1
|
Li TL, Zhu NN, Zhao MX, Sun J, Yin Z, Xie P, Huang JH, Guo JP, Yuan HT, Li SX, Zhao-Liang S. Omentin-1 attenuates atrial fibrillation via Src/PI3K/Akt signaling-mediated anti-fibrotic effects in cardiac fibroblasts. Eur J Pharmacol 2025; 996:177588. [PMID: 40187594 DOI: 10.1016/j.ejphar.2025.177588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Atrial fibrillation (AF) is characterized by progressive atrial fibrosis, leading to increased morbidity and mortality. While the novel adipokine Omentin-1 demonstrates anti-fibrotic potential across organ systems, its role in AF pathogenesis remains unclear. This study investigates Omentin-1's therapeutic effects and the underlying mechanisms in angiotensin II (Ang II)-induced atrial fibrosis and AF. METHODS Atrial fibrosis was induced in C57BL/6 mice via continuous Ang II infusion for 4 weeks. Omentin-1 overexpression was achieved using adeno-associated virus serotype 2/9 (AAV2/9). AF susceptibility was assessed by programmed electrical stimulation, and atrial fibrosis was quantified using histological staining and Western blot analysis. Immunofluorescence co-localization assessed cell-type specific expression of Omentin-1, and proteomic analysis of atrial fibroblasts was conducted to explore molecular pathways involved. In vitro studies using primary fibroblasts were conducted to validate Omentin-1's effects. RESULTS Omentin-1 levels were significantly decreased in both serum and atrial tissue of Ang II-treated mice. Omentin-1 overexpression reduced AF inducibility, decreased atrial fibrosis, and improved left atrial strain parameters. Immunofluorescence showed that Omentin-1 predominantly localized to atrial fibroblasts. Mechanistically, Omentin-1 regulated collagen metabolism by targeting fibroblasts, with Src kinase acting as a critical mediator of fibroblast activation through the PI3K/Akt signaling pathway. CONCLUSION Omentin-1 attenuates atrial fibrosis and AF susceptibility through regulation of the Src/PI3K/Akt signaling pathway in atrial fibroblasts. These findings suggest that Omentin-1 may represent a potential therapeutic target for the prevention and treatment of AF.
Collapse
Affiliation(s)
- Tian-Lun Li
- Postgraduate School, Medical School of Chinese PLA, Beijing, China; Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Na-Na Zhu
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mao-Xiang Zhao
- Department of Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jiao Sun
- Postgraduate School, Medical School of Chinese PLA, Beijing, China; Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhao Yin
- Postgraduate School, Medical School of Chinese PLA, Beijing, China
| | - Peng Xie
- Nankai University Medical College, Tianjin, 300071, China
| | - Jin-Huan Huang
- Postgraduate School, Medical School of Chinese PLA, Beijing, China
| | - Jian-Ping Guo
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hong-Tao Yuan
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shi-Xing Li
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Shan Zhao-Liang
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China; Nankai University Medical College, Tianjin, 300071, China.
| |
Collapse
|
2
|
Biegański HM, Dąbrowski KM, Różańska-Walędziak A. Omentin-General Overview of Its Role in Obesity, Metabolic Syndrome and Other Diseases; Problem of Current Research State. Biomedicines 2025; 13:632. [PMID: 40149608 PMCID: PMC11940803 DOI: 10.3390/biomedicines13030632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Omentin (omentin-1, intelectin-1, ITLN-1) is an adipokine considered to be a novel substance. Many chronic, inflammatory, or civilization diseases are linked to obesity, in which omentin plays a significant role. Methods: MEDLINE and SCOPUS databases were searched using the keywords "omentin" or "intelectin-1". Then the most recent articles providing new perspectives on the matter and the most important studies, which revealed crucial insight, were selected to summarize the current knowledge on the role of omentin in a literature review. Results and Conclusions: The valid role of this adipokine is evident in the course of metabolic syndrome. In most cases, elevated omentin expression is correlated with the better course of diseases, including: type 2 diabetes mellitus, polycystic ovary syndrome, rheumatoid arthritis, metabolic dysfunction-associated steatotic liver disease, Crohn's disease, ulcerative colitis, atherosclerosis, or ischemic stroke, for some of which it can be a better marker than the currently used ones. However, results of omentin studies are not completely one-sided. It was proven to participate in the development of asthma and atopic dermatitis and to have different concentration dynamics in various types of tumors. All of omentin's effects and properties make it an attractive subject of research, considering still unexplored inflammation mechanisms, in which it may play an important role. Omentin was proven to prevent osteoarthritis, hepatocirrhosis, and atherosclerosis in mouse models. All of the above places omentin among potential therapeutic products, and not only as a biomarker. However, the main problems with the omentin's research state are the lack of standardization, which causes many contradictions and disagreements in this field.
