1
|
Ramos B, Vadlamudi NK, Han C, Sadarangani M. Future immunisation strategies to prevent Streptococcus pneumoniae infections in children and adults. THE LANCET. INFECTIOUS DISEASES 2025; 25:e330-e344. [PMID: 40112854 DOI: 10.1016/s1473-3099(24)00740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/29/2024] [Indexed: 03/22/2025]
Abstract
Streptococcus pneumoniae is a major respiratory pathogen, causing 1·2 million deaths and 197 million pneumonia episodes globally in 2016. The spread of S pneumoniae to sterile sites, such as the blood and brain, leads to invasive pneumococcal disease. The best approach available for prevention of invasive pneumococcal disease in children and, more recently, adults is the use of pneumococcal conjugate vaccines (PCVs). PCVs are also highly effective at preventing colonisation and, thus, transmission, offering indirect protection to non-target immunisation groups such as adults-a characteristic that has been crucial in their success. However, PCVs only include and protect up to 20 of the 100 serotypes that can cause disease. The rise in adult cases of invasive pneumococcal disease from serotypes included in PCVs suggests indirect protection might be limited. Additionally, non-vaccine serotypes and some vaccine types that persist, some linked to antibiotic resistance, continue to cause disease. Future vaccine strategies include increasing the number of serotypes covered in PCVs for use in children and adults, broader vaccine use in adults, the development of adult-specific conjugate vaccines containing serotypes different from those covered in PCVs used in children, and protein vaccines, all of which will be explored in this Review. These strategies are expected to help mitigate the global burden of invasive pneumococcal disease in future years.
Collapse
Affiliation(s)
- Bernice Ramos
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Nirma Khatri Vadlamudi
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Crystal Han
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Schjørring CB, Lomholt FK, Valentiner-Branth P, Dalby T, Fuursted K, Slotved HC, Harboe ZB. Increasing incidence of serotype 38 invasive pneumococcal disease driven by the ST393 clone among children, Denmark 2022-2024. Sci Rep 2025; 15:15446. [PMID: 40316712 PMCID: PMC12048680 DOI: 10.1038/s41598-025-99074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/16/2025] [Indexed: 05/04/2025] Open
Abstract
Non-vaccine-serotypes (non-VT) pose a challenge to reducing invasive pneumococcal disease (IPD). Since 2023, serotype 38 IPD has increased in Denmark promoting investigation of this serotype's characteristics. We included all non-VT IPD cases from 2014 to 2024 to calculate annual incidences per 100,000 individuals with 95% confidence intervals (CI). Clinical characteristics and outcomes of serotype 38 IPD were compared with other non-VT IPD in 2022 to 2024. Incidence of serotype 38 IPD increased mainly in children < 2 years, from 0.87 (95% CI 0.02-4.84) to 5.99 (95% CI 2.41-12.34) cases per 100,000 population, whereas the incidence for other non-VT remained stable. SNP analysis, conducted for serotype 38 isolates, revealed that the rise was driven by the ST393 clone with isolates not linked to a region or outbreak. Baseline characteristics and outcomes were similar between the 42 cases of serotype 38 IPD and the 412 other non-VT IPD cases, except for age distribution (p < 0.001) with serotype 38 IPD more frequent in children aged < 2 years (21.4% vs. 3.4%). In conclusion, serotype 38 IPD, driven by the ST393 clone, was the dominant serotype causing non-VT IPD in children < 2 years the last two years, however disease severity was similar to other non-VT IPD.
Collapse
Affiliation(s)
- Christel Baagø Schjørring
- Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, Copenhagen, 2300, Denmark
| | | | - Palle Valentiner-Branth
- Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, Copenhagen, 2300, Denmark
| | - Tine Dalby
- Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Artillerivej 5, Copenhagen, 2300, Denmark
| | - Kurt Fuursted
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, Copenhagen, 2300, Denmark
| | - Hans-Christian Slotved
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, Copenhagen, 2300, Denmark
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde, 4000, Denmark
| | - Zitta Barrella Harboe
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, Copenhagen, 2300, Denmark.
