1
|
Zhang Y, Ma R, Du X, He X, Zhang Y, Ma N, Liu H, Zhao X. Impact of bacteroides uniformis on fatty liver hemorrhagic syndrome in dawu golden phoenix laying hens: modulation of gut microbiota and arachidonic acid metabolism. Front Microbiol 2025; 16:1560887. [PMID: 40356654 PMCID: PMC12066428 DOI: 10.3389/fmicb.2025.1560887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/25/2025] [Indexed: 05/15/2025] Open
Abstract
This study explored the impact of Bacteroides uniformis (B. uniformis) on fatty liver hemorrhagic syndrome (FLHS) induced by a high-energy and low-protein (HELP) diet in laying hens, mainly focusing on hepatic lipid metabolism, gut microbiota, and arachidonic acid (AA) metabolism. A total of 120 Dawu Golden Phoenix laying hens (210-day-old) were randomly divided into four groups. The control group (CON) was fed a standard diet and received a daily gavage of PBS, while the other groups were fed with a HELP diet to induce FLHS and received a daily gavage of PBS (MOD), 1 × 109 CFU/ml B. uniformis (BUL), and 1 × 1011 CFU/ml B. uniformis (BUH) for 70 days. All hens were administered 1 ml daily by gavage. Each group had 6 replications with 5 hens per replication. The results showed that B. uniformis increased the egg production rate and feed conversion ratio and decreased body weight, liver index, and abdominal fat rate (p < 0.05). B. uniformis treatment reduced liver lipid accumulation by reducing the levels of Triglyceride (TG), Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), alanine transaminases (ALT), and aspartate transaminases (AST) in serum and significantly elevated high-density lipoprotein cholesterol (HDL-C) (p < 0.05). The results indicated that B. uniformis altered the gut microbiota. Specifically, the abundance of Bacteroides was higher, and the relative abundances of Treponema, Helicobacter, and Spirochaetota were lower than those of the MOD group (p < 0.05). Moreover, targeted metabolomic analysis showed that supplementation of B. uniformis significantly elevated 6-keto-PGF1α and AA levels, along with significantly reduced levels of thromboxane B2 (TXB2), leukotriene D4 (LTD4), 8-isoprostaglandin F2α (8-iso-PGF2α), 12S-hydroxyeicosatetraenoic acid (12S-HETE), 15S-hydroxyeicosatetraenoic acid (15S-HETE), 9-S-hydroxy-octadecadienoic acid (9S-HODE), and 13-S-hydroxy-octadecadienoic acid (13S-HODE) (p < 0.05). In conclusion, the oral intake of B. uniformis can improve liver function, gut microbiota, and AA metabolism, thereby helping to ameliorate FLHS in Dawu Golden Phoenix laying hens.
Collapse
Affiliation(s)
- Yu Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Rongfei Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xicui Du
- Hebei Jinkun Animal Pharmaceutical Co. Ltd., Xinji, China
| | - Xin He
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yan Zhang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Ning Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Hailong Liu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xinghua Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
2
|
Liu X, Ma Z, Deng Z, Yi Z, Tuo B, Li T, Liu X. Role of spasmolytic polypeptide-expressing metaplasia in gastric mucosal diseases. Am J Cancer Res 2023; 13:1667-1681. [PMID: 37293144 PMCID: PMC10244109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/07/2023] [Indexed: 06/10/2023] Open
Abstract
Spasmolytic polypeptide-expressing metaplasia (SPEM) is a trefoil factor 2-expressing metaplasia in the fundic glands that resembles the fundic metaplasia of deep antral glandular cells and arises mainly from transdifferentiation of mature chief cells as well as mucous neck cells or isthmic stem cells. SPEM participates in the regulation of gastric mucosal injury, including focal and diffuse injury. This review focuses on the origin, models, and regulatory mechanisms of SPEM and on its role in the development of gastric mucosal injury. We hope to provide new prospects for the prevention and treatment of gastric mucosal diseases from the perspective of cell differentiation and transformation.
