1
|
Packer CH, Jasset O, Hanniford N, Brigida S, Demidkin S, Perlis RH, Edlow AG, Shook LL. Maternal-fetal cytokine profiles in acute SARS-CoV-2 "breakthrough" infection after COVID-19 vaccination. Front Immunol 2025; 15:1506203. [PMID: 39845965 PMCID: PMC11750656 DOI: 10.3389/fimmu.2024.1506203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Objective Vaccination is protective against severe COVID-19 disease, yet whether vaccination reduces COVID-19-associated inflammation in pregnancy has not been established. The objective of this study is to characterize maternal and cord cytokine profiles of acute SARS-CoV-2 "breakthrough" infection (BTI) after vaccination, compared with unvaccinated infection and uninfected controls. Study design 66 pregnant individuals enrolled in the MGH COVID-19 biorepository (March 2020-April 2022) were included. Maternal sera were collected from 26 unvaccinated and 21 vaccinated individuals with acute SARS-CoV-2 infection. Cord sera were collected at delivery. Maternal and cord sera from 19 term dyads without current or prior SARS-CoV-2 infection were analyzed as controls. Cytokines were quantified using the Human Inflammation 20-Plex ProcartaPlex assay. Results There was a significantly higher incidence of severe/critical maternal illness in unvaccinated pregnant individuals with SARS-CoV-2 compared to vaccinated (10/26 (38%) vs. 0/21 (0%), p<0.01). Significantly higher maternal levels of TNFα and CD62P were observed in vaccinated individuals with SARS-CoV-2 BTI compared with unvaccinated individuals with infection (p<0.05). Network correlation analyses revealed a distinct maternal cytokine response to SARS-CoV-2 in vaccinated vs unvaccinated individuals. Neither unvaccinated nor vaccinated SARS-CoV-2 infection resulted in elevated cord cytokines compared to controls. Multivariate analyses demonstrate distinct maternal and cord cytokine profiles in the setting of maternal SARS-CoV-2 at delivery. Conclusion Vaccination was associated with higher maternal cytokine levels during acute SARS-CoV-2 infection compared to unvaccinated infection, which may reflect vaccine-mediated priming of the immune system. A fetal inflammatory response specific to maternal SARS-CoV-2 infection was not observed.
Collapse
Affiliation(s)
- Claire H. Packer
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Olyvia Jasset
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Nikolina Hanniford
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sara Brigida
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Stepan Demidkin
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Roy H. Perlis
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Andrea G. Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, United States
| | - Lydia L. Shook
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
2
|
Oh DS, Kim E, Normand R, Lu G, Shook LL, Lyall A, Jasset O, Demidkin S, Gilbert E, Kim J, Akinwunmi B, Tantivit J, Tirard A, Arnold BY, Slowikowski K, Goldberg MB, Filbin MR, Hacohen N, Nguyen LH, Chan AT, Yu XG, Li JZ, Yonker L, Fasano A, Perlis RH, Pasternak O, Gray KJ, Choi GB, Drew DA, Sen P, Villani AC, Edlow AG, Huh JR. SARS-CoV-2 infection elucidates features of pregnancy-specific immunity. Cell Rep 2024; 43:114933. [PMID: 39504241 PMCID: PMC11724703 DOI: 10.1016/j.celrep.2024.114933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/30/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Pregnancy is a risk factor for increased severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory infections, but the mechanisms underlying this risk are poorly understood. To gain insight into the role of pregnancy in modulating immune responses at baseline and upon SARS-CoV-2 infection, we collected peripheral blood mononuclear cells and plasma from 226 women, including 152 pregnant individuals and 74 non-pregnant women. We find that SARS-CoV-2 infection is associated with altered T cell responses in pregnant women, including a clonal expansion of CD4-expressing CD8+ T cells, diminished interferon responses, and profound suppression of monocyte function. We also identify shifts in cytokine and chemokine levels in the sera of pregnant individuals, including a robust increase of interleukin-27, known to drive T cell exhaustion. Our findings reveal nuanced pregnancy-associated immune responses, which may contribute to the increased susceptibility of pregnant individuals to viral respiratory infection.
