1
|
Zhang H, Wang Y, Geng X, Dong M, Liu Z, Sun C, Yu K, Xin W, Xu Y, Xu N, Liu W. ANG-Modified Liposomes Coloaded With α-Melittin and Resveratrol Induce Apoptosis and Pyroptosis in Glioblastoma Cells by Impeding Wnt/β-Catenin Signaling. CNS Neurosci Ther 2025; 31:e70437. [PMID: 40400263 PMCID: PMC12095925 DOI: 10.1111/cns.70437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/25/2025] [Accepted: 05/01/2025] [Indexed: 05/23/2025] Open
Abstract
MAIN PROBLEM Glioblastoma (GB) is one of the most prevalent and devastating types of brain cancer for which efficient treatments are currently lacking because of limitations such as antitumor efficacy, brain delivery, tumor selectivity, and drug resistance. A promising strategy to overcome these obstacles is developing anticancer agents that can be delivered to GB tissues to inhibit tumors with low toxicity to normal brain tissue. METHODS We developed liposomes encapsulating resveratrol (RES), a polyphenolic compound, and α-melittin (α-MEL), which is composed of melittin conjugated with an amphiphilic α-helical peptide at its N-terminus. RES-, α-MEL-, and α-MEL-RES-loaded liposomes (Lips) were modified with Angiopep-2 (ANG). The effects of the above liposomes on GB cells were assessed, and the possible mechanisms were analyzed. RESULTS ANG-modified α-MEL-RES-Lips treatment facilitated the passage of these agents through the blood-brain barrier (BBB), increased tumor targeting, and significantly reduced α-MEL-associated hemolysis. The combined management of α-MEL with RES impeded GB cell growth and prolonged the lifespan of GB tumor-bearing model mice. α-MEL-RES-Lips treatment triggered GB cell apoptosis and induced pyroptosis-associated protein expressions of gasdermin-D (GSDMD), gasdermin E (GSDME), cleaved caspase 3, and NLR family pyrin domain containing 3 (NLRP3), and inhibited epithelial-mesenchymal transition (EMT) by modulating the Wnt/β-catenin signaling pathway. CONCLUSION ANG-modified α-MEL-RES-Lips might be a potential nanosystem for GB therapy, and polyphenolic compounds combined with antimicrobial peptides may promote the induction of apoptosis, pyroptosis, and the apoptosis-pyroptosis switch in GB.
Collapse
Affiliation(s)
- Hai‐Qian Zhang
- Changchun Veterinary Research InstituteChinese Academy of Agricultural ScienceChangchunChina
| | - Yan Wang
- Changchun Veterinary Research InstituteChinese Academy of Agricultural ScienceChangchunChina
| | - Xiao Geng
- Changchun Veterinary Research InstituteChinese Academy of Agricultural ScienceChangchunChina
| | - Mingxin Dong
- Changchun Veterinary Research InstituteChinese Academy of Agricultural ScienceChangchunChina
| | - Ziwei Liu
- The Second Hospital of Jilin UniversityChangchunChina
| | - Chengbiao Sun
- Changchun Veterinary Research InstituteChinese Academy of Agricultural ScienceChangchunChina
| | - Kaikai Yu
- Changchun Veterinary Research InstituteChinese Academy of Agricultural ScienceChangchunChina
| | - Wenwen Xin
- State Key Laboratory of Pathogen and BiosecurityInstitute of Microbiology and Epidemiology, AMMSBeijingChina
| | - Ye Xu
- Basic College of MedicineJilin Medical UniversityJilinChina
| | - Na Xu
- Basic College of MedicineJilin Medical UniversityJilinChina
| | - Wensen Liu
- Changchun Veterinary Research InstituteChinese Academy of Agricultural ScienceChangchunChina
| |
Collapse
|
2
|
Gao S, Wang X, Shao Z, Chen J. MGST1 Inhibits Sevoflurane-Induced Ferroptosis and Activates the Wnt Pathway in HT22 Cells. Mol Neurobiol 2025:10.1007/s12035-025-04841-5. [PMID: 40119250 DOI: 10.1007/s12035-025-04841-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/10/2025] [Indexed: 03/24/2025]
Abstract