Collapse
Affiliation(s)
- Hubert Mateusz Biegański
- Medical Faculty, Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland; (H.M.B.); (K.M.D.)
| | - Krzysztof Maksymilian Dąbrowski
- Medical Faculty, Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland; (H.M.B.); (K.M.D.)
| | - Anna Różańska-Walędziak
- Departament of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| |
Collapse
|
3
|
Sheng Y, Wang YY, Chang Y, Ye D, Wu L, Kang H, Zhang X, Chen X, Li B, Zhu D, Zhang N, Zhao H, Chen A, Chen H, Jia P, Song J. Deciphering mechanisms of cardiomyocytes and non-cardiomyocyte transformation in myocardial remodeling of permanent atrial fibrillation. J Adv Res 2024; 61:101-117. [PMID: 37722560 PMCID: PMC11258668 DOI: 10.1016/j.jare.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023] Open
Abstract
INTRODUCTION Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, and it significantly increases the risk of cardiovascular complications and morbidity, even with appropriate treatment. Tissue remodeling has been a significant topic, while its systematic transcriptional signature remains unclear in AF. OBJECTIVES Our study aims to systematically investigate the molecular characteristics of AF at the cellular-level. METHODS We conducted single-nuclei RNA-sequencig (snRNA-seq) analysis using nuclei isolated from the left atrial appendage (LAA) of AF patients and sinus rhythm. Pathological staining was performed to validate the key findings of snRNA-seq. RESULTS A total of 30 cell subtypes were identified among 80, 592 nuclei. Within the LAA of AF, we observed a specific subtype of dedifferentiated cardiomyocytes (CMs) characterized by reduced expression of cardiac contractile proteins (TTN and TRDN) and heightened expression of extracellular-matrix related genes (COL1A2 and FBN1). Transcription factor prediction analysis revealed that gene expression patterns in dedifferentiated CMs were primarily regulated by CEBPG and GISLI. Additionally, we identified a distinct subtype of endothelial progenitor cells (EPCs) demonstrating elevated expression of PROM1 and KDR, a population decreased within the LAA of AF. Epicardial adipocytes disclosed a reduced release of the anti-inflammatory and anti-fibrotic factor PRG4, and an augmented secretion of VEGF signals targeting CMs. Additionally, we noted accumulation of M2-like macrophages and CD8+ T cells with high pro-inflammatory score in LAA of AF. Furthermore, the analysis of intercellular communication revealed specific pathways related to AF, such as inflammation, extracellular matrix, and vascular remodeling signals. CONCLUSIONS This study has discovered the presence of dedifferentiated CMs, a decrease in endothelial progenitor cells, a shift in the secretion profile of adipocytes, and an amplified inflammatory response in AF. These findings could offer crucial insights for future research on AF and serve as valuable references for investigating novel therapeutic approaches for AF.
Collapse
Affiliation(s)
- Yixuan Sheng
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Yin-Ying Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Dongting Ye
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Liying Wu
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hongen Kang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiong Zhang
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiao Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Bin Li
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Daliang Zhu
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ningning Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Haisen Zhao
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Aijun Chen
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Haisheng Chen
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
| | - Jiangping Song
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China.