Collapse
Affiliation(s)
- Dong Sun Oh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Eunha Kim
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; BK21 Graduate Program, Department of Biomedical Sciences and Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Rachelly Normand
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Guangqing Lu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lydia L Shook
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amanda Lyall
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Olyvia Jasset
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stepan Demidkin
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emily Gilbert
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joon Kim
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Babatunde Akinwunmi
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jessica Tantivit
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alice Tirard
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin Y Arnold
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kamil Slowikowski
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Marcia B Goldberg
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michael R Filbin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nir Hacohen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Long H Nguyen
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xu G Yu
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lael Yonker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Roy H Perlis
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn J Gray
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Gloria B Choi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A Drew
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Pritha Sen
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Transplant, Oncology, and Immunocompromised Host Group, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02129, USA; Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Andrea G Edlow
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Ockene MW, Balaguru D, Ma IL, Russo SC, Arpante AK, Clifford A, Jasset OJ, Kim JH, Toribio M, Stanley TL, Shook LL, Edlow AG, Fourman LT. In Utero Exposure to Maternal SARS-CoV-2 Infection Is Associated With Higher Left Ventricular Mass in Toddlers. Open Forum Infect Dis 2024; 11:ofae305. [PMID: 38933738 PMCID: PMC11204912 DOI: 10.1093/ofid/ofae305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The intrauterine environment plays a critical role in shaping chronic disease risk over the life course. We prospectively evaluated cardiometabolic outcomes in toddlers born to mothers with versus without prenatal severe acute respiratory syndrome coronavirus 2 infection. Children with in utero severe acute respiratory syndrome coronavirus 2 exposure had higher left ventricular mass in association with altered maternal immunologic indices.
Collapse
Affiliation(s)
- Mollie W Ockene
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Duraisamy Balaguru
- Pediatric Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ingrid L Ma
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Samuel C Russo
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Allison K Arpante
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexandra Clifford
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Olyvia J Jasset
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joon H Kim
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mabel Toribio
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Takara L Stanley
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lydia L Shook
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Obstetrics and Gynecology, Maternal-Fetal Medicine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea G Edlow
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Obstetrics and Gynecology, Maternal-Fetal Medicine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lindsay T Fourman
- Metabolism Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Ockene MW, Russo SC, Lee H, Monthé-Drèze C, Stanley TL, Ma IL, Toribio M, Shook LL, Grinspoon SK, Edlow AG, Fourman LT. Accelerated Longitudinal Weight Gain Among Infants With In Utero COVID-19 Exposure. J Clin Endocrinol Metab 2023; 108:2579-2588. [PMID: 36988326 PMCID: PMC10505544 DOI: 10.1210/clinem/dgad130] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Indexed: 03/30/2023]
Abstract
CONTEXT Since the initial outbreak of coronavirus disease 2019 (COVID-19), a novel population of children with in utero exposure to maternal infection has emerged whose health outcomes are largely unknown. OBJECTIVE To compare longitudinal growth trajectories among infants with vs without in utero COVID-19 exposure. METHODS We conducted a longitudinal cohort study leveraging a prospectively enrolled perinatal biorepository among 149 infants with in utero COVID-19 exposure and 127 unexposed controls. Weight, length, and body mass index (BMI) were abstracted from health records at 0, 2, 6, and 12 months and standardized using World Health Organization growth charts. Analyses were adjusted for maternal age, ethnicity, parity, insurance, and BMI as well as infant sex, birthdate, and breastfeeding. RESULTS Infants with in utero COVID-19 exposure vs controls exhibited differential trajectories of weight and BMI, but not length, z-score over the first year of life (study group × time interaction, P < .0001 for weight and BMI). Infants born to mothers with prenatal COVID-19 had lower BMI z-score at birth (effect size: -0.35, 95% CI -0.66 to -0.03) and greater gain in BMI z-score from birth to 12 months (effect size: 0.53, 95% CI 0.06 to 0.99). Birth weight z-score mediated a significant proportion of the relationship between COVID-19 exposure and postnatal growth (estimate ± SE, 32 ± 14%, P = .02). CONCLUSION Infants with in utero COVID-19 exposure exhibited lower birth weight and accelerated weight gain in the first year of life, which may be harbingers of downstream cardiometabolic pathology. Further studies are needed to delineate cardiometabolic sequelae among this emerging global population.