Microsomal glutathione S-transferase 1 (MGST1) regulates ferroptosis in cancers, but its engagement in anesthesia-induced neuronal ferroptosis is unclear. This study intended to investigate the influence of MGST1 on ferroptosis in sevoflurane (Sev)-treated HT22 cells. Cells were treated with 1%, 2%, and 4% Sev. HT22 cells were transfected with MGST1 overexpression or negative control plasmids, followed by 4% Sev treatment. Cell viability, oxidative stress markers, iron levels, ferroptosis-related proteins, Wnt pathway, and MGST1 gene expression and protein level were detected. Sev enhanced ferroptosis and reduced MGST1 expression in HT22 cells in a concentration-dependent manner. MGST1 enhanced viability in Sev-treated HT22 cells (P < 0.05). MGST1 reduced reactive oxygen species (ROS) level (P < 0.001) and malondialdehyde (MDA) (P < 0.01), but increased superoxide dismutase (SOD) activity (P < 0.05), indicating that MGST1 inhibited oxidative stress in Sev-treated HT22 cells. MGST1 also reduced Fe2+ level in Sev-treated HT22 cells (P < 0.05). Regarding ferroptosis-related proteins, MGST1 increased glutathione peroxidase 4 (GPX4) (P < 0.05) and solute carrier family 7, member 11 (SLC7A11) (P < 0.01) in Sev-treated HT22 cells. Importantly, MGST1 also elevated phosphorylated-glycogen synthase kinase-3 beta (GSK-3β)/GSK-3β (P < 0.01) and β-catenin/β-actin (P < 0.05), which indicated that MGST1 activated the Wnt pathway in Sev-treated HT22 cells. MGST1 suppresses ferroptosis and activates the Wnt pathway in Sev-treated HT22 cells.
Collapse
Affiliation(s)
- Shuai Gao
- Department of Anesthesiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Xuehu Wang
- Department of Anesthesiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Zhenhua Shao
- Department of Critical Care Medicine, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China.
| | - Jiawei Chen
- Department of Anesthesiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China.
- Department of Critical Care Medicine, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
3
|
Wang X, Wang XQ, Luo K, Bai H, Qi JL, Zhang GX. Research Progress of Chinese Medicine Monomers in Treatment of Cholangiocarcinoma. Chin J Integr Med 2025; 31:170-182. [PMID: 39470920 DOI: 10.1007/s11655-024-4203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 11/01/2024]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor originating from cholangiocytes. However, it remains unclear about the pathogenesis of this carcinoma, which may be related to multiple factors. Currently, CCA is mainly treated by surgery, chemotherapy, and radiotherapy. Among them, surgery is the only potentially curative option for CCA. Nevertheless, the high malignancy and asymptomatic nature of CCA may lead to poor treatment outcomes. It has been demonstrated that Chinese medicine (CM) plays a significant role in various antitumor applications. Meanwhile, CM exhibits fewer side effects and high availability. Moreover, the in vitro application of CM monomers has been explored in many domestic and foreign studies. This article mainly reviews the signaling pathways and molecular mechanisms of CM monomers in the treatment of CCA in recent years. These findings are expected to provide new insights into the treatment of CCA.
Collapse
Affiliation(s)
- Xiang Wang
- Department of General Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
- Hepatobiliary Surgery Department, Shandong Provincial Third Hospittal, Shandong University, Jinan, 250031, China
| | - Xiao-Qing Wang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - Kai Luo
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - He Bai
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - Jia-Lin Qi
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Gui-Xin Zhang
- Department of General Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China.