Collapse
Affiliation(s)
- Xi Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Zilin Deng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| |
Collapse
|
3
|
Rogers AP, Mileto SJ, Lyras D. Impact of enteric bacterial infections at and beyond the epithelial barrier. Nat Rev Microbiol 2023; 21:260-274. [PMID: 36175770 DOI: 10.1038/s41579-022-00794-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
The mucosal lining of the gut has co-evolved with a diverse microbiota over millions of years, leading to the development of specialized mechanisms to actively limit the invasion of pathogens. However, some enteric microorganisms have adapted against these measures, developing ways to hijack or overcome epithelial micro-integrity mechanisms. This breach of the gut barrier not only enables the leakage of host factors out of circulation but can also initiate a cascade of detrimental systemic events as microbiota, pathogens and their affiliated secretions passively leak into extra-intestinal sites. Under normal circumstances, gut damage is rapidly repaired by intestinal stem cells. However, with substantial and deep perturbation to the gut lining and the systemic dissemination of gut contents, we now know that some enteric infections can cause the impairment of host regenerative processes. Although these local and systemic aspects of enteric disease are often studied in isolation, they heavily impact one another. In this Review, by examining the journey of enteric infections from initial establishment to systemic sequelae and how, or if, the host can successfully repair damage, we will tie together these complex interactions to provide a holistic overview of the impact of enteric infections at and beyond the epithelial barrier.
Collapse
Affiliation(s)
- Ashleigh P Rogers
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Steven J Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia. .,Department of Microbiology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Wang P, Xu T, Yan Z, Zheng X, Zhu F. Jian-Pi-Yi-Qi-Fang ameliorates chronic atrophic gastritis in rats through promoting the proliferation and differentiation of gastric stem cells. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:932. [PMID: 36172111 PMCID: PMC9511200 DOI: 10.21037/atm-22-3749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 11/14/2022]
Abstract
Background Jian-Pi-Yi-Qi-Fang (JPYQF) is a traditional Chinese medicine (TCM) herbal formula for treating chronic atrophic gastritis (CAG) in the clinic; however, its related mechanism remains unclear. The purpose of this study was to explore the potential mechanisms of JPYQF in treating CAG by examining proteins and genes related to the proliferation and differentiation of gastric stem cells and Wnt signaling. Methods A CAG model was established in Sprague-Dawley (SD) rats which were induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and ranitidine. We randomly divided 25 CAG rats into 5 groups: the model group, positive drug group, low-dose group of JPYQF (JPYQF-L), middle-dose group of JPYQF (JPYQF-M), and high-dose group of JPYQF (JPYQF-H), with 5 rats of the same age classified into the control group. The body weight of rats was measured and their gastric morphology was visually assessed. Furthermore, pathological analysis of rat gastric tissue was performed. The expression levels of proteins and genes associated with the proliferation and differentiation of gastric stem cells and Wnt signaling were measured via immunohistochemistry and reverse transcription quantitative polymerase chain reaction (RT-qPCR). Results Compared with the model group, treatment with JPYQF increased the body weight of the rats, and relieved the gastric atrophy and inflammation. Compared with the control group, the protein and messenger RNA (mRNA) expression levels of gastric stem cell proliferation and differentiation markers Lgr5, Sox2, Ki67, PCNA, Muc5AC, and Wnt signaling initiator Wnt3A and enhancer R-spondin-1 (Rspo1) were decreased in the model group. Treatment with JPYQF increased the protein and mRNA expression levels of these markers. Conclusions The Wnt signaling of CAG rats may be in a low activation state, which inhibits the proliferation and differentiation of gastric stem cells, so that gland cells cannot be replenished in time to repair the damaged gastric mucosa. The TCM formula JPYQF could enhance Wnt signaling to promote the restricted proliferation and normal differentiation of gastric stem cells, thereby improving gastric mucosal atrophy in CAG rats, which provides a novel and robust theoretical basis for CAG treatment.
Collapse
Affiliation(s)
- Pei Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Xu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhanpeng Yan
- Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xue Zheng
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangshi Zhu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Chia SPS, Kong SLY, Pang JKS, Soh BS. 3D Human Organoids: The Next "Viral" Model for the Molecular Basis of Infectious Diseases. Biomedicines 2022; 10:1541. [PMID: 35884846 PMCID: PMC9312734 DOI: 10.3390/biomedicines10071541] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 pandemic has driven the scientific community to adopt an efficient and reliable model that could keep up with the infectious disease arms race. Coinciding with the pandemic, three dimensional (3D) human organoids technology has also gained traction in the field of infectious disease. An in vitro construct that can closely resemble the in vivo organ, organoid technology could bridge the gap between the traditional two-dimensional (2D) cell culture and animal models. By harnessing the multi-lineage characteristic of the organoid that allows for the recapitulation of the organotypic structure and functions, 3D human organoids have emerged as an essential tool in the field of infectious disease research. In this review, we will be providing a comparison between conventional systems and organoid models. We will also be highlighting how organoids played a role in modelling common infectious diseases and molecular mechanisms behind the pathogenesis of causative agents. Additionally, we present the limitations associated with the current organoid models and innovative strategies that could resolve these shortcomings.