Collapse
Affiliation(s)
- Mollie W Ockene
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Samuel C Russo
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Carmen Monthé-Drèze
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Takara L Stanley
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ingrid L Ma
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mabel Toribio
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lydia L Shook
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Obstetrics and Gynecology, Maternal-Fetal Medicine Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Andrea G Edlow
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Obstetrics and Gynecology, Maternal-Fetal Medicine Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lindsay T Fourman
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
5
|
Matute JD, Finander B, Pepin D, Ai X, Smith NP, Li JZ, Edlow AG, Villani AC, Lerou PH, Kalish BT. Single-cell immunophenotyping of the fetal immune response to maternal SARS-CoV-2 infection in late gestation. Pediatr Res 2022; 91:1090-1098. [PMID: 34750520 PMCID: PMC8573077 DOI: 10.1038/s41390-021-01793-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND During the COVID-19 pandemic, thousands of pregnant women have been infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The implications of maternal SARS-CoV-2 infection on fetal and childhood well-being need to be characterized. We aimed to characterize the fetal immune response to maternal SARS-CoV-2 infection. METHODS We performed single-cell RNA-sequencing and T cell receptor sequencing on cord blood mononuclear cells (CBMCs) from newborns of mothers infected with SARS-CoV-2 in the third trimester (cases) or without SARS-CoV-2 infection (controls). RESULTS We identified widespread gene expression changes in CBMCs from cases, including upregulation of interferon-stimulated genes and major histocompatibility complex genes in CD14+ monocytes, transcriptional changes suggestive of activation of plasmacytoid dendritic cells, and activation and exhaustion of natural killer cells. Lastly, we observed fetal T cell clonal expansion in cases compared to controls. CONCLUSIONS As none of the infants were infected with SARS-CoV-2, our results suggest that maternal SARS-CoV-2 infection might modulate the fetal immune system in the absence of vertical transmission. IMPACT The implications of maternal SARS-CoV-2 infection in the absence of vertical transmission on fetal and childhood well-being are poorly understood. Maternal SARS-CoV-2 infection might modulate the fetal immune system in the absence of vertical transmission. This study raises important questions about the untoward effects of maternal SARS-CoV-2 on the fetus, even in the absence of vertical transmission.
Collapse
Affiliation(s)
- Juan D Matute
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital (MGH), Boston, MA, USA.
| | - Benjamin Finander
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - David Pepin
- Department of Pediatric Surgery, MGH, Boston, MA, USA
| | - Xingbin Ai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital (MGH), Boston, MA, USA
| | | | - Jonathan Z Li
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrea G Edlow
- Department of Obstetrics and Gynecology, MGH, Boston, MA, USA
| | | | - Paul H Lerou
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital (MGH), Boston, MA, USA
| | - Brian T Kalish
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Establishment of a COVID-19 perinatal biorepository in a safety net population. J Natl Med Assoc 2022; 114:390-391. [PMID: 35397931 PMCID: PMC8986480 DOI: 10.1016/j.jnma.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
|
7
|
