1
|
Xiao L, Hu Y, Wang Y, Lv C, Zhan N, Duan H, Su J. Hydrogen gas enhances Arabidopsis salt tolerance by modulating hydrogen peroxide-mediated redox and ion homeostasis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112356. [PMID: 39653253 DOI: 10.1016/j.plantsci.2024.112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Hydrogen gas (H2) plays a crucial role in mitigating salt stress in plants, but the underlying mechanisms is largely unknown. Herein, we employed the pharmacological, molecular, and genetic approaches to investigate the positive roles of hydrogen peroxide (H2O2) in endogenous H2-induced salt tolerance of Arabidopsis thaliana. H2-induecd salt tolerance of CrHYD1 (hydrogenase 1 gene from Chlamydomonas reinhardtii) transgenic Arabidopsis was blocked by H2O2 scavenger or NADPH oxidase inhibitor. When RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) genes (AtrbohD or AtrbohF) were mutated, salt sensitivity of CrHYD1/atrboh (especially CrHYD1/atrbohD) hybrids was increased, but diminished by exogenous H2O2 administration. Salt-stimulated endogenous H2 enrichment consequently resulted in the rapid reactive oxygen species (ROS) accumulation under early salt stress, and the expression of AtrbohD (especially) and AtrbohF in CrHYD1 plants was higher than those in the wild-type (WT), suggesting that endogenous H2 could induce Atrboh-dependent ROS burst to respond salt stress. Further, H2-induced less 3,3'-diaminobenzidine (DAB) and nitro blue tetrazolium (NBT) stain in CrHYD1 plants was reversed under salt stress when either H2O2 was removed or Atrbohs were mutated, which could be explained by higher H2O2 and thiobarbituric acid reactive substances (TBARS) levels, as well as lower antioxidant enzyme activity. Additionally, H2-induced Na+ discharge and K+ accumulation in CrHYD1 plants under salt stress were blocked by either H2O2 removal or Atrboh knockout, which was validated by higher Na+/K+ ratios and lower ion transport-related gene expression. Our findings not only elucidate that endogenous H2 enhanced Arabidopsis salt tolerance by reestablishing H2O2-dependent ion and redox homeostasis, but provide new insights into the mechanisms of plant salinity responses.
Collapse
Affiliation(s)
- Linlin Xiao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, China
| | - Yueran Hu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yiting Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Chengsi Lv
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Na Zhan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Hongying Duan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, China
| | - Jiuchang Su
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, China.
| |
Collapse
|
2
|
Zhang Y, Cheng P, Wang Y, Lu X, Yao W, Li L, Jiang K, Shen W. The activation of autophagy by molecular hydrogen is functionally associated with osmotic tolerance in Arabidopsis. Free Radic Biol Med 2024; 225:63-74. [PMID: 39341299 DOI: 10.1016/j.freeradbiomed.2024.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
The role of molecular hydrogen (H2) in autophagy during inflammatory response is controversial in mammalian cells. Although the stimulation of H2 production in response to osmotic stress was observed in plants, its synthetic pathway and the interrelationship between its induction and plant autophagy remain unclear. Here, the induction of autophagy was observed in Arabidopsis upon osmotic stress, assessing by the autophagosome formation and autophagy-related genes expression. Above responses were intensified by H2 fumigation. Meanwhile, the reduction in seedling growth and roots vigor was obviously abolished, accompanied by reestablishing redox balance. These H2 responses were markedly impaired in T-DNA knockout lines atg2, atg5, and atg18. Further evidence showed that the increased endogenous H2 synthesis by genetic manipulation, not only stimulated autophagosome formation, but also triggered various plant responses toward osmotic stress. By contrast, these responses were obviously abolished by the disruption of endogenous H2 synthesis with the addition of 2,6-dichloroindophenol sodium salt. Together, the integrated genetic and molecular evidence clearly illustrated the requirement of autophagy activation in H2 control of plant osmotic tolerance.
Collapse
Affiliation(s)
- Yihua Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Wenrong Yao
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke Jiang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Zhang Y, Lu X, Yao W, Cheng X, Wang Q, Feng Y, Shen W. Magnesium Hydride Confers Osmotic Tolerance in Mung Bean Seedlings by Promoting Ascorbate-Glutathione Cycle. PLANTS (BASEL, SWITZERLAND) 2024; 13:2819. [PMID: 39409689 PMCID: PMC11478981 DOI: 10.3390/plants13192819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024]
Abstract
Despite substantial evidence suggesting that hydrogen gas (H2) can enhance osmotic tolerance in plants, the conventional supply method of hydrogen-rich water (HRW) poses challenges for large-scale agricultural applications. Recently, magnesium hydride (MgH2), a hydrogen storage material in industry, has been reported to yield beneficial effects in plants. This study aimed to investigate the effects and underlying mechanisms of MgH2 in plants under osmotic stress. Mung bean seedlings were cultured under control conditions or with 20% polyethylene glycol (PEG)-6000, with or without MgH2 addition (0.01 g L-1). Under our experimental conditions, the MgH2 solution maintained a higher H2 content and longer retention time than HRW. Importantly, PEG-stimulated endogenous H2 production was further triggered by MgH2 application. Further results revealed that MgH2 significantly alleviated the inhibition of seedling growth and reduced oxidative damage induced by osmotic stress. Pharmacological evidence suggests the MgH2-reestablished redox homeostasis was associated with activated antioxidant systems, particularly the ascorbate-glutathione cycle. The above observations were further supported by the enhanced activities and gene transcriptional levels of ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase. Overall, this study demonstrates the importance of MgH2 in mitigating osmotic stress in mung bean seedlings, providing novel insights into the potential agricultural applications of hydrogen storage materials.
