1
|
Jiang Y, Ji W, Lu Y, Wang Q, Chen L. Integrating Plasma Metabolomics, Network Pharmacology, and Experimental Validation to Investigate the Action Mechanism of Qiangxin Lishui Prescription in Chronic Heart Failure. Biomed Chromatogr 2025; 39:e6065. [PMID: 39748248 DOI: 10.1002/bmc.6065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
The high mortality rate of chronic heart failure (CHF) makes it a primary battlefield in the field of cardiovascular diseases. Qiangxin Lishui Prescription (QLP) is a traditional Chinese medicine (TCM) prescription used clinically for treating CHF, but its underlying mechanism remains unclear. This study integrated plasma metabolomics, network pharmacology, and experimental validation to reveal the pharmacological effects of QLP and its potential mechanism of anti-CHF. Using ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS/MS), 119 absorbed prototype compounds of QLP were identified from rat plasma. By applying network pharmacology and molecular docking techniques, a QLP absorption components-target-CHF network was constructed. The IL6/JAK/STAT3 signaling pathway is likely critical to QLP's therapeutic effect on CHF. A CHF mouse model was established using aortic ligation surgery to investigate the regulation of the IL6/JAK/STAT3 pathway by QLP in CHF mice. Network pharmacology analysis and in vivo experimental data indicate that QLP alleviates myocardial injury and inflammatory response in CHF mice by modulating the IL6/JAK/STAT3 pathway, significantly improving cardiac function. This presents a promising therapeutic strategy for CHF treatment.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Wenjun Ji
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Ying Lu
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Qin Wang
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Linwei Chen
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
- Department of Pharmacy, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| |
Collapse
|
2
|
Li A, Wu S, Li Q, Wang Q, Chen Y. Elucidating the Molecular Pathways and Therapeutic Interventions of Gaseous Mediators in the Context of Fibrosis. Antioxidants (Basel) 2024; 13:515. [PMID: 38790620 PMCID: PMC11117599 DOI: 10.3390/antiox13050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Fibrosis, a pathological alteration of the repair response, involves continuous organ damage, scar formation, and eventual functional failure in various chronic inflammatory disorders. Unfortunately, clinical practice offers limited treatment strategies, leading to high mortality rates in chronic diseases. As part of investigations into gaseous mediators, or gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), numerous studies have confirmed their beneficial roles in attenuating fibrosis. Their therapeutic mechanisms, which involve inhibiting oxidative stress, inflammation, apoptosis, and proliferation, have been increasingly elucidated. Additionally, novel gasotransmitters like hydrogen (H2) and sulfur dioxide (SO2) have emerged as promising options for fibrosis treatment. In this review, we primarily demonstrate and summarize the protective and therapeutic effects of gaseous mediators in the process of fibrosis, with a focus on elucidating the underlying molecular mechanisms involved in combating fibrosis.
Collapse
Affiliation(s)
- Aohan Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Siyuan Wu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qian Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| |
Collapse
|
3
|
Wang J, Qian C, Chen Y, Jin T, Jiang Y, Huang L, Fu X, Yang D, Jin L, Jin B, Wang Y. β-elemene alleviates hyperglycemia-induced cardiac inflammation and remodeling by inhibiting the JAK/STAT3-NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154987. [PMID: 37531901 DOI: 10.1016/j.phymed.2023.154987] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Hyperglycemic induced cardiac hypertrophy and cardiac inflammation are important pathological processes in diabetic cardiomyopathy. β-elemene (Ele) is a natural compound extracted from Curcuma Rhizoma and has anti-tumor effects. It also has therapeutic effects in some inflammatory diseases. However, the therapeutic effect of Ele on diabetic cardiomyopathy is not clear. The purpose of this study was to evaluate the effect of Ele on hyperglycemia-caused cardiac remodeling and heart failure. METHODS C57BL/6 mice were intraperitoneally injected with streptozotocin to induce DCM, and Ele was administered intragastric after 8 weeks to investigate the effect of Ele. RNA sequencing of cardiac tissue was performed to investigate the mechanism. RESULTS Ele markedly inhibited cardiac inflammation, fibrosis and hypertrophy in diabetic mice, as well as in high glucose-induced cardiomyocytes. RNA sequencing showed that cardioprotective effect of Ele involved the JAK/STAT3-NF-κB signaling pathway. Ele alleviated heart and cardiomyocyte inflammation in mice by blocking diabetes-induced JAK2 and STAT3 phosphorylation and NF-κB activation. CONCLUSIONS The study found that Ele preserved the hearts of diabetic mice by inhibiting JAK/STAT3 and NF-κB mediated inflammatory responses, suggesting that Ele is an effective therapy for DCM.