Shook LL, Bordt EA, Meinsohn MC, Pepin D, De Guzman RM, Brigida S, Yockey LJ, James KE, Sullivan MW, Bebell LM, Roberts DJ, Kaimal AJ, Li JZ, Schust D, Gray KJ, Edlow AG. Placental Expression of ACE2 and TMPRSS2 in Maternal Severe Acute Respiratory Syndrome Coronavirus 2 Infection: Are Placental Defenses Mediated by Fetal Sex? J Infect Dis 2021; 224:S647-S659. [PMID: 34293137 PMCID: PMC8344531 DOI: 10.1093/infdis/jiab335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Expression of angiotensin-converting enzyme 2 (ACE2) and type II transmembrane serine protease (TMPRSS2), host molecules required for viral entry, may underlie sex differences in vulnerability to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We investigated whether placental ACE2 and TMPRSS2 expression vary by fetal sex in the presence of maternal SARS-CoV-2 infection. METHODS Placental ACE2 and TMPRSS2 expression was quantified by quantitative reverse transcription polymerase chain reaction (RT-PCR) and by Western blot in 68 pregnant women (38 SARS-CoV-2 positive, 30 SARS-CoV-2 negative) delivering at Mass General Brigham from April to June 2020. The impact of fetal sex and maternal SARS-CoV-2 exposure on ACE2 and TMPRSS2 was analyzed by 2-way analysis of variance (ANOVA). RESULTS Maternal SARS-CoV-2 infection impacted placental TMPRSS2 expression in a sexually dimorphic fashion (2-way ANOVA interaction, P = .002). We observed no impact of fetal sex or maternal SARS-CoV-2 status on ACE2. TMPRSS2 expression was significantly correlated with ACE2 expression in males (Spearman ρ = 0.54, P = .02) but not females (ρ = 0.23, P = .34) exposed to maternal SARS-CoV-2. CONCLUSIONS Sex differences in placental TMPRSS2 but not ACE2 were observed in the setting of maternal SARS-CoV-2 infection, which may have implications for offspring vulnerability to placental infection.
Collapse
Affiliation(s)
- Lydia L Shook
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie-Charlotte Meinsohn
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David Pepin
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rose M De Guzman
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sara Brigida
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Laura J Yockey
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaitlyn E James
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mackenzie W Sullivan
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lisa M Bebell
- Division of Infectious Diseases, Massachusetts General Hospital, MGH Center for Global Health, and Harvard Medical School, Boston, Massachusetts, USA
| | - Drucilla J Roberts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anjali J Kaimal
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Z Li
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Danny Schust
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, USA
| | - Kathryn J Gray
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea G Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Ragan EJ, McCallum C, Marathe J, Cole M, Hofman M, Henderson AJ, Flack T, Miller NS, Burks EJ, Zhao GQ, Denis R, Lin NH, Jacobson KR, Andry CD, Pelton SI, Duffy ER, Bhadelia N. Pandemic Response Requires Research Samples: A U.S. Safety-Net Hospital's Experience and Call for National Action. Ann Intern Med 2021; 174:1727-1732. [PMID: 34724402 PMCID: PMC11234338 DOI: 10.7326/m21-2857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Biorepositories provide a critical resource for gaining knowledge of emerging infectious diseases and offer a mechanism to rapidly respond to outbreaks; the emergence of the novel coronavirus, SARS-CoV-2, has proved their importance. During the COVID-19 pandemic, the absence of centralized, national biorepository efforts meant that the onus fell on individual institutions to establish sample repositories. As a safety-net hospital, Boston Medical Center (BMC) recognized the importance of creating a COVID-19 biorepository to both support critical science at BMC and ensure representation in research for its urban patient population, most of whom are from underserved communities. This article offers a realistic overview of the authors' experience in establishing this biorepository at the onset of the COVID-19 pandemic during the height of the first surge of cases in Boston, Massachusetts, with the hope that the challenges and solutions described are useful to other institutions. Going forward, funders, policymakers, and infectious disease and public health communities must support biorepository implementation as an essential element of future pandemic preparedness.