Collapse
Affiliation(s)
- Shirley Pei Shan Chia
- Disease Modeling and Therapeutics Laboratory, ASTAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; (S.P.S.C.); (S.L.Y.K.); (J.K.S.P.)
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Sharleen Li Ying Kong
- Disease Modeling and Therapeutics Laboratory, ASTAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; (S.P.S.C.); (S.L.Y.K.); (J.K.S.P.)
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Jeremy Kah Sheng Pang
- Disease Modeling and Therapeutics Laboratory, ASTAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; (S.P.S.C.); (S.L.Y.K.); (J.K.S.P.)
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, ASTAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; (S.P.S.C.); (S.L.Y.K.); (J.K.S.P.)
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|
6
|
Luo S, He L, Zhang H, Li Z, Liu C, Chen T. Arabinoxylan from rice bran protects mice against high-fat diet-induced obesity and metabolic inflammation by modulating gut microbiota and short-chain fatty acids. Food Funct 2022; 13:7707-7719. [PMID: 35758533 DOI: 10.1039/d2fo00569g] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rice bran is an important by-product of the milling industry. Arabinoxylan extracted from rice bran (RAX) is available in large quantities and is structurally different from other arabinoxylans from cereals. The anti-obesity effects of RAX and the role of microbiota have not been studied. In this work, we investigated the beneficial effects of RAX in C57BL/6J mice fed a high-fat diet (HFD). We found that supplementation of RAX significantly ameliorated HFD-induced obesity. RAX decreased HFD induced lipid accumulation and regulated genes related to hepatic fatty acid metabolism. Regulated lipid metabolism is associated with reduced systemic inflammation as indicated by TNF-α and IL-6. RAX normalized the gut microbiota and its major metabolites short-chain fatty acids (SCFAs). RAX restored the alpha diversity of the gut microbiota and increased the relative abundance of anti-inflammatory bacteria including Bifidobacterium and Akkermansia. RAX decreased pro-inflammatory bacteria including Anaerotruncus, Helicobacter, Coprococcus, and Desulfovibrio. Our results suggest that systemic inflammation bridges to the gut microbiota through LPS and SCFAs. RAX modulates the gut microbiota and SCFA production in the large intestine, thereby reducing systemic inflammation and ameliorating obesity. In brief, RAX prevented obesity through a mechanism related to the modulation of the microbiota and its metabolites.
Collapse
Affiliation(s)
- Shunjing Luo
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, China.
| | - Li He
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, China.
| | - Huibin Zhang
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, China.
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, Guangzhou 510663, China.,Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Chengmei Liu
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, China.
| | - Tingting Chen
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
7
|
Yamada H, Kaneko H, Kuwashima H, Sugimori M, Tsuyuki S, Sanga K, Irie K, Sasaki T, Kondo M, Miyake A, Maeda S. The Origin of Epithelium with Low-Grade Atypia in Early Gastric Cancer. Digestion 2022; 103:217-223. [PMID: 35172301 PMCID: PMC9153352 DOI: 10.1159/000521875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/13/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Helicobacter pylori (HP) infection causes chronic inflammation and atrophy of the gastric mucosa and thus a high risk of gastric cancer (GC). With the increasing success of HP infection treatment, a larger number of GCs that develop after eradication can be assessed. Several studies have shown that epithelium with low-grade atypia (ELA) is a frequent characteristic of these GCs, but the origin of this condition is unknown. In this study, we compared the mucin phenotype, cellular proliferation, and p53 staining in ELA and cancerous tissues obtained from patients with GC with and without HP eradication. METHODS The study population consisted of 23 patients with GC that developed after successful HP eradication therapy (eradicated group) and 24 patients with GC and HP infection (infected group). The prevalence of ELA was determined by hematoxylin and eosin staining. Tumor tissue and ELA samples were further analyzed by immunohistochemical staining for Muc5AC, Muc2, p53, and Ki-67. RESULTS The ELA coverage rate was significantly higher in the eradicated group than in the infected group. Gastric-type mucin was frequently expressed by the ELA, and the mucin phenotypes of ELA and cancerous areas differed in 75% of cases. The Ki-67 labeling index was consistently lower in ELA than in the cancerous mucosa. Fourteen of 21 (66.7%) cancerous lesions, but only 3 ELA samples, were p53-positive. CONCLUSION In most cases, ELA on the surfaces of GCs seems to have originated from normal gastric cells, not from cancer cells.