Collapse
Affiliation(s)
- Yihua Zhang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (X.L.); (W.Y.); (X.C.); (Q.W.); (Y.F.)
| | - Xing Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (X.L.); (W.Y.); (X.C.); (Q.W.); (Y.F.)
| | - Wenrong Yao
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (X.L.); (W.Y.); (X.C.); (Q.W.); (Y.F.)
| | - Xiaoqing Cheng
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (X.L.); (W.Y.); (X.C.); (Q.W.); (Y.F.)
| | - Qiao Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (X.L.); (W.Y.); (X.C.); (Q.W.); (Y.F.)
| | - Yu Feng
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; (X.L.); (W.Y.); (X.C.); (Q.W.); (Y.F.)
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
4
|
Wang Y, Jin S, Liu Z, Chen G, Cheng P, Li L, Xu S, Shen W. H2 supplied via ammonia borane stimulates lateral root branching via phytomelatonin signaling. PLANT PHYSIOLOGY 2024; 194:884-901. [PMID: 37944026 DOI: 10.1093/plphys/kiad595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
A reliable and stable hydrogen gas (H2) supply will benefit agricultural laboratory and field trials. Here, we assessed ammonia borane (AB), an efficient hydrogen storage material used in the energy industry, and determined its effect on plant physiology and the corresponding mechanism. Through hydroponics and pot experiments, we discovered that AB increases tomato (Solanum lycopersicum) lateral root (LR) branching and this function depended on the increased endogenous H2 level caused by the sustainable H2 supply. In particular, AB might trigger LR primordia initiation. Transgenic tomato and Arabidopsis (Arabidopsis thaliana) expressing hydrogenase1 (CrHYD1) from Chlamydomonas reinhardtii not only accumulated higher endogenous H2 and phytomelatonin levels but also displayed pronounced LR branching. These endogenous H2 responses achieved by AB or genetic manipulation were sensitive to the pharmacological removal of phytomelatonin, indicating the downstream role of phytomelatonin in endogenous H2 control of LR formation. Consistently, extra H2 supply failed to influence the LR defective phenotypes in phytomelatonin synthetic mutants. Molecular evidence showed that the phytomelatonin-regulated auxin signaling network and cell-cycle regulation were associated with the AB/H2 control of LR branching. Also, AB and melatonin had little effect on LR branching in the presence of auxin synthetic inhibitors. Collectively, our integrated approaches show that supplying H2 via AB increases LR branching via phytomelatonin signaling. This finding might open the way for applying hydrogen storage materials to horticultural production.
Collapse
Affiliation(s)
- Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shanshan Jin
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ziyu Liu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Genmei Chen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
5
|
Cheng P, Wang Y, Cai C, Li L, Zeng Y, Cheng X, Shen W. Molecular hydrogen positively regulates nitrate uptake and seed size by targeting nitrate reductase. PLANT PHYSIOLOGY 2023; 193:2734-2749. [PMID: 37625793 DOI: 10.1093/plphys/kiad474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Although the sources of molecular hydrogen (H2) synthesis in plants remain to be fully elucidated, ample evidence shows that plant-based H2 can regulate development and stress responses. Here, we present genetic and molecular evidence indicating that nitrate reductase (NR) might be a target of H2 sensing that positively regulates nitrogen use efficiency (NUE) and seed size in Arabidopsis (Arabidopsis thaliana). The expression level of NR and changes of NUE under control and, in particular, low nitrogen supply were positively associated with H2 addition supplied exogenously or through genetic manipulation. The improvement in nitrate assimilation achieved by H2 was also mediated via NR dephosphorylation. H2 control of seed size was impaired by NR mutation. Further genetic evidence revealed that H2, NR, and nitric oxide can synergistically regulate nitrate assimilation in response to N starvation conditions. Collectively, our data indicate that NR might be a target for H2 sensing, ultimately positively regulating nitrate uptake and seed size. These results provide insights into H2 signaling and its functions in plant metabolism.