Collapse
Affiliation(s)
- Elizabeth J. Ragan
- Section of Infectious Diseases and Research Operations, Boston Medical Center, Boston, Massachusetts
| | - Caitryn McCallum
- Section of Infectious Diseases, Boston Medical Center, and Center for Emerging Infectious Diseases Policy and Research, Boston University, Boston, Massachusetts
| | - Jai Marathe
- Section of Infectious Diseases, Boston Medical Center, Boston, Massachusetts
| | - Manisha Cole
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston, Massachusetts
| | - Melissa Hofman
- Clinical Data Warehouse, Boston Medical Center, Boston, Massachusetts
| | - Andrew J. Henderson
- Section of Infectious Diseases, Boston Medical Center, and Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
| | - Tyler Flack
- Research Operations, Boston Medical Center, Boston, Massachusetts
| | - Nancy S. Miller
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston, Massachusetts
| | - Eric J. Burks
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston, Massachusetts
| | - Grace Qing Zhao
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston, Massachusetts
| | - Ridiane Denis
- General Clinical Research Unit, Boston University, Boston, Massachusetts
| | - Nina H. Lin
- Section of Infectious Diseases, Boston Medical Center, Boston, Massachusetts
| | - Karen R. Jacobson
- Section of Infectious Diseases, Boston Medical Center, Boston, Massachusetts
| | - Christopher D. Andry
- Department of Pathology and Laboratory Medicine, Boston Medical Center, and Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Stephen I. Pelton
- Section of Pediatric Infectious Diseases, Department of Pediatrics, Boston University Medical Center, Department of Epidemiology, Boston University School of Public Health, and Maxwell Finland Laboratory for Infectious Diseases, Boston, Massachusetts
| | - Elizabeth R. Duffy
- Department of Pathology and Laboratory Medicine, Boston Medical Center, and Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Nahid Bhadelia
- Section of Infectious Diseases, Boston Medical Center, and Center for Emerging Infectious Diseases Policy and Research and National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts
| |
Collapse
|
9
|
Bordt EA, Shook LL, Atyeo C, Pullen KM, De Guzman RM, Meinsohn MC, Chauvin M, Fischinger S, Yockey LJ, James K, Lima R, Yonker LM, Fasano A, Brigida S, Bebell LM, Roberts DJ, Pépin D, Huh JR, Bilbo SD, Li JZ, Kaimal A, Schust DJ, Gray KJ, Lauffenburger D, Alter G, Edlow AG. Maternal SARS-CoV-2 infection elicits sexually dimorphic placental immune responses. Sci Transl Med 2021; 13:eabi7428. [PMID: 34664987 PMCID: PMC8784281 DOI: 10.1126/scitranslmed.abi7428] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a persistent bias toward higher prevalence and increased severity of coronavirus disease 2019 (COVID-19) in males. Underlying mechanisms accounting for this sex difference remain incompletely understood. Interferon responses have been implicated as a modulator of COVID-19 disease in adults and play a key role in the placental antiviral response. Moreover, the interferon response has been shown to alter Fc receptor expression and therefore may affect placental antibody transfer. Here, we examined the intersection of maternal-fetal antibody transfer, viral-induced placental interferon responses, and fetal sex in pregnant women infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Placental Fc receptor abundance, interferon-stimulated gene (ISG) expression, and SARS-CoV-2 antibody transfer were interrogated in 68 human pregnancies. Sexually dimorphic expression of placental Fc receptors, ISGs and proteins, and interleukin-10 was observed after maternal SARS-CoV-2 infection, with up-regulation of these features in placental tissue of pregnant individuals with male fetuses. Reduced maternal SARS-CoV-2–specific antibody titers and impaired placental antibody transfer were also observed in pregnancies with a male fetus. These results demonstrate fetal sex-specific maternal and placental adaptive and innate immune responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Evan A. Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Lydia L. Shook
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
| | - Krista M. Pullen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Rose M. De Guzman
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marie-Charlotte Meinsohn
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Maeva Chauvin
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Laura J. Yockey
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kaitlyn James
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rosiane Lima
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Lael M. Yonker
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02129, USA
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Sara Brigida
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lisa M. Bebell
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Drucilla J. Roberts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David Pépin
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jun R. Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Staci D. Bilbo
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Jonathan Z. Li
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Anjali Kaimal
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Danny J. Schust
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO 65201, USA
| | - Kathryn J. Gray
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Andrea G. Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
10
|