Collapse
Affiliation(s)
- Jiong Wang
- Joint Research Centre on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenchen Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yue Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianyang Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongsheng Jiang
- Joint Research Centre on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Lijiang Huang
- Joint Research Centre on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Xinyan Fu
- Department of Cardiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Dong Yang
- Department of Cardiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Leiming Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bo Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yi Wang
- Joint Research Centre on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Liu Y, Wang W, Zeng Y, Zeng H. Transcriptome analysis of hydrogen inhibits osteoclastogenesis of mouse bone marrow mononuclear cells. Exp Ther Med 2023; 26:436. [PMID: 37614423 PMCID: PMC10443061 DOI: 10.3892/etm.2023.12135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/01/2022] [Indexed: 08/25/2023] Open
Abstract
Hydrogen (H2) is a major biodegradation product of implanted magnesium (Mg) alloys that are commonly used in the healing of bone fractures. Our earlier study showed that H2 can inhibit mouse bone marrow mononuclear cell (BMMC) osteoclastogenesis during the differentiation of these cells into osteoclasts, thereby facilitating fracture healing. However, the way by which H2 inhibits osteoclastogenesis remains to be elucidated. The present study used RNA-sequencing to study the transcriptome of H2-exposed BMMCs in an osteoclast-induced environment and identified the target genes and signaling pathways through which H2 exerts its biological effects. Several upregulated genes were identified: Fos, Dusp1, Cxcl1, Reln, Itga2b, Plin2, Lif, Thbs1, Vegfa and Gadd45a. Several downregulated genes were also revealed: Hspa1b, Gm4951, F830016B08Rik, Fads2, Hspa1a, Slc27a6, Cacna1b, Scd2, Lama3 and Col4a5. These differentially expressed genes were mainly involved in osteoclast differentiation cascades, as well as PI3K-AKT, Forkhead box O (FoxO), MAPK, peroxisome proliferator-activated receptor (PPAR), TNF, TGF-β, JAK-STAT, RAS, VEGF, hypoxia-inducible factor (HIF-1) and AMPK signaling pathways. In summary, the present study revealed the key genes and signaling pathways involved in the H2-mediated inhibition of osteoclastogenesis, thereby providing a theoretical basis for the significance of H2 and an experimental basis for the application of Mg alloys in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Yong Liu
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, P.R. China
| | - Wei Wang
- Department of Human Anatomy and Histoembryology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, P.R. China
| | - Yong Zeng
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, P.R. China
| | - Hui Zeng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
5
|
Saengsin K, Sittiwangkul R, Chattipakorn SC, Chattipakorn N. Hydrogen therapy as a potential therapeutic intervention in heart disease: from the past evidence to future application. Cell Mol Life Sci 2023; 80:174. [PMID: 37269385 DOI: 10.1007/s00018-023-04818-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Cardiovascular disease is the leading cause of mortality worldwide. Excessive oxidative stress and inflammation play an important role in the development and progression of cardiovascular disease. Molecular hydrogen, a small colorless and odorless molecule, is considered harmless in daily life when its concentration is below 4% at room temperature. Owing to the small size of the hydrogen molecule, it can easily penetrate the cell membrane and can be metabolized without residue. Molecular hydrogen can be administered through inhalation, the drinking of hydrogen-rich water, injection with hydrogen-rich-saline, and bathing of an organ in a preservative solution. The utilization of molecular hydrogen has shown many benefits and can be effective for a wide range of purposes, from prevention to the treatment of diseases. It has been demonstrated that molecular hydrogen exerts antioxidant, anti-inflammatory, and antiapoptotic effects, leading to cardioprotective benefits. Nevertheless, the exact intracellular mechanisms of its action are still unclear. In this review, evidence of the potential benefits of hydrogen molecules obtained from in vitro, in vivo, and clinical investigations are comprehensively summarized and discussed with a focus on the cardiovascular aspects. The potential mechanisms involved in the protective effects of molecular hydrogen are also presented. These findings suggest that molecular hydrogen could be used as a novel treatment in various cardiovascular pathologies, including ischemic-reperfusion injury, cardiac injury from radiation, atherosclerosis, chemotherapy-induced cardiotoxicity, and cardiac hypertrophy.