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China.
| |
Collapse
|
4
|
Carson MD, Nejak-Bowen K. Wnt/β-Catenin Signaling in Liver Pathobiology. ANNUAL REVIEW OF PATHOLOGY 2025; 20:59-86. [PMID: 39260380 DOI: 10.1146/annurev-pathmechdis-111523-023535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The liver has a critical role in regulating host metabolism, immunity, detoxification, and homeostasis. Proper liver function is essential for host health, and dysregulation of hepatic signaling pathways can lead to the onset of disease. The Wnt/β-catenin signaling pathway is an important regulator of liver homeostasis and function. Throughout life, hepatic Wnt/β-catenin signaling contributes to liver development and growth, metabolic zonation, and regeneration. Extensive research has demonstrated that aberrant Wnt/β-catenin signaling drives liver pathologies, including cancers, steatohepatitis, and cholestasis. In this review, we discuss the Wnt/β-catenin pathway as it pertains to liver function and how disruptions in this pathway contribute to the onset and progression of liver diseases. Further, we discuss ongoing research that targets the Wnt/β-catenin pathway for the treatment of liver pathologies.
Collapse
Affiliation(s)
- Matthew D Carson
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
| | - Kari Nejak-Bowen
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
| |
Collapse
|
5
|
Zhang Z, Zhang D, Su K, Wu D, Hu Q, Jin T, Ye T, Zhang R. NTSR1 promotes epithelial-mesenchymal transition and metastasis in lung adenocarcinoma through the Wnt/β-catenin pathway. Mutat Res 2024; 829:111877. [PMID: 39180939 DOI: 10.1016/j.mrfmmm.2024.111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/26/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) patients are implicated in poor prognoses and increased mortality rates. Metastasis, as a leading cause of LUAD-related deaths, requires further investigation. Highly metastatic cancer cells often exhibit extensive characteristics of epithelial-mesenchymal transition (EMT). This study attempted to identify novel targets associated with LUAD metastasis and validate their specific molecular mechanisms. METHODS Bioinformatics was conducted to determine NTSR1 expression in LUAD and the enriched pathways. Immunohistochemical analysis was used to assess NTSR1 expression in LUAD tissue. qRT-PCR examined expressions of NTSR1 and Wnt/β-Catenin pathway-related genes in LUAD cells. Transwell assayed cell migration and invasion. Cell adhesion experiments were conducted to evaluate cell adhesion capacity. Western blot analysis was employed to examine expression of EMT, Wnt/β-Catenin pathway, and cell adhesion markers. RESULTS NTSR1 was upregulated in LUAD tissues and cells, and enriched in EMT pathway. Knockdown of NTSR1 reduced migration, invasion, and adhesion abilities in LUAD cells, and inhibited EMT progression and Wnt/β-Catenin pathway. Rescue experiments demonstrated that β-Catenin activator SKL2001 reversed repressive influence of NTSR1 knockdown on LUAD cell malignant phenotypes and EMT progression. CONCLUSION The data obtained in this study suggested that NTSR1 stimulated EMT and metastasis in LUAD via Wnt/β-Catenin pathway. This finding may provide options for overcoming LUAD metastasis.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of Cardiothoracic Surgery, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China.