LaVergne SM, Stromberg S, Baxter BA, Webb TL, Dutt TS, Berry K, Tipton M, Haberman J, Massey BR, McFann K, Alnachoukati O, Zier L, Heacock T, Ebel GD, Henao-Tamayo M, Dunn J, Ryan EP. A longitudinal SARS-CoV-2 biorepository for COVID-19 survivors with and without post-acute sequelae. BMC Infect Dis 2021; 21:677. [PMID: 34256735 PMCID: PMC8276222 DOI: 10.1186/s12879-021-06359-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND SARS-CoV-2 has swept across the globe, causing millions of deaths worldwide. Though most survive, many experience symptoms of COVID-19 for months after acute infection. Successful prevention and treatment of acute COVID-19 infection and its associated sequelae is dependent on in-depth knowledge of viral pathology across the spectrum of patient phenotypes and physiologic responses. Longitudinal biobanking provides a valuable resource of clinically integrated, easily accessed, and quality-controlled samples for researchers to study differential multi-organ system responses to SARS-CoV-2 infection, post-acute sequelae of COVID-19 (PASC), and vaccination. METHODS Adults with a history of a positive SARS-CoV-2 nasopharyngeal PCR are actively recruited from the community or hospital settings to enroll in the Northern Colorado SARS-CoV-2 Biorepository (NoCo-COBIO). Blood, saliva, stool, nasopharyngeal specimens, and extensive clinical and demographic data are collected at 4 time points over 6 months. Patients are assessed for PASC during longitudinal follow-up by physician led symptom questionnaires and physical exams. This clinical trial registration is NCT04603677 . RESULTS We have enrolled and collected samples from 119 adults since July 2020, with 66% follow-up rate. Forty-nine percent of participants assessed with a symptom surveillance questionnaire (N = 37 of 75) had PASC at any time during follow-up (up to 8 months post infection). Ninety-three percent of hospitalized participants developed PASC, while 23% of those not requiring hospitalization developed PASC. At 90-174 days post SARS-CoV-2 diagnosis, 67% of all participants had persistent symptoms (N = 37 of 55), and 85% percent of participants who required hospitalization during initial infection (N = 20) still had symptoms. The most common symptoms reported after 15 days of infection were fatigue, loss of smell, loss of taste, exercise intolerance, and cognitive dysfunction. CONCLUSIONS Patients who were hospitalized for COVID-19 were significantly more likely to have PASC than those not requiring hospitalization, however 23% of patients who were not hospitalized also developed PASC. This patient-matched, multi-matrix, longitudinal biorepository from COVID-19 survivors with and without PASC will allow for current and future research to better understand the pathophysiology of disease and to identify targeted interventions to reduce risk for PASC. Registered 27 October 2020 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04603677 .
Collapse
Affiliation(s)
- Stephanie M LaVergne
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1601 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Sophia Stromberg
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Bridget A Baxter
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1601 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Tracy L Webb
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Taru S Dutt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kailey Berry
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Madison Tipton
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jared Haberman
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Kim McFann
- University of Colorado Health, Medical Center of the Rockies, Loveland, CO, USA
| | - Omar Alnachoukati
- University of Colorado Health, Medical Center of the Rockies, Loveland, CO, USA
| | - Linda Zier
- University of Colorado Health, Medical Center of the Rockies, Loveland, CO, USA
| | - Thomas Heacock
- University of Colorado Health, Medical Center of the Rockies, Loveland, CO, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Julie Dunn
- University of Colorado Health, Medical Center of the Rockies, Loveland, CO, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1601 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
11
|
Matute J, Finander B, Pepin D, Ai X, Smith N, Li J, Edlow A, Villani A, Lerou P, Kalish B. Single-cell immunophenotyping of the fetal immune response to maternal SARS-CoV-2 infection in late gestation. RESEARCH SQUARE 2021:rs.3.rs-311000. [PMID: 33758834 PMCID: PMC7987103 DOI: 10.21203/rs.3.rs-311000/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During the COVID-19 pandemic, thousands of pregnant women have been infected with SARS-CoV-2. The implications of maternal SARS-CoV-2 infection on fetal and childhood well-being are unknown. We aimed to characterize the fetal immune response to maternal SARS-CoV-2 infection. We performed single-cell RNA sequencing and T-cell receptor (TCR) sequencing on cord blood mononuclear cells (CBMC) from newborns of mothers infected with SARS-CoV-2 in the third-trimester (cases) or without SARS-CoV-2 infection. We identified widespread gene expression changes in CBMC from cases, including upregulation of interferon-stimulated genes and Major Histocompatibility Complex genes in CD14 + monocytes; transcriptional changes suggestive of activation of plasmacytoid dendritic cells, and activation and exhaustion of NK cells and CD8 + T-cells. Lastly, we observed fetal TCR repertoire expansion in cases. As none of the infants were infected with SARS-CoV-2, our results suggest that SARS-CoV-2 maternal infection might modulate the fetal immune system in the absence of vertical transmission.