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Dyrehavevej 29, Hillerød, 3400, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark.
| |
Collapse
|
3
|
Sanches Ferreira AD, King AC, Wolters F, Wertheim HF, Mulder B, Swanink CM, van der Gaast-de Jongh CE, Arends DW, van Sorge NM, Schaars C, Hung HCH, Hawkins PA, McGee L, Bentley SD, Veening JW, de Jonge MI, Lo SW, Cremers AJ. Investigating two decades of Streptococcus pneumoniae bacteraemia in the Gelderland area, the Netherlands, using whole-genome sequencing. Microb Genom 2025; 11:001377. [PMID: 40100258 PMCID: PMC11936379 DOI: 10.1099/mgen.0.001377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/03/2025] [Indexed: 03/20/2025] Open
Abstract
In the Netherlands, the 7-valent pneumococcal conjugate vaccine (PCV) was introduced to the childhood immunization programme in 2006 and replaced by the 10-valent PCV (PCV10, GSK) in 2011. To describe invasive pneumococcal disease in the era of childhood PCV vaccination on pneumococcal bacteraemia across all ages, we collected and sequenced 979 pneumococcal blood isolates from consecutive patients with pneumococcal bacteraemia in the Gelderland area, the Netherlands, between 2000 and 2020. In total, 58% of the bacteraemia cases (n=563/979) occurred in the elderly population. Compared to the pre-PCV period (2000-2005), the odds ratio for non-PCV10 bacteraemia was 17.5 (CI 9.9-31.6; P<0.001) in the late-PCV10 period, showing an overall increase in the proportion of bacteraemia cases being caused by non-vaccine serotype pneumococci (2016-2020). The increase in non-PCV10 serotypes is mainly driven by an expansion of lineage global pneumococcal sequencing cluster 3 (GPSC3) expressing serotype 8, alongside the emergence of serotype 12F that was mediated by multiple lineages (GPSC32/GPSC26/GPSC55). Both serotypes 8 and 12F were included in the latest PCV20 formulation that is licensed to be used in children and adults in Europe. Over 20 years, we observed a low prevalence of antimicrobial resistance (AMR) as predicted by genome data. There were no significant changes in AMR prevalence after vaccine introduction (P>0.05 for all comparisons). We saw a stably low prevalence of reduced penicillin susceptibility, which was observed in multiple pneumococcal lineages, with GPSC10 being the most common in the Gelderland collection, whilst GPSC1 and GPSC6 were common among the penicillin-resistant pneumococcal blood culture isolates provided by the Netherlands Reference Laboratory for Bacterial Meningitis. Comparison to global collections of GPSC10, GPSC1 and GPSC6 isolates favored the likelihood of separate introductions of penicillin-resistant isolates rather than cloncal expansion. Genomic surveillance of pneumococcal bacteraemia in this unbiased population sample in the Netherlands supports the use of higher valency PCVs, such as PCV20, especially in adults, to prevent future bacteraemia cases caused by Streptococcus pneumoniae in the Gelderland area, the Netherlands, while maintaining a low prevalence of AMR in the pneumococcal population.