Collapse
Affiliation(s)
- Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenxu Cai
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Zeng
- Life Science Group, Air Liquide (China) R&D Co., Ltd., Shanghai 201108, China
| | - Xu Cheng
- Life Science Group, Air Liquide (China) R&D Co., Ltd., Shanghai 201108, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Li Z, Huang C, Han L. Differential Regulations of Antioxidant Metabolism and Cold-Responsive Genes in Three Bermudagrass Genotypes under Chilling and Freezing Stress. Int J Mol Sci 2023; 24:14070. [PMID: 37762373 PMCID: PMC10530996 DOI: 10.3390/ijms241814070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023] Open
Abstract
As a typical warm-season grass, bermudagrass growth and turf quality begin to decrease when the environmental temperature drops below 20 °C. The current study investigated the differential responses of three bermudagrass genotypes to chilling stress (8/4 °C) for 15 days and then freezing stress (2/-2 °C) for 2 days. The three genotypes exhibited significant variation in chilling and freezing tolerance, and Chuannong-3, common bermudagrass 001, and Tifdwarf were ranked as cold-tolerant, -intermediate, and -sensitive genotypes based on evaluations of chlorophyll content, the photochemical efficiency of photosystem II, oxidative damage, and cell membrane stability, respectively. Chuannong-3 achieved better tolerance through enhancing the antioxidant defense system to stabilize cell membrane and reactive oxygen species homeostasis after being subjected to chilling and freezing stresses. Chuannong-3 also downregulated the ethylene signaling pathway by improving CdCTR1 expression and suppressing the transcript levels of CdEIN3-1 and CdEIN3-2; however, it upregulated the hydrogen sulfide signaling pathway via an increase in CdISCS expression under cold stress. In addition, the molecular basis of cold tolerance could be associated with the mediation of key genes in the heat shock pathway (CdHSFA-2b, CdHSBP-1, CdHSP22, and CdHSP40) and the CdOSMOTIN in Chuannong-3 because the accumulation of stress-defensive proteins, including heat shock proteins and osmotin, plays a positive role in osmoprotection, osmotic adjustment, or the repair of denatured proteins as molecular chaperones under cold stress. The current findings give an insight into the physiological and molecular mechanisms of cold tolerance in the new cultivar Chuannong-3, which provides valuable information for turfgrass breeders and practitioners.
Collapse
Affiliation(s)
- Zhou Li
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China
- Department of Turf Science and Engineering, Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng Huang
- Department of Turf Science and Engineering, Sichuan Agricultural University, Chengdu 611130, China
| | - Liebao Han
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Tian X, Li Z, Liu Y, Li W. Role of tillage measures in mitigating waterlogging damage in rapeseed. BMC PLANT BIOLOGY 2023; 23:231. [PMID: 37122012 PMCID: PMC10150469 DOI: 10.1186/s12870-023-04250-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Tillage measures have been effectively adopted for mitigating waterlogging damage in field crops, yet little is known about the role of tillage measures in crop responses to waterlogging. A field experiment was performed to investigate the effect of conventional planting (CK), small ridge planting (SR), big ridge planting (BR) and film side planting (FS) on soil available nutrients and enzymatic activity, chlorophyll contents, leaf nutrients, soluble protein, soluble sugar, nitrate reductase, antioxidant enzyme activity, lipid peroxidation, agronomic traits and yield of rapeseed under waterlogging stress conditions. RESULTS Tillage measures remarkably improved rapeseed growth and yield parameters under waterlogging stress conditions. Under waterlogging conditions, rapeseed yield was significantly increased by 33.09 and 22.70% in the SR and BR groups, respectively, compared with CK. Correlation analysis showed that NO3--N, NH4+-N, and urease in soils and malonaldehyde (MDA), superoxide dismutase (SOD), and nitrate reductase in roots were the key factors affecting rapeseed yield. The SR and BR groups had significantly increased NO3--N by 180.30 and 139.77%, NH4+-N by 115.78 and 66.59%, urease by 41.27 and 26.45%, SOD by 6.64 and 4.66%, nitrate reductase by 71.67 and 26.67%, and significantly decreased MDA content by 14.81 and 13.35% under waterlogging stress, respectively, compared with CK. In addition, chlorophyll and N content in leaves, soluble sugar and POD in roots, and most agronomic traits were also significantly enhanced in response to SR and BR under waterlogging conditions. CONCLUSION Overall, SR and BR mitigated the waterlogging damage in rapeseed mainly by reducing the loss of soil available nitrogen, decreasing the MDA content in roots, and promoting urease in soils and SOD and nitrate reductase in roots. Finally, thorough assessment of rapeseed parameters indicated that SR treatment was most effective followed by BR treatment, to alleviate the adverse effects of waterlogging stress.
Collapse
Affiliation(s)
- Xiaoqin Tian
- Crop Research Institute, Sichuan Academy of Agriculture Sciences, Chengdu, 610066, China
- Provincial Key Laboratory of Water-Saving Agriculture in Hill Areas of Southern China, Chengdu, 611100, China
- Environment-friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
| | - Zhuo Li
- Crop Research Institute, Sichuan Academy of Agriculture Sciences, Chengdu, 610066, China.
- Provincial Key Laboratory of Water-Saving Agriculture in Hill Areas of Southern China, Chengdu, 611100, China.
- Environment-friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China.
| | - Yonghong Liu
- Provincial Key Laboratory of Water-Saving Agriculture in Hill Areas of Southern China, Chengdu, 611100, China
- Sichuan Academy of Agriculture Sciences, Chengdu, 610066, China
| | - Wei Li
- Sichuan Huabiao Testing Technology Co., Ltd., Chengdu, 611731, China
| |
Collapse
|