| |
Collapse
|
4
|
Meulendijks ER, Krul SPJ, Baalman SW, de Vries TAC, Wesselink R, Ernault AC, Kawasaki M, Al-Shama R, Neefs J, Limpens J, de Groot JR. Circulating adipose tissue proteins involved in atrial fibrillation: An explorative scoping review. Trends Cardiovasc Med 2024; 34:148-158. [PMID: 36538994 DOI: 10.1016/j.tcm.2022.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Obesity increases the risk of atrial fibrillation (AF), potentially through proteins secreted by adipose tissue (AT) that affect atrial electrical and structural remodeling. We aim to give a comprehensive overview of circulating AT proteins involved in inflammation and fibrosis, that are associated with prevalent AF (paroxysmal or persistent) and the risk on developing new-onset AF. These include adipokines, defined as proteins enriched in AT as adiponectin, but also proteins less specific to AT. We systematically performed an explorative search for studies reporting associations between proteins secreted from cells residing in the AT and AF, and additionally assessed the effect of obesity on these proteins by a secondary search. The AT proteins involved in inflammation were mostly increased in patients with prevalent and new-onset AF, and with obesity, while the AT enriched adipokines were mostly not associated with AF. This review provides insight into circulating adipose tissue proteins involved in AF substrate formation.
Collapse
Affiliation(s)
- Eva R Meulendijks
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands.
| | - Sébastien P J Krul
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands
| | - Sarah W Baalman
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands
| | - Tim A C de Vries
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Robin Wesselink
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Auriane C Ernault
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Makiri Kawasaki
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands
| | - Rushd Al-Shama
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Jolien Neefs
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands
| | - Jacqueline Limpens
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands
| | - Joris R de Groot
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Sena CM. Omentin: A Key Player in Glucose Homeostasis, Atheroprotection, and Anti-Inflammatory Potential for Cardiovascular Health in Obesity and Diabetes. Biomedicines 2024; 12:284. [PMID: 38397886 PMCID: PMC10887037 DOI: 10.3390/biomedicines12020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Omentin is an adipokine mainly produced by visceral fat tissue. It has two isoforms, omentin-1 and omentin-2. Omentin-1 is predominantly secreted by visceral adipose tissue, derived specifically from the stromal vascular fraction cells of white adipose tissue (WAT). Levels of omentin-1 are also expressed in other WAT depots, such as epicardial adipose tissue. Omentin-1 exerts several beneficial effects in glucose homeostasis in obesity and diabetes. In addition, research has suggested that omentin-1 may have atheroprotective (protective against the development of atherosclerosis) and anti-inflammatory effects, potentially contributing to cardiovascular health. This review highlights the potential therapeutic targets of omentin-1 in metabolic disorders.
Collapse
Affiliation(s)
- Cristina M Sena
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
6
|
Cai M, Zhao D, Han X, Han S, Zhang W, Zang Z, Gai C, Rong R, Gao T. The role of perivascular adipose tissue-secreted adipocytokines in cardiovascular disease. Front Immunol 2023; 14:1271051. [PMID: 37822930 PMCID: PMC10562567 DOI: 10.3389/fimmu.2023.1271051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023] Open
Abstract
Perivascular adipose tissue and the vessel wall are connected through intricate bidirectional paracrine and vascular secretory signaling pathways. The secretion of inflammatory factors and oxidative products by the vessel wall in the diseased segment has the ability to influence the phenotype of perivascular adipocytes. Additionally, the secretion of adipokines by perivascular adipose tissue exacerbates the inflammatory response in the diseased vessel wall. Therefore, quantitative and qualitative studies of perivascular adipose tissue are of great value in the context of vascular inflammation and may provide a reference for the assessment of cardiovascular ischemic disease.