Collapse
Affiliation(s)
| | - Alannah C. King
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Femke Wolters
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Nijmegen, The Netherlands
- Department of Pulmonology, Catharina Hospital, Eindhoven, The Netherlands
| | - Heiman F.L. Wertheim
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Nijmegen, The Netherlands
| | - Bert Mulder
- Dicoon Laboratory, Elst & Department of Clinical Microbiology, Canisius-Wilhelmina Ziekenhuis, Nijmegen, The Netherlands
| | - Caroline M.A. Swanink
- Department of Clinical Microbiology and Immunology, Rijnstate, Arnhem, The Netherlands
| | - Christa E. van der Gaast-de Jongh
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboudumc Community for Infectious Diseases, Nijmegen, The Netherlands
| | - Daan W. Arends
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboudumc Community for Infectious Diseases, Nijmegen, The Netherlands
| | - Nina M. van Sorge
- Netherlands Reference Laboratory for Bacterial Meningitis, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Carel Schaars
- Department of Internal Medicine, Pantein Maasziekenhuis, Boxmeer, The Netherlands
| | | | - Paulina A. Hawkins
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Lesley McGee
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | | | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Marien I. de Jonge
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboudumc Community for Infectious Diseases, Nijmegen, The Netherlands
| | - Stephanie W. Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
- The Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Amelieke J.H. Cremers
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboudumc Community for Infectious Diseases, Nijmegen, The Netherlands
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Calvo-Silveria S, González-Díaz A, Marimón JM, Cercenado E, Quesada MD, Casabella A, Larrosa N, Berbel D, Alonso M, Bernat-Sole M, Saiz-Escobedo L, Yuste J, Martí S, Càmara J, Ardanuy C. Resilience and emergence of pneumococcal serotypes and lineages in adults post-PCV13 in Spain: A multicentre study. J Infect Public Health 2025; 18:102619. [PMID: 39662160 DOI: 10.1016/j.jiph.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Streptococcus pneumoniae causes invasive pneumococcal disease (IPD) in adults. The introduction of pneumococcal conjugate vaccines (PCVs) has reduced vaccine serotypes but has also led to the rise of non-vaccine serotypes. The aim of this study was to analyse pneumococcal lineages and their association with recent changes in IPD among adults in Spain. METHODS Data from adult IPD cases (≥18 years) were collected from six Spanish hospitals in 2019-2021. Strains were serotyped, tested for antibiotic susceptibility and subjected to whole genome sequencing (WGS). Findings were compared with data from previous periods (2008-2016). RESULTS A total of 655 IPD episodes were examined. Pneumonia was the main focus (515/655), and 366 episodes occurred in adults over 64 years. Although IPD incidence decreased during COVID-19 pandemic, the burden of disease caused by PCV13 serotypes was significant. Notably, serotype 3 persisted (GPSC12-ST180 and GPSC83-ST260), and a new serotype 4 lineage emerged (GPSC162-ST13022). Among non-PCV13 serotypes, serotype 8 expanded (GPSC3-ST53) and a new serotype 12F lineage emerged (GPSC55-ST8060). Most serotypes presented a dominant Global Pneumococcal Sequencing Cluster (GPSC) like GPSC16-ST67 of 9N or GPSC19-ST433 of 22F. Nevertheless, some GPSCs were associated with several serotypes, the most numerous were GPSC3 (serotypes 8, 11A, and 33F) and GPSC6 (serotypes 11A and 14). The overall penicillin non-susceptibility rate was 17.0 %, 14.6 % resistance for meningitis and 1.6 % for pneumonia (15.1 % susceptible at increased exposure [SIE]). Serotypes 11A and 14 (GPSC6-ST156/6521) and 19A (GPSC1-ST320) had penicillin MICs above 1 mg/L. Acquired resistance genes associated with macrolide and/or tetracycline resistance were present in 19.4 % of isolates, particularly among serotypes 6C (GPSC47-ST386/4310) and 19A (GPSC1-ST320). CONCLUSIONS The burden of PCV13 serotypes in adult IPD remains significant, and serotype 3 is the primary contributor. However, the rise of stable lineages associated with non-PCV13 serotypes, particularly 8, 9N, and 22F highlights a shifting epidemiology. The persistence of multidrug-resistant lineages, such as GPSC6-ST156 and GPSC1-ST320, emphasizes the need for continued surveillance. Vaccination of high-risk adults with current and broader coverage PCVs would help to control the burden of pneumonia and IPD among adults.