Collapse
Affiliation(s)
- Kwannapas Saengsin
- Division of Pediatric Cardiology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rekwan Sittiwangkul
- Division of Pediatric Cardiology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
6
|
Liu J, Wang F, Luo F. The Role of JAK/STAT Pathway in Fibrotic Diseases: Molecular and Cellular Mechanisms. Biomolecules 2023; 13:biom13010119. [PMID: 36671504 PMCID: PMC9855819 DOI: 10.3390/biom13010119] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
There are four members of the JAK family and seven of the STAT family in mammals. The JAK/STAT molecular pathway could be activated by broad hormones, cytokines, growth factors, and more. The JAK/STAT signaling pathway extensively mediates various biological processes such as cell proliferation, differentiation, migration, apoptosis, and immune regulation. JAK/STAT activation is closely related to growth and development, homeostasis, various solid tumors, inflammatory illness, and autoimmune diseases. Recently, with the deepening understanding of the JAK/STAT pathway, the relationship between JAK/STAT and the pathophysiology of fibrotic diseases was noticed, including the liver, renal, heart, bone marrow, and lung. JAK inhibitor has been approved for myelofibrosis, and subsequently, JAK/STAT may serve as a promising target for fibrosis in other organs. Therefore, this article reviews the roles and mechanisms of the JAK/STAT signaling pathway in fibrotic diseases.
Collapse
Affiliation(s)
- Jia Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Faping Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fengming Luo
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: ; Tel.: +86-18980601355
| |
Collapse
|
7
|
Ma D, Mandour AS, Yoshida T, Matsuura K, Shimada K, Kitpipatkun P, Uemura A, Ifuku M, Takahashi K, Tanaka R. Intraventricular pressure gradients change during the development of left ventricular hypertrophy: Effect of salvianolic acid B and beta-blocker. ULTRASOUND : JOURNAL OF THE BRITISH MEDICAL ULTRASOUND SOCIETY 2021; 29:229-240. [PMID: 34777543 DOI: 10.1177/1742271x20987584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022]
Abstract
Introduction Intraventricular pressure gradient is regarded as a non-invasive indicator of diastolic function. Salvianolic acid B (Sal-B), a traditional Asian medicine, revealed its usefulness in myocardial infarction models; however, the hemodynamic effect of salvianolic acid B is still unknown. The present study aimed to investigate the intraventricular pressure gradient changes during the development of left ventricular hypertrophy with or without salvianolic acid B and a beta-blocker. Methods In total, 48 rats were divided into four groups; Sham, Non-treatment, salvianolic acid B, and Carvedilol. Aortic coarctation-induced left ventricular hypertrophy was done in three groups and the treatment was started from the third to the sixth week. Blood pressure, conventional echocardiography, and color M-mode echocardiography for measurement of intraventricular pressure gradient were carried out for six consecutive weeks. Results At 4.5 weeks, the LV mass was elevated in the coarctation groups but the blood pressure was significantly lower in salvianolic acid B and Carvedilol groups (P < 0.05). In the Non-treatment group, the total intraventricular pressure gradient was increased at 4.5 and 6 weeks (2.60 and 2.65, respectively). Meanwhile, the basal intraventricular pressure gradient was elevated at 3 and 6 weeks (1.67 and 1.75) compared with the Sham group. Salvianolic acid B and Carvedilol significantly reduced the basal intraventricular pressure gradient at six weeks compared with the Non-treatment group (1.52 and 1.51 vs 1.75, respectively). Conclusions Salvianolic acid B and Carvedilol promote cardiac function by decreasing the elevated basal intraventricular pressure gradient. The current preclinical results revealed the efficacy of salvianolic acid B as a potential therapy for left ventricular hypertrophy because of the non-blood pressure lowering effect.