Collapse
Affiliation(s)
- Meichao Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongsheng Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuang Han
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxin Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhennan Zang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chenchen Gai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Rong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tian Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Lodewijks F, McKinsey TA, Robinson EL. Fat-to-heart crosstalk in health and disease. Front Genet 2023; 14:990155. [PMID: 37035745 PMCID: PMC10079901 DOI: 10.3389/fgene.2023.990155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
According to the latest World Health Organization statistics, cardiovascular disease (CVD) is one of the leading causes of death globally. Due to the rise in the prevalence of major risk factors, such as diabetes mellitus and obesity, the burden of CVD is expected to worsen in the decades to come. Whilst obesity is a major and consistent risk factor for CVD, the underlying pathological molecular communication between peripheral fat depots and the heart remains poorly understood. Adipose tissue (AT) is a major endocrine organ in the human body, with composite cells producing and secreting hormones, cytokines, and non-coding RNAs into the circulation to alter the phenotype of multiple organs, including the heart. Epicardial AT (EAT) is an AT deposit that is in direct contact with the myocardium and can therefore influence cardiac function through both mechanical and molecular means. Moreover, resident and recruited immune cells comprise an important adipose cell type, which can create a pro-inflammatory environment in the context of obesity, potentially contributing to systemic inflammation and cardiomyopathies. New mechanisms of fat-to-heart crosstalk, including those governed by non-coding RNAs and extracellular vesicles, are being investigated to deepen the understanding of this highly common risk factor. In this review, molecular crosstalk between AT and the heart will be discussed, with a focus on endocrine and paracrine signaling, immune cells, inflammatory cytokines, and inter-organ communication through non-coding RNAs.
Collapse
Affiliation(s)
- Fleur Lodewijks
- Department of Pathology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Emma L. Robinson
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
8
|
Human Omentin-1 Administration Ameliorates Hypertensive Complications without Affecting Hypertension in Spontaneously Hypertensive Rats. Int J Mol Sci 2023; 24:ijms24043835. [PMID: 36835249 PMCID: PMC9961449 DOI: 10.3390/ijms24043835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Hypertension is one of the major risk factors for cardiovascular diseases and is caused by various abnormalities including the contractility of blood vessels. Spontaneously hypertensive rats (SHR), whose systemic blood pressure increases with aging, are a frequently used animal model for investigating essential hypertension and related complications in humans due to the damage of several organs. Human omentin-1 is an adipocytokine consisting of 313 amino acids. Serum omentin-1 levels decreased in hypertensive patients compared with normotensive controls. Furthermore, omentin-1 knockout mice showed elevated blood pressure and impaired endothelial vasodilation. Taken together, we hypothesized that adipocytokine, human omentin-1 may improve the hypertension and its complications including heart and renal failure in the aged SHR (65-68-weeks-old). SHR were subcutaneously administered with human omentin-1 (18 μg/kg/day, 2 weeks). Human omentin-1 had no effect on body weight, heart rate, and systolic blood pressure in SHR. The measurement of isometric contraction revealed that human omentin-1 had no influence on the enhanced vasocontractile or impaired vasodilator responses in the isolated thoracic aorta from SHR. On the other hand, human omentin-1 tended to improve left ventricular diastolic failure and renal failure in SHR. In summary, human omentin-1 tended to improve hypertensive complications (heart and renal failure), while it had no influence on the severe hypertension in the aged SHR. The further study of human omentin-1 may lead to the development of therapeutic agents for hypertensive complications.
Collapse
|
9
|
Willar B, Tran KV, Fitzgibbons TP. Epicardial adipocytes in the pathogenesis of atrial fibrillation: An update on basic and translational studies. Front Endocrinol (Lausanne) 2023; 14:1154824. [PMID: 37020587 PMCID: PMC10067711 DOI: 10.3389/fendo.2023.1154824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Epicardial adipose tissue (EAT) is an endocrine organ containing a host of cell types and undoubtedly serving a multitude of important physiologic functions. Aging and obesity cause hypertrophy of EAT. There is great interest in the possible connection between EAT and cardiovascular disease, in particular, atrial fibrillation (AF). Increased EAT is independently associated with AF and adverse events after AF ablation (e.g., recurrence of AF, and stroke). In general, the amount of EAT correlates with BMI or visceral adiposity. Yet on a molecular level, there are similarities and differences between epicardial and abdominal visceral adipocytes. In comparison to subcutaneous adipose tissue, both depots are enriched in inflammatory cells and chemokines, even in normal conditions. On the other hand, in comparison to visceral fat, epicardial adipocytes have an increased rate of fatty acid release, decreased size, and increased vascularity. Several studies have described an association between fibrosis of EAT and fibrosis of the underlying atrial myocardium. Others have discovered paracrine factors released from EAT that could possibly mediate this association. In addition to the adjacent atrial cardiomyocytes, EAT contains a robust stromal-vascular fraction and surrounds the ganglionic plexi of the cardiac autonomic nervous system (cANS). The importance of the cANS in the pathogenesis of atrial fibrillation is well known, and it is quite likely that there is feedback between EAT and the cANS. This complex interplay may be crucial to the maintenance of normal sinus rhythm or the development of atrial fibrillation. The extent the adipocyte is a microcosm of metabolic health in the individual patient may determine which is the predominant rhythm.