Collapse
Affiliation(s)
- Juan Matute
- Massachusetts General Hospital and Harvard Medical School
| | | | | | - Xinbin Ai
- Massachusetts General Hospital and Harvard Medical School
| | - Neal Smith
- Massachusetts General Hospital and Harvard Medical School
| | | | - Andrea Edlow
- Massachusetts General Hospital and Harvard Medical School
| | | | - Paul Lerou
- Massachusetts General Hospital and Harvard Medical School
| | - Brian Kalish
- The Hospital for Sick Children and University of Toronto
| |
Collapse
|
12
|
Atyeo C, Pullen KM, Bordt EA, Fischinger S, Burke J, Michell A, Slein MD, Loos C, Shook LL, Boatin AA, Yockey LJ, Pepin D, Meinsohn MC, Nguyen NMP, Chauvin M, Roberts D, Goldfarb IT, Matute JD, James KE, Yonker LM, Bebell LM, Kaimal AJ, Gray KJ, Lauffenburger D, Edlow AG, Alter G. Compromised SARS-CoV-2-specific placental antibody transfer. Cell 2021; 184:628-642.e10. [PMID: 33476549 PMCID: PMC7755577 DOI: 10.1016/j.cell.2020.12.027] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 infection causes more severe disease in pregnant women compared to age-matched non-pregnant women. Whether maternal infection causes changes in the transfer of immunity to infants remains unclear. Maternal infections have previously been associated with compromised placental antibody transfer, but the mechanism underlying this compromised transfer is not established. Here, we used systems serology to characterize the Fc profile of influenza-, pertussis-, and SARS-CoV-2-specific antibodies transferred across the placenta. Influenza- and pertussis-specific antibodies were actively transferred. However, SARS-CoV-2-specific antibody transfer was significantly reduced compared to influenza- and pertussis-specific antibodies, and cord titers and functional activity were lower than in maternal plasma. This effect was only observed in third-trimester infection. SARS-CoV-2-specific transfer was linked to altered SARS-CoV-2-antibody glycosylation profiles and was partially rescued by infection-induced increases in IgG and increased FCGR3A placental expression. These results point to unexpected compensatory mechanisms to boost immunity in neonates, providing insights for maternal vaccine design.
Collapse
Affiliation(s)
- Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
| | - Krista M Pullen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Stephanie Fischinger
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; PhD Program in Immunology and Virology, University of Duisburg-Essen, Essen 47057, Germany
| | - John Burke
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Ashlin Michell
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Matthew D Slein
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Carolin Loos
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lydia L Shook
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Adeline A Boatin
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Laura J Yockey
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David Pepin
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Marie-Charlotte Meinsohn
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ngoc Minh Phuong Nguyen
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Maeva Chauvin
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Drucilla Roberts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ilona T Goldfarb
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Juan D Matute
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kaitlyn E James
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lael M Yonker
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lisa M Bebell
- Division of Infectious Diseases, Massachusetts General Hospital, MGH Global Health, and Harvard Medical School, Boston, MA 02114, USA
| | - Anjali J Kaimal
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kathryn J Gray
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea G Edlow
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|