Collapse
Affiliation(s)
- Danfu Ma
- Departments of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ahmed S Mandour
- Departments of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Tomohiko Yoshida
- Departments of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Katsuhiro Matsuura
- Departments of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazumi Shimada
- Departments of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Pitipat Kitpipatkun
- Departments of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akiko Uemura
- Departments of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mayumi Ifuku
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken Takahashi
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryou Tanaka
- Departments of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
8
|
Xu J, Liu X, Dai Q. Integration of transcriptomic data identifies key hallmark genes in hypertrophic cardiomyopathy. BMC Cardiovasc Disord 2021; 21:330. [PMID: 34225646 PMCID: PMC8259117 DOI: 10.1186/s12872-021-02147-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) represents one of the most common inherited heart diseases. To identify key molecules involved in the development of HCM, gene expression patterns of the heart tissue samples in HCM patients from multiple microarray and RNA-seq platforms were investigated. METHODS The significant genes were obtained through the intersection of two gene sets, corresponding to the identified differentially expressed genes (DEGs) within the microarray data and within the RNA-Seq data. Those genes were further ranked using minimum-Redundancy Maximum-Relevance feature selection algorithm. Moreover, the genes were assessed by three different machine learning methods for classification, including support vector machines, random forest and k-Nearest Neighbor. RESULTS Outstanding results were achieved by taking exclusively the top eight genes of the ranking into consideration. Since the eight genes were identified as candidate HCM hallmark genes, the interactions between them and known HCM disease genes were explored through the protein-protein interaction (PPI) network. Most candidate HCM hallmark genes were found to have direct or indirect interactions with known HCM diseases genes in the PPI network, particularly the hub genes JAK2 and GADD45A. CONCLUSIONS This study highlights the transcriptomic data integration, in combination with machine learning methods, in providing insight into the key hallmark genes in the genetic etiology of HCM.
Collapse
Affiliation(s)
- Jing Xu
- Department of Clinical Laboratory, ZhongDa Hospital, Southeast University, Nanjing, China
| | - Xiangdong Liu
- Institute of Life Science, Southeast University, Nanjing, China
| | - Qiming Dai
- Department of Cardiology, ZhongDa Hospital, Southeast University, Nanjing, China.
| |
Collapse
|
9
|
Wang C, Pan Z. Hydrogen-rich saline mitigates pressure overload-induced cardiac hypertrophy and atrial fibrillation in rats via the JAK-STAT signalling pathway. J Int Med Res 2020; 48:300060520936415. [PMID: 32762484 PMCID: PMC7416141 DOI: 10.1177/0300060520936415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective To investigate if hydrogen-rich saline (HRS), which has been shown to have
antioxidant and anti-inflammatory properties, could mitigate cardiac
remodelling and reduce the incidence of atrial fibrillation (AF) in the rat
model of cardiac hypertrophy. Methods Pressure overload was induced in rats by abdominal aortic constriction (AAC).
The animals were separated into four groups: sham; AAC group; AAC plus low
dose HRS (LHRS); AAC plus high dose HRS (HHRS). The sham and AAC groups
received normal saline intraperitoneally and the LHRS and HHRS groups
received 3 or 6 ml/kg HRS daily for six weeks, respectively. In
vitro research was also performed using cardiotrophin-1
(CT-1)-induced hypertrophy of cultured neonatal rat cardiomyocytes. Results Cardiac hypertrophy was successfully induced by AAC and low and high dose HRS
mitigated the pressure overload as shown by lower heart and atrial weights
in these treatment groups. AF incidence and duration of the HRS groups were
also significantly lower in the HRS groups compared with the AAC group.
Atrial fibrosis was also reduced in the HRS groups and the JAK-STAT
signalling pathway was down-regulated. In vitro experiments
showed that hydrogen-rich medium mitigated the CT-1-induced cardiomyocyte
hypertrophy with a similar effect as the JAK specific antagonists AG490. Conclusions HRS was found to mitigate cardiac hypertrophy induced by pressure overload in
rats and reduce atrial fibrosis and AF which was possibly achieved via
inhibition of the JAK-STAT signalling pathway.
Collapse
Affiliation(s)
- Chufeng Wang
- Clinical medicine and biomedicine, Nanchang Joint Program, Queen Mary University of London, Nanchang, Jiangxi, China
| | - Zezheng Pan
- Department of Biochemistry and Molecular Biology, Medical Faculty of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Zeng Z, Pan Y, Wu W, Li L, Wu Z, Zhang Y, Deng B, Wei S, Zhang W, Lin F, Song Y. Myocardial hypertrophy is improved with berberine treatment via long non-coding RNA MIAT-mediated autophagy. J Pharm Pharmacol 2019; 71:1822-1831. [PMID: 31612504 DOI: 10.1111/jphp.13170] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/01/2019] [Indexed: 01/01/2023]
Abstract
Abstract
Objectives
This study aimed to evaluate berberine (BBR) effects on myocardial hypertrophy (MH) and associated mechanisms.