Collapse
Affiliation(s)
- Sara Calvo-Silveria
- Microbiology department, Hospital Universitari de Bellvitge - IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Aida González-Díaz
- Microbiology department, Hospital Universitari de Bellvitge - IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.
| | - José María Marimón
- Biogipuzkoa, Infectious Diseases Area, Infectious Epidemiology and Antimicrobial Resistance Group, Osakidetza Basque Health Service, Microbiology Department, Hospital Donostia, Donostia-San Sebastian, Spain
| | - Emilia Cercenado
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Clinical Microbiology and Infectious Disease Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - M Dolores Quesada
- Microbiology Department, Clinical Laboratory North Metropolitan Area, Hospital Universitari Germans Trias i Pujol, UAB, Badalona, Spain
| | - Antonio Casabella
- Laboratory of Microbiology, Hospital Universitari Parc Taulí, Sabadell, Spain; Institut d'Investigació I Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Nieves Larrosa
- Microbiology Department, Hospital Universitari Vall d'Hebron, UAB, Barcelona, Spain; Research Network for Infectious Diseases (CIBERINFEC), ISCIII, Madrid, Spain
| | - Dàmaris Berbel
- Microbiology department, Hospital Universitari de Bellvitge - IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Marta Alonso
- Biogipuzkoa, Infectious Diseases Area, Infectious Epidemiology and Antimicrobial Resistance Group, Osakidetza Basque Health Service, Microbiology Department, Hospital Donostia, Donostia-San Sebastian, Spain
| | - Marta Bernat-Sole
- Microbiology Department, Hospital Universitari Vall d'Hebron, UAB, Barcelona, Spain
| | - Lucía Saiz-Escobedo
- Microbiology department, Hospital Universitari de Bellvitge - IDIBELL-UB, L'Hospitalet de Llobregat, Spain
| | - José Yuste
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Spanish Pneumococcal Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Martí
- Microbiology department, Hospital Universitari de Bellvitge - IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Spain
| | - Jordi Càmara
- Microbiology department, Hospital Universitari de Bellvitge - IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Carmen Ardanuy
- Microbiology department, Hospital Universitari de Bellvitge - IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Department of Pathology and Experimental Therapeutics, University of Barcelona, Spain.
| |
Collapse
|
5
|
Nielsen KF, Nielsen LB, Dalby T, Lomholt FK, Slotved HC, Fuursted K, Harboe ZB, Jørgensen CS, Valentiner-Branth P. Follow-Up Study of Effectiveness of 23-Valent Pneumococcal Polysaccharide Vaccine Against All-Type and Serotype-Specific Invasive Pneumococcal Disease, Denmark. Emerg Infect Dis 2024; 30:1164-1172. [PMID: 38781925 PMCID: PMC11138992 DOI: 10.3201/eid3006.230975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
As a follow-up to a previous study, we investigated vaccine effectiveness (VE) of 23-valent pneumococcal polysaccharide vaccine (PPSV23) against invasive pneumococcal disease (IPD) among 1,254,498 persons >65 years of age as part of a vaccination program in Denmark during April 2020-January 2023. We assessed VE by using a Cox regression model and adjusted for age, sex, and underlying conditions. Using nationwide data, we estimated a VE of PPSV23 against all-type IPD of 32% and against PPSV23-serotype IPD of 41%. Because this follow-up study had more statistical power than the original study, we also estimated VE against IPD caused by PPSV23-serotypes excluding serotype 3; serotype 3; serotype 8; serotype 22F; PPSV23 non-PCV15 serotypes; PPSV23 non-PCV20 serotypes; and IPD over time. Our findings suggest PPSV23 vaccination can protect persons >65 years of age against IPD caused by all serotypes or serotype groupings, except serotype 3.