| | - Dongliang Zhang
- Department of Cardiothoracic Surgery, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| | - Kai Su
- Department of Cardiothoracic Surgery, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| | - Dongqiang Wu
- Department of Cardiothoracic Surgery, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| | - Qiqi Hu
- Human Resource Management Department, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| | - Tianying Jin
- Department of Cardiothoracic Surgery, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| | - Tingting Ye
- Medical Insurance Information Section, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| | - Rongrong Zhang
- Department of Cardiothoracic Surgery, China Coast Guard Hospital ot the People's Armed Police Force, Jiaxing, Zhejiang 314001, China
| |
Collapse
|
6
|
Tang C, Zhuang H, Tong H, Yu X, Chen J, Wang Q, Ma X, Wang B, Hua Y, Shang C, Tang Z. Identification of FOXP1 as a favorable prognostic biomarker and tumor suppressor in intrahepatic cholangiocarcinoma. BMC Cancer 2024; 24:137. [PMID: 38279090 PMCID: PMC10811915 DOI: 10.1186/s12885-024-11882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Forkhead-box protein P1 (FOXP1) has been proposed to have both oncogenic and tumor-suppressive properties, depending on tumor heterogeneity. However, the role of FOXP1 in intrahepatic cholangiocarcinoma (ICC) has not been previously reported. METHODS Immunohistochemistry was performed to detect FOXP1 expression in ICC and normal liver tissues. The relationship between FOXP1 levels and the clinicopathological characteristics of patients with ICC was evaluated. Finally, in vitro and in vivo experiments were conducted to examine the regulatory role of FOXP1 in ICC cells. RESULTS FOXP1 was significantly downregulated in the ICC compared to their peritumoral tissues (p < 0.01). The positive rates of FOXP1 were significantly lower in patients with poor differentiation, lymph node metastasis, invasion into surrounding organs, and advanced stages (p < 0.05). Notably, patients with FOXP1 positivity had better outcomes (overall survival) than those with FOXP1 negativity (p < 0.05), as revealed by Kaplan-Meier survival analysis. Moreover, Cox multivariate analysis showed that negative FOXP1 expression, advanced TNM stages, invasion, and lymph node metastasis were independent prognostic risk factors in patients with ICC. Lastly, overexpression of FOXP1 inhibited the proliferation, migration, and invasion of ICC cells and promoted apoptosis, whereas knockdown of FOXP1 had the opposite role. CONCLUSION Our findings suggest that FOXP1 may serve as a novel outcome predictor for ICC as well as a tumor suppressor that may contribute to cancer treatment.
Collapse
Affiliation(s)
- Chenwei Tang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510220, Guangdong Province, China
- Department of General Surgery, Xinhua Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, 200000, China
| | - Hongkai Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510220, Guangdong Province, China
| | - Huanjun Tong
- Department of General Surgery, Xinhua Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, 200000, China
| | - Xiaopeng Yu
- Department of General Surgery, Xinhua Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, 200000, China
| | - Jialu Chen
- Department of General Surgery, Xinhua Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, 200000, China
| | - Qingbin Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510220, Guangdong Province, China
| | - Xiaowu Ma
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510220, Guangdong Province, China
| | - Bingkun Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510220, Guangdong Province, China
| | - Yonglin Hua
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510220, Guangdong Province, China
| | - Changzhen Shang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510220, Guangdong Province, China.
| | - Zhaohui Tang
- Department of General Surgery, Xinhua Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, 200000, China.
| |
Collapse
|
7
|
Yang S, Zou R, Dai Y, Hu Y, Li F, Hu H. Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review). Int J Oncol 2023; 63:137. [PMID: 37888583 PMCID: PMC10631767 DOI: 10.3892/ijo.2023.5585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly heterogeneous malignancy originating from the epithelial system of the bile ducts, and its incidence in recent years is steadily increasing. The immune microenvironment of CCA is characterized by diversity and complexity, with a substantial presence of cancer‑associated fibroblasts and immune cell infiltration, which plays a key role in regulating the distinctive biological behavior of cholangiocarcinoma, including tumor growth, angiogenesis, lymphangiogenesis, invasion and metastasis. Despite the notable success of immunotherapy in the treatment of solid tumors in recent years, patients with CCA have responded poorly to immune checkpoint inhibitor therapy. The interaction of tumor cells with cellular components of the immune microenvironment can regulate the activity and function of immune cells and form an immunosuppressive microenvironment, which may cause ineffective immunotherapy. Therefore, the components of the tumor immune microenvironment appear to be novel targets for immune therapies. Combination therapy focusing on immune checkpoint inhibitors is a promising and valuable first‑line or translational treatment approach for intractable biliary tract malignancies. The present review discusses the compositional characteristics and regulatory factors of the CCA immune microenvironment and the possible immune escape mechanisms. In addition, a summary of the advances in immunotherapy for CCA is also provided. It is hoped that the present review may function as a valuable reference for the development of novel immunotherapeutic strategies for CCA.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruiqi Zou
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yushi Dai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yafei Hu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fuyu Li
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Haijie Hu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|