Methods
BBR effects on MH were evaluated in rats with constriction of abdominal aorta (CAA). qRT-PCR assay was used to measure MH-related genes, long non-coding RNAs (lncRNAs) and autophagy-related genes expressions. Western blot was performed to detect autophagy markers expression. Filamentous actin and phalloidin expressions were detected using immunofluorescence assay.
Key findings
BBR significantly attenuated CAA-induced MH and cardiomyocyte enlargement. CAA upregulated β myosin heavy chain and atrial natriuretic peptide expressions in heart tissues, which was attenuated by BBR. BBR suppressed myocardial infarction associated transcript (MIAT) expression in rats with CAA. p62 mRNA expression was upregulated and beclin1 and autophagy related 5 were downregulated in CAA versus control groups. The effects were abolished by BBR. In vitro studies showed that BBR ameliorated angiotensin II-induced MH and attenuated Ang II-induced MIAT expression in H9C2 cells. Expressions of phosphorylated mTOR, phosphorylated AMPK and LC3 were upregulated in H9C2 cells after Ang II stimulation, and the effects were abolished by BBR.
Conclusions
BBR exerted beneficial effects on MH induced by CCA, and the mechanisms were associated with decreased MIAT expression and enhanced autophagy.
Collapse
Affiliation(s)
- Zhicong Zeng
- Cardiology Department, Bao'an TCM Hospital Group, Shenzhen, China
| | - Yan Pan
- Diabetes Department, Bao'an TCM Hospital Group, Shenzhen, China
| | - Wei Wu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Li
- Cardiology Department, Bao'an TCM Hospital Group, Shenzhen, China
- Graduate School, Guangzhou University of TCM, Guangzhou, China
| | - Zijun Wu
- Cardiology Department, Bao'an TCM Hospital Group, Shenzhen, China
| | - Yuangui Zhang
- Cardiology Department, Bao'an TCM Hospital Group, Shenzhen, China
| | - Bin Deng
- Cardiology Department, Bao'an TCM Hospital Group, Shenzhen, China
| | - Shanyan Wei
- Cardiology Department, Bao'an TCM Hospital Group, Shenzhen, China
| | - Weiwei Zhang
- Cardiology Department, Bao'an TCM Hospital Group, Shenzhen, China
| | - Fengxia Lin
- Cardiology Department, Bao'an TCM Hospital Group, Shenzhen, China
| | - Yinzhi Song
- Cardiology Department, Bao'an TCM Hospital Group, Shenzhen, China
| |
Collapse
|
11
|
Huang L, Applegate RL, Applegate PM, Boling W, Zhang JH. Inhalation of high concentration hydrogen gas improves short-term outcomes in a rat model of asphyxia induced-cardiac arrest. Med Gas Res 2018; 8:73-78. [PMID: 30319760 PMCID: PMC6178639 DOI: 10.4103/2045-9912.241063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022] Open
Abstract
Cardiogenic global brain hypoxia-ischemia is a devastating medical problem that is associated with unfavorable neurologic outcomes. Low dose hydrogen gas (up to 2.9%) has been shown to be neuroprotective in a variety of brain diseases. In the present study, we investigated the protective effect of water by electrolysis-derived high concentration hydrogen gas (60%) in a rat model of asphyxia induced-cardiac arrest and global brain hypoxia-ischemia. High concentration hydrogen gas was either administered starting 1 hour prior to cardiac arrest for 1 hour and starting 1 hour post-resuscitation for 1 hour (pre- & post-treatment) or starting 1 hour post-resuscitation for 2 hours (post-treatment). In animals subjected to 9 minutes of asphyxia, both therapeutic regimens tended to reduce the incidence of seizures and neurological deficits within 3 days post-resuscitation. In rats subjected to 11 minutes of asphyxia, significantly worse neurological deficits were observed compared to 9 minutes asphyxia, and pre- & post-treatment had a tendency to improve the success rate of resuscitation and to reduce the seizure incidence within 3 days post-resuscitation. Findings of this preclinical study suggest that water electrolysis-derived 60% hydrogen gas may improve short-term outcomes in cardiogenic global brain hypoxia-ischemia.
Collapse
Affiliation(s)
- Lei Huang
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Basic Science, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Richard L Applegate
- Department of Anesthesiology and Pain Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Patricia M Applegate
- Department of Cardiology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Warren Boling
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Basic Science, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|