Collapse
Affiliation(s)
| | | | - Tine Dalby
- Statens Serum Institut, Copenhagen, Denmark (K. Finderup Nielsen, L.B. Nielsen, T. Dalby, F.K. Lomholt, H.-C. Slotved, K. Fuursted, Z.B. Harboe, C.S. Jørgensen, P. Valentiner-Branth)
- Copenhagen University Hospital, North Zealand, Copenhagen (Z.B. Harboe)
- University of Copenhagen, Copenhagen (Z.B. Harboe)
| | - Frederikke Kristensen Lomholt
- Statens Serum Institut, Copenhagen, Denmark (K. Finderup Nielsen, L.B. Nielsen, T. Dalby, F.K. Lomholt, H.-C. Slotved, K. Fuursted, Z.B. Harboe, C.S. Jørgensen, P. Valentiner-Branth)
- Copenhagen University Hospital, North Zealand, Copenhagen (Z.B. Harboe)
- University of Copenhagen, Copenhagen (Z.B. Harboe)
| | - Hans-Christian Slotved
- Statens Serum Institut, Copenhagen, Denmark (K. Finderup Nielsen, L.B. Nielsen, T. Dalby, F.K. Lomholt, H.-C. Slotved, K. Fuursted, Z.B. Harboe, C.S. Jørgensen, P. Valentiner-Branth)
- Copenhagen University Hospital, North Zealand, Copenhagen (Z.B. Harboe)
- University of Copenhagen, Copenhagen (Z.B. Harboe)
| | - Kurt Fuursted
- Statens Serum Institut, Copenhagen, Denmark (K. Finderup Nielsen, L.B. Nielsen, T. Dalby, F.K. Lomholt, H.-C. Slotved, K. Fuursted, Z.B. Harboe, C.S. Jørgensen, P. Valentiner-Branth)
- Copenhagen University Hospital, North Zealand, Copenhagen (Z.B. Harboe)
- University of Copenhagen, Copenhagen (Z.B. Harboe)
| | - Zitta Barrella Harboe
- Statens Serum Institut, Copenhagen, Denmark (K. Finderup Nielsen, L.B. Nielsen, T. Dalby, F.K. Lomholt, H.-C. Slotved, K. Fuursted, Z.B. Harboe, C.S. Jørgensen, P. Valentiner-Branth)
- Copenhagen University Hospital, North Zealand, Copenhagen (Z.B. Harboe)
- University of Copenhagen, Copenhagen (Z.B. Harboe)
| | - Charlotte Sværke Jørgensen
- Statens Serum Institut, Copenhagen, Denmark (K. Finderup Nielsen, L.B. Nielsen, T. Dalby, F.K. Lomholt, H.-C. Slotved, K. Fuursted, Z.B. Harboe, C.S. Jørgensen, P. Valentiner-Branth)
- Copenhagen University Hospital, North Zealand, Copenhagen (Z.B. Harboe)
- University of Copenhagen, Copenhagen (Z.B. Harboe)
| | - Palle Valentiner-Branth
- Statens Serum Institut, Copenhagen, Denmark (K. Finderup Nielsen, L.B. Nielsen, T. Dalby, F.K. Lomholt, H.-C. Slotved, K. Fuursted, Z.B. Harboe, C.S. Jørgensen, P. Valentiner-Branth)
- Copenhagen University Hospital, North Zealand, Copenhagen (Z.B. Harboe)
- University of Copenhagen, Copenhagen (Z.B. Harboe)
| |
Collapse
|
6
|
Ayoola MB, Shack LA, Phanstiel O, Nanduri B. Impact of Difluoromethylornithine and AMXT 1501 on Gene Expression and Capsule Regulation in Streptococcus pneumoniae. Biomolecules 2024; 14:178. [PMID: 38397415 PMCID: PMC10887117 DOI: 10.3390/biom14020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Streptococcus pneumoniae (Spn), a Gram-positive bacterium, poses a significant threat to human health, causing mild respiratory infections to severe invasive conditions. Despite the availability of vaccines, challenges persist due to serotype replacement and antibiotic resistance, emphasizing the need for alternative therapeutic strategies. This study explores the intriguing role of polyamines, ubiquitous, small organic cations, in modulating virulence factors, especially the capsule, a crucial determinant of Spn's pathogenicity. Using chemical inhibitors, difluoromethylornithine (DFMO) and AMXT 1501, this research unveils distinct regulatory effects on the gene expression of the Spn D39 serotype in response to altered polyamine homeostasis. DFMO inhibits polyamine biosynthesis, disrupting pathways associated with glucose import and the interconversion of sugars. In contrast, AMXT 1501, targeting polyamine transport, enhances the expression of polyamine and glucose biosynthesis genes, presenting a novel avenue for regulating the capsule independent of glucose availability. Despite ample glucose availability, AMXT 1501 treatment downregulates the glycolytic pathway, fatty acid synthesis, and ATP synthase, crucial for energy production, while upregulating two-component systems responsible for stress management. This suggests a potential shutdown of energy production and capsule biosynthesis, redirecting resources towards stress management. Following DFMO and AMXT 1501 treatments, countermeasures, such as upregulation of stress response genes and ribosomal protein, were observed but appear to be insufficient to overcome the deleterious effects on capsule production. This study highlights the complexity of polyamine-mediated regulation in S. pneumoniae, particularly capsule biosynthesis. Our findings offer valuable insights into potential therapeutic targets for modulating capsules in a polyamine-dependent manner, a promising avenue for intervention against S. pneumoniae infections.