Collapse
Affiliation(s)
- Hiroaki Yamada
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan,*Hiroaki Yamada,
| | - Hiroaki Kaneko
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan
| | - Hirofumi Kuwashima
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan
| | - Makoto Sugimori
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan
| | - Sho Tsuyuki
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan
| | - Katsuyuki Sanga
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan
| | - Kuniyasu Irie
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan
| | - Tomohiko Sasaki
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan
| | - Masaaki Kondo
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan
| | - Akio Miyake
- Division of Pathological Diagnosis, Yokohama City University Hospital, Yokohama, Japan
| | - Shin Maeda
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan,**Shin Maeda,
| |
Collapse
|
8
|
Ray AK, Luis PB, Mishra SK, Barry DP, Asim M, Pandey A, Chaturvedi M, Gupta J, Gupta S, Mahant S, Das R, Kumar P, Shalimar, Wilson KT, Schneider C, Chaturvedi R. Curcumin Oxidation Is Required for Inhibition of Helicobacter pylori Growth, Translocation and Phosphorylation of Cag A. Front Cell Infect Microbiol 2021; 11:765842. [PMID: 35004346 PMCID: PMC8740292 DOI: 10.3389/fcimb.2021.765842] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/02/2021] [Indexed: 01/22/2023] Open
Abstract
Curcumin is a potential natural remedy for preventing Helicobacter pylori-associated gastric inflammation and cancer. Here, we analyzed the effect of a phospholipid formulation of curcumin on H. pylori growth, translocation and phosphorylation of the virulence factor CagA and host protein kinase Src in vitro and in an in vivo mouse model of H. pylori infection. Growth of H. pylori was inhibited dose-dependently by curcumin in vitro. H. pylori was unable to metabolically reduce curcumin, whereas two enterobacteria, E. coli and Citrobacter rodentium, which efficiently reduced curcumin to the tetra- and hexahydro metabolites, evaded growth inhibition. Oxidative metabolism of curcumin was required for the growth inhibition of H. pylori and the translocation and phosphorylation of CagA and cSrc, since acetal- and diacetal-curcumin that do not undergo oxidative transformation were ineffective. Curcumin attenuated mRNA expression of the H. pylori virulence genes cagE and cagF in a dose-dependent manner and inhibited translocation and phosphorylation of CagA in gastric epithelial cells. H. pylori strains isolated from dietary curcumin-treated mice showed attenuated ability to induce cSrc phosphorylation and the mRNA expression of the gene encoding for IL-8, suggesting long-lasting effects of curcumin on the virulence of H. pylori. Our work provides mechanistic evidence that encourages testing of curcumin as a dietary approach to inhibit the virulence of CagA.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Microbiology, Saheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Paula B. Luis
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | | | - Daniel P. Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Achyut Pandey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Maya Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Jyoti Gupta
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shilpi Gupta
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shweta Mahant
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Rajashree Das
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Pramod Kumar
- Department of Chemistry, Sri Aurobindo College, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Claus Schneider
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
Organoids in modelling infectious diseases. Drug Discov Today 2021; 27:223-233. [PMID: 34418577 DOI: 10.1016/j.drudis.2021.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/14/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Approaches based on animal and two-dimensional (2D) cell culture models cannot ensure reliable results in modeling novel pathogens or in drug testing in the short term; therefore, there is rising interest in platforms such as organoids. To develop a toolbox that can be used successfully to overcome current issues in modeling various infections, it is essential to provide a framework of recent achievements in applying organoids. Organoids have been used to study viruses, bacteria, and protists that cause, for example, respiratory, gastrointestinal, and liver diseases. Their future as models of infection will be associated with improvements in system complexity, including abilities to model tissue structure, a dynamic microenvironment, and coinfection. Teaser. Organoids are a flexible tool for modelling viral, bacterial and protist infections. They can provide fast and reliable information on the biology of pathogens and in drug screening, and thus have become essential in combatting emerging infectious diseases.