Collapse
|
10
|
Piquet M, Martínez MC, Romacho T. Inter-Organ Crosstalk in the Development of Obesity-Associated Insulin Resistance. Handb Exp Pharmacol 2021; 274:205-226. [PMID: 34853949 DOI: 10.1007/164_2021_564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The epidemics of obesity and type 2 diabetes have led to intensive investigation of the underlying mechanisms of these diseases and their main complications such as cardiovascular diseases and non-alcoholic fatty liver disease. This search has contributed to better understand how organs and tissues communicate with each other in the so-called inter-organ crosstalk. Adipose tissue, the liver, or skeletal muscle can actively release secreted factors termed "organokines" which can interact with other distant targets in complex networks. More recently, other novel mediators of inter-organ crosstalk such as extracellular vesicles and their non-traditional cargoes as miRNAs and lncRNAs are gaining importance and represent potential therapeutic targets. In the present chapter we summarize some of the current knowledge on inter-organ communication with a focus on adipose tissue-released factors and their modulation on other organs and tissues like pancreas, liver, skeletal muscle, the cardiovascular system, and the gut in the context of obesity and its progression to insulin resistance. We also provide a perspective on mediators of inter-organ crosstalk as potential therapeutic targets.
Collapse
Affiliation(s)
- Megan Piquet
- SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, Angers, France
| | | | - Tania Romacho
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
11
|
Wang H, Chen Y, Zhao S, Wang X, Lu K, Xiao H. Effect of Sox9 on TGF-β1-mediated atrial fibrosis. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1450-1458. [PMID: 34596216 DOI: 10.1093/abbs/gmab132] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Indexed: 01/02/2023] Open
Abstract
Atrial fibrosis is a crucial mechanism responsible for atrial fibrillation (AF). Sex-determining region Y-box containing gene 9 (Sox9) plays a pivotal role in fibrosis of many organs such as the skin, kidney, and liver. However, there are few studies about the occurrence and maintenance of Sox9 in atrial fibrosis. In this study, we investigated the role of Sox9 in the fibrotic phenotype of human atrial tissues and rat atrial fibroblasts in vitro. In the human right atrial tissue, Masson's trichrome staining, immunofluorescence, real-time quantitative polymerase chain reaction, and western blot analysis were carried out to explore the relationship between Sox9 and atrial fibrosis at the morphological, functional, and molecular levels. In cultured atrial fibroblasts, Sox9 was overexpressed by adenovirus or depleted by siRNA, and then, recombinant human transforming growth factor (TGF)-β1 was added. Immunofluorescence analysis, western blot analysis, Transwell assay, and scratch assay were used to analyze the cells. In patient atrial tissues, Sox9 was increased with worsened atrial fibrosis, and this increase was related to AF severity. In rat atrial fibroblasts, Sox9 was promoted by TGF-β1, and the α-smooth muscle actin (α-SMA) protein level and the ability of cell migration were increased after Sox9 overexpression by adenovirus, while the α-SMA protein level and the cell migration ability were decreased after Sox9 depletion by siRNA. In conclusion, Sox9 is involved in the regulation of fibrosis in the atria and may be located downstream of TGF-β1. Our findings may provide a new perspective to treat atrial fibrosis during AF.