Collapse
Affiliation(s)
- Moses B. Ayoola
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (M.B.A.); (L.A.S.)
| | - Leslie A. Shack
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (M.B.A.); (L.A.S.)
| | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, FL 32826, USA;
| | - Bindu Nanduri
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (M.B.A.); (L.A.S.)
| |
Collapse
|
7
|
Mokaddas E, Asadzadeh M, Syed S, Albert MJ. High Prevalence of Novel Sequence Types in Streptococcus pneumoniae That Caused Invasive Diseases in Kuwait in 2018. Microorganisms 2024; 12:225. [PMID: 38276209 PMCID: PMC10819824 DOI: 10.3390/microorganisms12010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Multilocus sequence typing (MLST) is used to gain insight into the population genetics of bacteria in the form of sequence type (ST). MLST has been used to study the evolution and spread of virulent clones of Streptococcus pneumoniae in many parts of the world. Such data for S. pneumoniae are lacking for the countries of the Arabian Peninsula, including Kuwait. METHODS We determined the STs of all 31 strains of S. pneumoniae from invasive diseases received at a reference laboratory from various health centers in Kuwait during 2018 by MLST. The relationship among the isolates was determined by phylogenetic analysis. We also determined the serotypes by Quellung reaction, and antimicrobial susceptibility by Etest, against 15 antibiotics belonging to 10 classes. RESULTS There were 28 STs among the 31 isolates, of which 14 were new STs (45.2%) and 5 were rare STs (16.1%). Phylogenetic analysis revealed that 26 isolates (83.9%) were unrelated singletons, and the Kuwaiti isolates were related to those from neighboring countries whose information was gleaned from unpublished data available at the PubMLST website. Many of our isolates were resistant to penicillin, erythromycin, and azithromycin, and some were multidrug-resistant. Virulent serotype 8-ST53, and serotype 19A with new STs, were detected. CONCLUSIONS Our study detected an unusually large number of novel STs, which may indicate that Kuwait provides a milieu for the evolution of novel STs. Novel STs may arise due to recombination and can result in capsular switching. This can impact the effect of vaccination programs on the burden of invasive pneumococcal disease. This first report from the Arabian Peninsula justifies the continuous monitoring of S. pneumoniae STs for the possible evolution of new virulent clones and capsular switching.
Collapse
Affiliation(s)
| | | | | | - M. John Albert
- Department of Microbiology, College of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (E.M.); (M.A.); (S.S.)