Collapse
|
10
|
Nanomechanical Hallmarks of Helicobacter pylori Infection in Pediatric Patients. Int J Mol Sci 2021; 22:ijms22115624. [PMID: 34070700 PMCID: PMC8198391 DOI: 10.3390/ijms22115624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Background: the molecular mechanism of gastric cancer development related to Helicobacter pylori (H. pylori) infection has not been fully understood, and further studies are still needed. Information regarding nanomechanical aspects of pathophysiological events that occur during H. pylori infection can be crucial in the development of new prevention, treatment, and diagnostic measures against clinical consequences associated with H. pylori infection, including gastric ulcer, duodenal ulcer, and gastric cancer. Methods: in this study, we assessed mechanical properties of children’s healthy and H. pylori positive stomach tissues and the mechanical response of human gastric cells exposed to heat-treated H. pylori cells using atomic force microscopy (AFM NanoWizard 4 BioScience JPK Instruments Bruker). Elastic modulus (i.e., the Young’s modulus) was derived from the Hertz–Sneddon model applied to force-indentation curves. Human tissue samples were evaluated using rapid urease tests to identify H. pylori positive samples, and the presence of H. pylori cells in those samples was confirmed using immunohistopathological staining. Results and conclusion: collected data suggest that nanomechanical properties of infected tissue might be considered as markers indicated H. pylori presence since infected tissues are softer than uninfected ones. At the cellular level, this mechanical response is at least partially mediated by cell cytoskeleton remodeling indicating that gastric cells are able to tune their mechanical properties when subjected to the presence of H. pylori products. Persistent fluctuations of tissue mechanical properties in response to H. pylori infection might, in the long-term, promote induction of cancer development.
Collapse
|
11
|
Yuki K, Cheng N, Nakano M, Kuo CJ. Organoid Models of Tumor Immunology. Trends Immunol 2020; 41:652-664. [PMID: 32654925 PMCID: PMC7416500 DOI: 10.1016/j.it.2020.06.010] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022]
Abstract
Cellular interactions in the tumor microenvironment (TME) significantly govern cancer progression and drug response. The efficacy of clinical immunotherapies has fostered an exponential interest in the tumor immune microenvironment, which in turn has engendered a pressing need for robust experimental systems modeling patient-specific tumor-immune interactions. Traditional 2D in vitro tumor immunotherapy models have reconstituted immortalized cancer cell lines with immune components, often from peripheral blood. However, newly developed 3D in vitro organoid culture methods now allow the routine culture of primary human tumor biopsies and increasingly incorporate immune components. Here, we present a viewpoint on recent advances, and propose translational applications of tumor organoids for immuno-oncology research, immunotherapy modeling, and precision medicine.
Collapse
Affiliation(s)
- Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ning Cheng
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michitaka Nakano
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Clostridioides difficile infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery from disease. Proc Natl Acad Sci U S A 2020; 117:8064-8073. [PMID: 32198200 DOI: 10.1073/pnas.1915255117] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal infections often induce epithelial damage that must be repaired for optimal gut function. While intestinal stem cells are critical for this regeneration process [R. C. van der Wath, B. S. Gardiner, A. W. Burgess, D. W. Smith, PLoS One 8, e73204 (2013); S. Kozar et al., Cell Stem Cell 13, 626-633 (2013)], how they are impacted by enteric infections remains poorly defined. Here, we investigate infection-mediated damage to the colonic stem cell compartment and how this affects epithelial repair and recovery from infection. Using the pathogen Clostridioides difficile, we show that infection disrupts murine intestinal cellular organization and integrity deep into the epithelium, to expose the otherwise protected stem cell compartment, in a TcdB-mediated process. Exposure and susceptibility of colonic stem cells to intoxication compromises their function during infection, which diminishes their ability to repair the injured epithelium, shown by altered stem cell signaling and a reduction in the growth of colonic organoids from stem cells isolated from infected mice. We also show, using both mouse and human colonic organoids, that TcdB from epidemic ribotype 027 strains does not require Frizzled 1/2/7 binding to elicit this dysfunctional stem cell state. This stem cell dysfunction induces a significant delay in recovery and repair of the intestinal epithelium of up to 2 wk post the infection peak. Our results uncover a mechanism by which an enteric pathogen subverts repair processes by targeting stem cells during infection and preventing epithelial regeneration, which prolongs epithelial barrier impairment and creates an environment in which disease recurrence is likely.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW This review integrates the new thinking about relationships between gastric cancer and intestinal metaplasia/pseudopyloric metaplasia (SPEM). We address whether recent studies have closed or widened the knowledge gap regarding gastric cancer pathogenesis in mice or humans. RECENT FINDINGS Recent studies in mouse models have provided a variety of new insights into the cellular origin and progression of events resulting in gastric cancer. Many suggest a direct transformation from intestinal metaplasia/pseudopyloric metaplasia/SPEM to gastric cancer. However, results from different investigator and models are conflicting and often describe events not present in studies in humans. SUMMARY Both Helicobacter pylori-associated and autoimmune gastritis may produce gastric atrophy with extensive intestinal metaplasia and an abnormal gastric microbiome. However, only H. pylori gastritis carries a risk for adenocarcinoma. The differences reported with mouse models can best be explained as the results of different models of regeneration and repair rather than as models of gastric cancer. Overall, the data remains consistent with the original hypothesis that gastric cancer results from increased genetic instability of gastric stem cells rather than a direct transition from metaplasia to cancer. Intestinal metaplasia, pseudopyloric metaplasia, and SPEM have all been falsely accused based on guilt by association.