Collapse
Affiliation(s)
- Hechuan Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiqi Chen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuting Zhao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Kai Lu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hua Xiao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
12
|
Modulation of Cardiac Arrhythmogenesis by Epicardial Adipose Tissue: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 78:1730-1745. [PMID: 34674819 DOI: 10.1016/j.jacc.2021.08.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/06/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023]
Abstract
Obesity is a significant risk factor for arrhythmic cardiovascular death. Interactions between epicardial adipose tissue (EAT) and myocytes are thought to play a key role in the development of arrhythmias. In this review, the authors investigate the influence of EAT on arrhythmogenesis. First, they summarize electrocardiographic evidence showing the association between increased EAT volume and atrial and ventricular conduction delay. Second, they detail the structural cross talk between EAT and the heart and its arrhythmogenicity. Adipose tissue infiltration within the myocardium constitutes an anatomical obstacle to cardiac excitation. It causes activation delay and increases the risk of arrhythmias. Intercellular electrical coupling between cardiomyocytes and EAT can further slow conduction and increase the risk of block, favoring re-entry and arrhythmias. Finally, EAT secretes multiple substances that influence cardiomyocyte electrophysiology either by modulating ion currents and electrical coupling or by stimulating fibrosis. Thus, structural and paracrine cross talk between EAT and cardiomyocytes facilitates arrhythmias.
Collapse
|
13
|
Association of the Adipokines Chemerin, Apelin, Vaspin and Omentin and Their Functional Genetic Variants with Rheumatoid Arthritis. J Pers Med 2021; 11:jpm11100976. [PMID: 34683117 PMCID: PMC8539350 DOI: 10.3390/jpm11100976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Adipokines were shown to exert crucial roles in rheumatic diseases. This study aimed to assess the role of chemerin, apelin, vaspin, and omentin adipokines and their genetic variants rs17173608, rs2235306, rs2236242, and rs2274907, respectively, in rheumatoid arthritis (RA) pathogenesis in Egyptian patients. A total of 150 RA patients and 150 healthy individuals were recruited. Blood samples were collected and used for genotyping. Serum was separated and used for expression analysis by quantitative PCR, and various biochemical markers determination by ELISA. Serum protein levels of chemerin and vaspin, as well as their gene expression levels were higher, while those of apelin and omentin were lower in RA patients and were associated with most of RA clinical and laboratory characteristics. G allele of chemerin rs17173608, T allele of vaspin rs2236242, and T allele of omentin rs2274907 were more frequent in RA patients. Serum levels and gene expression levels of chemerin in GG genotype carriers and vaspin in TT genotype group were significantly higher, while those of omentin in TT genotype carriers were significantly lower than RA patients with other genotypes. There was no association between apelin rs2235306 and RA. Chemerin rs17173608, vaspin rs2236242, and omentin rs2274907 polymorphisms were associated with increased susceptibility to RA.
Collapse
|
14
|
Krishnan A, Chilton E, Raman J, Saxena P, McFarlane C, Trollope AF, Kinobe R, Chilton L. Are Interactions between Epicardial Adipose Tissue, Cardiac Fibroblasts and Cardiac Myocytes Instrumental in Atrial Fibrosis and Atrial Fibrillation? Cells 2021; 10:2501. [PMID: 34572150 PMCID: PMC8467050 DOI: 10.3390/cells10092501] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Atrial fibrillation is very common among the elderly and/or obese. While myocardial fibrosis is associated with atrial fibrillation, the exact mechanisms within atrial myocytes and surrounding non-myocytes are not fully understood. This review considers the potential roles of myocardial fibroblasts and myofibroblasts in fibrosis and modulating myocyte electrophysiology through electrotonic interactions. Coupling with (myo)fibroblasts in vitro and in silico prolonged myocyte action potential duration and caused resting depolarization; an optogenetic study has verified in vivo that fibroblasts depolarized when coupled myocytes produced action potentials. This review also introduces another non-myocyte which may modulate both myocardial (myo)fibroblasts and myocytes: epicardial adipose tissue. Epicardial adipocytes are in intimate contact with myocytes and (myo)fibroblasts and may infiltrate the myocardium. Adipocytes secrete numerous adipokines which modulate (myo)fibroblast and myocyte physiology. These adipokines are protective in healthy hearts, preventing inflammation and fibrosis. However, adipokines secreted from adipocytes may switch to pro-inflammatory and pro-fibrotic, associated with reactive oxygen species generation. Pro-fibrotic adipokines stimulate myofibroblast differentiation, causing pronounced fibrosis in the epicardial adipose tissue and the myocardium. Adipose tissue also influences myocyte electrophysiology, via the adipokines and/or through electrotonic interactions. Deeper understanding of the interactions between myocytes and non-myocytes is important to understand and manage atrial fibrillation.