| |
Collapse
|
8
|
Emgård M, Andersson M, Gonzales-Siles L, Msuya SE, Nyombi BM, Nordén R, Muro F, Lindh M, Andersson R, Skovbjerg S. Co-occurrence of bacteria and viruses and serotype distribution of Streptococcus pneumoniae in the nasopharynx of Tanzanian children below 2 years of age following introduction of the PCV13. Front Public Health 2024; 12:1298222. [PMID: 38317802 PMCID: PMC10839969 DOI: 10.3389/fpubh.2024.1298222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Pneumococcal conjugate vaccines have reduced severe disease attributed to vaccine-type pneumococci in children. However, the effect is dependent on serotype distribution in the population and disease development may be influenced by co-occurrence of viral and bacterial pathogens in the nasopharynx. Methods Following introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) in Tanzania we performed repeated cross-sectional surveys, including 775 children below 2 years of age attending primary healthcare centers. All children were sampled from nasopharynx and pneumococci were detected by single-target PCR. Pneumococcal serotypes/groups and presence of viruses and other bacteria were determined by two multiplex PCR assays. Results The prevalence of PCV13 vaccine-type pneumococci decreased by 50%, but residual vaccine-types were still detected in 21% of the children 2 years after PCV13 introduction. An increase in the non-vaccine-type 15 BC was observed. Pneumococci were often co-occurring with Haemophilus influenzae, and detection of rhino/enterovirus was associated with higher pneumococcal load. Discussion We conclude that presence of residual vaccine-type and emerging non-vaccine-type pneumococci in Tanzanian children demand continued pneumococcal surveillance. High co-occurrence of viral and bacterial pathogens may contribute to the disease burden and indicate the need of multiple public health interventions to improve child health in Tanzania.
Collapse
Affiliation(s)
- Matilda Emgård
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria Andersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sia E. Msuya
- Institute of Public Health, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Balthazar M. Nyombi
- Institute of Public Health, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Rickard Nordén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Florida Muro
- Institute of Public Health, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
- Department of Community Medicine, Kilimanjaro Christian Medical Center (KCMC), Moshi, Tanzania
| | - Magnus Lindh
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rune Andersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
9
|
Flem E, Mouawad C, Palmu AA, Platt H, Johnson KD, McIntosh ED, Abadi J, Buchwald UK, Feemster K. Indirect protection in adults ≥18 years of age from pediatric pneumococcal vaccination: a review. Expert Rev Vaccines 2024; 23:997-1010. [PMID: 39435466 DOI: 10.1080/14760584.2024.2416229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Infant immunization programs using pneumococcal conjugate vaccines (PCVs) have reduced the rates of pneumococcal disease through direct vaccine-induced protection in vaccinated children and through indirect protection in non-vaccinated children and adults. AREAS COVERED This review summarizes current evidence on the indirect protection of adults conferred by pediatric pneumococcal vaccination, including the impact on invasive pneumococcal disease (IPD) incidence and mortality, pneumonia admissions, and nasopharyngeal carriage prevalence. Factors affecting indirect protection against IPD are also discussed. EXPERT OPINION Pediatric immunization with PCVs has substantially decreased vaccine-serotype IPD and pneumonia through indirect protection in both older (≥65 years of age) and younger adults, including those with underlying medical conditions. However, serotype replacement by non-vaccine serotypes, the persistence of some vaccine serotypes, and divergence of serotypes between children and adults have limited the impact of pediatric PCV programs on adult populations. Designing complementary vaccines that leverage indirect protection from pediatric immunization and target the most prevalent adult serotypes may be a preferred strategy to maximize the public health impact of pneumococcal vaccination.