Collapse
|
14
|
Activation of Signal Transduction and Activator of Transcription 3 Signaling Contributes to Helicobacter-Associated Gastric Epithelial Proliferation and Inflammation. Gastroenterol Res Pract 2018; 2018:9050715. [PMID: 29849601 PMCID: PMC5911338 DOI: 10.1155/2018/9050715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/25/2017] [Accepted: 01/14/2018] [Indexed: 02/08/2023] Open
Abstract
Background/Aim Although IL-6-mediated activation of the signal transduction and activator of transcription 3 (STAT3) axis is involved in inflammation and cancer, the role of STAT3 in Helicobacter-associated gastric inflammation and carcinogenesis is unclear. This study investigated the role of STAT3 in gastric inflammation and carcinogenesis and examined the molecular mechanism of Helicobacter-induced gastric phenotypes. Methods To evaluate the contribution of STAT3 to gastric inflammation and carcinogenesis, we used wild-type (WT) and gastric epithelial conditional Stat3-knockout (Stat3Δgec) mice. Mice were infected with Helicobacter felis and euthanized at 18 months postinfection. Mouse gastric organoids were treated with recombinant IL-6 (rIL-6) or rIL-11 and a JAK inhibitor (JAKi) to assess the role of IL-6/STAT3 signaling in vitro. Results Inflammation and mucous metaplasia were more severe in WT mice than in Stat3Δgec mice. The epithelial cell proliferation rate and STAT3 activation were increased in WT mice. Application of rIL-6 and rIL-11 induced expression of intestinal metaplasia-associated genes, such as Tff2; this induction was suppressed by JAKi administration. Conclusions Loss of STAT3 signaling in the gastric mucosa leads to decreased epithelial cell proliferation, atrophy, and metaplasia in the setting of Helicobacter infection. Therefore, activation of STAT3 signaling may play a key role in Helicobacter-associated gastric carcinogenesis.
Collapse
|
15
|
Autoimmunity and Gastric Cancer. Int J Mol Sci 2018; 19:ijms19020377. [PMID: 29373557 PMCID: PMC5855599 DOI: 10.3390/ijms19020377] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/27/2022] Open
Abstract
Alterations in the immune response of patients with autoimmune diseases may predispose to malignancies, and a link between chronic autoimmune gastritis and gastric cancer has been reported in many studies. Intestinal metaplasia with dysplasia of the gastric corpus-fundus mucosa and hyperplasia of chromaffin cells, which are typical features of late-stage autoimmune gastritis, are considered precursor lesions. Autoimmune gastritis has been associated with the development of two types of gastric neoplasms: intestinal type and type I gastric carcinoid. Here, we review the association of autoimmune gastritis with gastric cancer and other autoimmune features present in gastric neoplasms.
Collapse
|
16
|
Shibata W, Sue S, Tsumura S, Ishii Y, Sato T, Kameta E, Sugimori M, Yamada H, Kaneko H, Sasaki T, Ishii T, Tamura T, Kondo M, Maeda S. Correction to: Helicobacter-induced gastric inflammation alters the properties of gastric tissue stem/progenitor cells. BMC Gastroenterol 2018; 18:4. [PMID: 29310576 PMCID: PMC5757302 DOI: 10.1186/s12876-017-0733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Unfortunately, the original article [1] contained an error incorporated during production. A duplicated version of Table 1 was published in place of Table 2. Table 2 has been corrected in the original article and is also included correctly below.
Collapse
Affiliation(s)
- Wataru Shibata
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Division of Translational Research, Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Soichiro Sue
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sachiko Tsumura
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yasuaki Ishii
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Sato
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eri Kameta
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Makoto Sugimori
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroaki Yamada
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroaki Kaneko
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiko Sasaki
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiro Ishii
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshihide Tamura
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masaaki Kondo
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shin Maeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|