Collapse
Affiliation(s)
- Anirudh Krishnan
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia;
| | - Emily Chilton
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Jaishankar Raman
- Austin & St Vincent’s Hospitals, Melbourne University, Melbourne, VIC 3010, Australia;
- Applied Artificial Intelligence Institute, Deakin University, Melbourne, VIC 3217, Australia
- Department of Surgery, Oregon Health and Science University, Portland, OR 97239, USA
- School of Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Pankaj Saxena
- Department of Cardiothoracic Surgery, Townsville University Hospital, Townsville, QLD 4814, Australia;
| | - Craig McFarlane
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Alexandra F. Trollope
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia;
| | - Robert Kinobe
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Lisa Chilton
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| |
Collapse
|
15
|
Papathanasiou KA, Giotaki SG, Vrachatis DA, Siasos G, Lambadiari V, Iliodromitis KE, Kossyvakis C, Kaoukis A, Raisakis K, Deftereos G, Papaioannou TG, Giannopoulos G, Avramides D, Deftereos SG. Molecular Insights in Atrial Fibrillation Pathogenesis and Therapeutics: A Narrative Review. Diagnostics (Basel) 2021; 11:diagnostics11091584. [PMID: 34573926 PMCID: PMC8470040 DOI: 10.3390/diagnostics11091584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The prevalence of atrial fibrillation (AF) is bound to increase globally in the following years, affecting the quality of life of millions of people, increasing mortality and morbidity, and beleaguering health care systems. Increasingly effective therapeutic options against AF are the constantly evolving electroanatomic substrate mapping systems of the left atrium (LA) and ablation catheter technologies. Yet, a prerequisite for better long-term success rates is the understanding of AF pathogenesis and maintenance. LA electrical and anatomical remodeling remains in the epicenter of current research for novel diagnostic and treatment modalities. On a molecular level, electrical remodeling lies on impaired calcium handling, enhanced inwardly rectifying potassium currents, and gap junction perturbations. In addition, a wide array of profibrotic stimuli activates fibroblast to an increased extracellular matrix turnover via various intermediaries. Concomitant dysregulation of the autonomic nervous system and the humoral function of increased epicardial adipose tissue (EAT) are established mediators in the pathophysiology of AF. Local atrial lymphomononuclear cells infiltrate and increased inflammasome activity accelerate and perpetuate arrhythmia substrate. Finally, impaired intracellular protein metabolism, excessive oxidative stress, and mitochondrial dysfunction deplete atrial cardiomyocyte ATP and promote arrhythmogenesis. These overlapping cellular and molecular alterations hinder us from distinguishing the cause from the effect in AF pathogenesis. Yet, a plethora of therapeutic modalities target these molecular perturbations and hold promise in combating the AF burden. Namely, atrial selective ion channel inhibitors, AF gene therapy, anti-fibrotic agents, AF drug repurposing, immunomodulators, and indirect cardiac neuromodulation are discussed here.
Collapse
Affiliation(s)
- Konstantinos A. Papathanasiou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Sotiria G. Giotaki
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Dimitrios A. Vrachatis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Gerasimos Siasos
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | - Vaia Lambadiari
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | | | - Charalampos Kossyvakis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Andreas Kaoukis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Konstantinos Raisakis
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Gerasimos Deftereos
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Theodore G. Papaioannou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
| | | | - Dimitrios Avramides
- Department of Cardiology, “G. Gennimatas” General Hospital of Athens, 11527 Athens, Greece; (C.K.); (A.K.); (K.R.); (G.D.); (D.A.)
| | - Spyridon G. Deftereos
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.A.P.); (S.G.G.); (D.A.V.); (G.S.); (V.L.); (T.G.P.)
