excellent genes from wild resources to improve modern cultivars; Integration of multi-omics data to enhance the importance of big data in peanut genetics and breeding; Cloning the important genes related to peanut agronomic traits and analyzing their fine regulation mechanisms; Precision molecular design breeding and using gene editing technology to accurately improve the key traits of peanut.
Collapse
Affiliation(s)
- Hui Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Yueyi Tang
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Yunlai Yue
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yong Chen
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Liu S, An X, Xu C, Guo B, Li X, Chen C, He D, Xu D, Li Y. Exploring the dynamic adaptive responses of Epimedium pubescens to phosphorus deficiency by Integrated transcriptome and miRNA analysis. BMC PLANT BIOLOGY 2024; 24:480. [PMID: 38816792 PMCID: PMC11138043 DOI: 10.1186/s12870-024-05063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
Phosphorus, a crucial macronutrient essential for plant growth and development. Due to widespread phosphorus deficiency in soils, phosphorus deficiency stress has become one of the major abiotic stresses that plants encounter. Despite the evolution of adaptive mechanisms in plants to address phosphorus deficiency, the specific strategies employed by species such as Epimedium pubescens remain elusive. Therefore, this study observed the changes in the growth, physiological reponses, and active components accumulation in E. pubescensunder phosphorus deficiency treatment, and integrated transcriptome and miRNA analysis, so as to offer comprehensive insights into the adaptive mechanisms employed by E. pubescens in response to phosphorus deficiency across various stages of phosphorus treatment. Remarkably, our findings indicate that phosphorus deficiency induces root growth stimulation in E. pubescens, while concurrently inhibiting the growth of leaves, which are of medicinal value. Surprisingly, this stressful condition results in an augmented accumulation of active components in the leaves. During the early stages (30 days), leaves respond by upregulating genes associated with carbon metabolism, flavonoid biosynthesis, and hormone signaling. This adaptive response facilitates energy production, ROS scavenging, and morphological adjustments to cope with short-term phosphorus deficiency and sustain its growth. As time progresses (90 days), the expression of genes related to phosphorus cycling and recycling in leaves is upregulated, and transcriptional and post-transcriptional regulation (miRNA regulation and protein modification) is enhanced. Simultaneously, plant growth is further suppressed, and it gradually begins to discard and decompose leaves to resist the challenges of long-term phosphorus deficiency stress and sustain survival. In conclusion, our study deeply and comprehensively reveals adaptive strategies utilized by E. pubescens in response to phosphorus deficiency, demonstrating its resilience and thriving potential under stressful conditions. Furthermore, it provides valuable information on potential target genes for the cultivation of E. pubescens genotypes tolerant to low phosphorus.
Collapse
Affiliation(s)
- Shangnian Liu
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xiaojing An
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 10063, China
| | - Chaoqun Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Baolin Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xianen Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Caixia Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| | - Dongmei He
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - De Xu
- Dazhou Academy of Agricultural Sciences, Dazhou, 635000, China
| | - Yi Li
- Dazhou Academy of Agricultural Sciences, Dazhou, 635000, China
| |
Collapse
|
5
|
Yu J, Yin K, Liu Y, Li Y, Zhang J, Han X, Tong Z. Co-expression network analysis reveals PbTGA4 and PbAPRR2 as core transcription factors of drought response in an important timber species Phoebe bournei. FRONTIERS IN PLANT SCIENCE 2024; 14:1297235. [PMID: 38259934 PMCID: PMC10800493 DOI: 10.3389/fpls.2023.1297235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024]
Abstract
Phoebe bournei is one of the main afforestation tree species in subtropical regions of China and is famous for its timber. Its distribution and growth are significantly impaired by water conditions. Thus, it is essential to understand the mechanism of the stress response in P. bournei. Here, we analyzed the phenotypic changes and transcriptomic rearrangement in the leaves and roots of P. bournei seedlings grown for 0 h, 1 h, 24 h, and 72 h under simulated drought conditions (10% PEG 6000). The results showed that drought stress inhibited plant photosynthesis and increased oxidoreductase activity and abscisic acid (ABA) accumulation. Spatio-temporal transcriptomic analysis identified 2836 and 3704 differentially expressed genes (DEGs) in leaves and roots, respectively. The responsive genes in different organs presented various expression profiles at different times. Gene co-expression network analysis identified two core transcription factors, TGA4 and APRR2, from two modules that showed a strong positive correlation with ABA accumulation. Our study investigated the different responses of aboveground and belowground organs of P. bournei to drought stress and provides critical information for improving the drought resistance of this timber species.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
6
|
Wan X, Yao G, Wang K, Liu Y, Wang F, Jiang H. Transcriptomic Analysis of the Response of the Toxic Dinoflagellate Prorocentrum lima to Phosphorous Limitation. Microorganisms 2023; 11:2216. [PMID: 37764060 PMCID: PMC10535992 DOI: 10.3390/microorganisms11092216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Some dinoflagellates cause harmful algal blooms, releasing toxic secondary metabolites, to the detriment of marine ecosystems and human health. Phosphorus (P) is a limiting macronutrient for dinoflagellate growth in the ocean. Previous studies have been focused on the physiological response of dinoflagellates to ambient P changes. However, the whole-genome's molecular mechanisms are poorly understood. In this study, RNA-Seq was utilized to compare the global gene expression patterns of a marine diarrheic shellfish poisoning (DSP) toxin-producing dinoflagellate, Prorocentrum lima, grown in inorganic P-replete and P-deficient conditions. A total of 148 unigenes were significantly up-regulated, and 30 unigenes were down-regulated under 1/4 P-limited conditions, while 2708 unigenes were significantly up-regulated, and 284 unigenes were down-regulated under 1/16 P-limited conditions. KEGG enrichment analysis of the differentially expressed genes shows that genes related to ribosomal proteins, glycolysis, fatty acid biosynthesis, phagosome formation, and ubiquitin-mediated proteolysis are found to be up-regulated, while most of the genes related to photosynthesis are down-regulated. Further analysis shows that genes encoding P transporters, organic P utilization, and endocytosis are significantly up-regulated in the P-limited cells, indicating a strong ability of P. lima to utilize dissolved inorganic P as well as intracellular organic P. These transcriptomic data are further corroborated by biochemical and physiological analyses, which reveals that under P deficiency, cellular contents of starch, lipid, and toxin increase, while photosynthetic efficiency declines. Our results indicate that has P. lima evolved diverse strategies to acclimatize to low P environments. The accumulation of carbon sources and DSP toxins could provide protection for P. lima to cope with adverse environmental conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (X.W.); (G.Y.); (K.W.); (Y.L.); (F.W.)
| |
Collapse
|