- Correspondence: ; Tel.: +30-21-0583-2355
| |
Collapse
|
16
|
Li M, Chen YB, Liu F, Qu JQ, Ren LC, Chai J, Tang CE. Galectin‑3 facilitates the proliferation and migration of nasopharyngeal carcinoma cells via activation of the ERK1/2 and Akt signaling pathways, and is positively correlated with the inflammatory state of nasopharyngeal carcinoma. Mol Med Rep 2021; 23:370. [PMID: 33760180 PMCID: PMC7986014 DOI: 10.3892/mmr.2021.12009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/23/2021] [Indexed: 01/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial carcinoma originating from the nasopharyngeal mucosal tissue and is highly prevalent in southeast Asia. Galectin‑3 (gal‑3) serves crucial roles in many cancers but its role in NPC remains to be elucidated. The aim of the present study was to investigate the role of gal‑3 in NPC. Immunohistochemistry and ELISA were used to determine the expression level of gal‑3 in patients with NPC or chronic rhinitis (CR). Gal‑3 short hairpin (sh)RNA was established to knockdown gal‑3 in 5‑8F and 6‑10B cells, allowing for the evaluation of the roles of gal‑3 in proliferation, migration and apoptosis in NPC cell lines. Immunohistochemistry staining of IL‑6 and IL‑8 was applied to access the inflammatory state of tumor tissues, and the correlation between the inflammatory state and gal‑3 was analyzed. The results demonstrated that gal‑3 was upregulated in patients with NPC compared with patients with CR. Knockdown of gal‑3 inhibited proliferation and migration in 5‑8F and 6‑10B cells, as well as promoted apoptosis in these cells. The expression levels of MMP‑9 and IL‑8 were also decreased in 5‑8F and 6‑10B cells after transfection with gal‑3 shRNA. A positive correlation was identified between the expression level of gal‑3 and the inflammatory state of NPC. The phosphorylation levels of ERK1/2 and Akt were downregulated after knockdown of gal‑3 in 5‑8F and 6‑10B cells. In conclusion, the expression level of gal‑3 was upregulated in patients with NPC and was positively correlated with the inflammatory state of NPC. The results suggested that gal‑3 promoted the proliferation and migration of 5‑8F and 6‑10B cells, while inhibiting the apoptosis of these cells. Moreover, activation of ERK1/2 and Akt may be the underlying mechanism of the effects of gal‑3 on NPC.
Collapse
Affiliation(s)
- Mei Li
- Institute of Medical Science Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yu Bin Chen
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fen Liu
- Institute of Medical Science Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jia Quan Qu
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Li Cheng Ren
- Department of Burn and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jin Chai
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Can E. Tang
- Institute of Medical Science Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
17
|
Chen Y, Qin Z, Wang Y, Li X, Zheng Y, Liu Y. Role of Inflammation in Vascular Disease-Related Perivascular Adipose Tissue Dysfunction. Front Endocrinol (Lausanne) 2021; 12:710842. [PMID: 34456867 PMCID: PMC8385491 DOI: 10.3389/fendo.2021.710842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is the connective tissue around most blood vessels throughout the body. It provides mechanical support and maintains vascular homeostasis in a paracrine/endocrine manner. Under physiological conditions, PVAT has anti-inflammatory effects, improves free fatty acid metabolism, and regulates vasodilation. In pathological conditions, PVAT is dysfunctional, secretes many anti-vasodilator factors, and participates in vascular inflammation through various cells and mediators; thus, it causes dysfunction involving vascular smooth muscle cells and endothelial cells. Inflammation is an important pathophysiological event in many vascular diseases, such as vascular aging, atherosclerosis, and hypertension. Therefore, the pro-inflammatory crosstalk between PVAT and blood vessels may comprise a novel therapeutic target for the prevention and treatment of vascular diseases. In this review, we summarize findings concerning PVAT function and inflammation in different pathophysiological backgrounds, focusing on the secretory functions of PVAT and the crosstalk between PVAT and vascular inflammation in terms of vascular aging, atherosclerosis, hypertension, diabetes mellitus, and other diseases. We also discuss anti-inflammatory treatment for potential vascular diseases involving PVAT.
Collapse
Affiliation(s)
- Yaozhi Chen
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
| | - Zeyu Qin
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, China
| | - Yaqiong Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, China
| | - Xin Li
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
| | - Yang Zheng
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
- *Correspondence: Yunxia Liu, ; Yang Zheng,
| | - Yunxia Liu
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
- *Correspondence: Yunxia Liu, ; Yang Zheng,
| |
Collapse
|