Collapse
Affiliation(s)
- Elmira Flem
- Global Medical and Scientific Affairs, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | - Celine Mouawad
- Global Medical and Scientific Affairs, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | - Arto A Palmu
- Real World Evidence, FVR - Finnish Vaccine Research, Tampere, Finland
| | - Heather Platt
- Clinical Research, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | - Kelly D Johnson
- Value & Implementation, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | - E David McIntosh
- Global Medical and Scientific Affairs, Merck Research Laboratories, MSD, (UK) Limited, London, UK
| | - Jacobo Abadi
- Global Medical and Scientific Affairs, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | - Ulrike K Buchwald
- Clinical Research, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | - Kristen Feemster
- Global Medical and Scientific Affairs, Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
10
|
Liu L, Wang Y, Ge L, Hu D, Xiang X, Fu Y, Lu J, Li X, Yu Y, Tu Y, Wu X. Integrated genomic analysis of antibiotic resistance and virulence determinants in invasive strains of Streptococcus pneumoniae. Front Cell Infect Microbiol 2023; 13:1238693. [PMID: 37928186 PMCID: PMC10620807 DOI: 10.3389/fcimb.2023.1238693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Streptococcus pneumoniae is an important human pathogen that may cause severe invasive pneumococcal diseases (IPDs) in young children and the elderly. A comprehensive comparative whole-genome analysis of invasive and non-invasive serotype strains offers great insights that are applicable to vaccine development and disease control. Methods In this study, 58 invasive (strains isolated from sterile sites) and 71 non-invasive (serotypes that have not been identified as invasive in our study) pneumococcal isolates were identified among the 756 pneumococcal isolates obtained from seven hospitals in Zhejiang, China (2010-2022). Serotyping, antimicrobial resistance tests, and genomic analyses were conducted to characterize these strains. Results and discussion The three most invasive serotypes were 23F, 14, and 6B. The invasive pneumococcal isolates' respective resistance rates against penicillin, ceftriaxone, tetracycline, and erythromycin were 34.5%, 15.5%, 98.3%, and 94.7%. Whole-genome sequencing indicated that the predominant invasive clonal complexes were CC271, CC876, and CC81. The high rate of penicillin non-susceptible Streptococcus pneumoniae (PNSP) is related to the clonal distribution of resistance-conferring penicillin-binding proteins (PBP). Interestingly, we found a negative correlation between invasiveness and resistance in the invasive pneumococcal serotype strains, which might be due to the proclivity of certain serotypes to retain their β-lactam resistance. Moreover, the mutually exclusive nature of zmpC and rrgC+srtBCD suggests their intricate and potentially redundant roles in promoting the development of IPD. These findings reveal significant implications for pneumococcal vaccine development in China, potentially informing treatment strategies and measures to mitigate disease transmission.
Collapse
Affiliation(s)
- Lin Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanfei Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lihong Ge
- Department of Clinical Laboratory, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Dongping Hu
- Department of Infectious Disease, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Xi Xiang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Ying Fu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jun Lu
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, China
| | - Xi Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuexing Tu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xueqing Wu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Tabatabaei SR, Tariverdi M, Karimi A, Nazari-Alam A, Khodaei H, Azimi L. Sequence-type diversity of invasive Streptococcus pneumoniae isolates in Iran among children under 15 years of age. GMS HYGIENE AND INFECTION CONTROL 2023; 18:Doc19. [PMID: 37829250 PMCID: PMC10566012 DOI: 10.3205/dgkh000445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Background Infection with viruses, bacteria, or other pathogens can lead to inflammation of the meninges. Finding the pathogen and identifying the most common type is necessary for each country. Using multi-locus sequence typing (MLST), the aim of this study was to determine the genetic relationship among S. pneumoniae isolated from CSF in children with bacterial meningitis. Materials and methods : Fourteen isolates of S. pneumoniae from CSF in children with bacterial meningitis were included in this study. The seven housekeeping genes, primer, and analysis of the sequencing used in MLST were extracted from PubMLST. Results The sequencing analysis showed four MLST types in the studied strains. The most frequent type is ST13649 and the least frequent are ST708 and ST285. Conclusion Finding the bacterial sequence types (ST) enables comparing the ST in different, especially neighbouring, countries.
Collapse
Affiliation(s)
- Sedigheh Rafiei Tabatabaei
- Pediatric Infections Research Center, Research Institute of Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Tariverdi
- Department of Pediatric Infectious Disesease, Children’s Clinical Research Development Center, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Abdollah Karimi
- Pediatric Infections Research Center, Research Institute of Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nazari-Alam
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hannan Khodaei
- Pediatric Infections Research Center, Research Institute of Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Azimi
- Pediatric Infections Research Center, Research Institute of Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Golden AR, Adam HJ, Karlowsky JA, Baxter M, Schellenberg J, Martin I, Demczuk W, Minion J, Van Caeseele P, Kus JV, McGeer A, Lefebvre B, Smadi H, Haldane D, Yu Y, Mead K, Mulvey MR, Zhanel GG. Genomic investigation of the most common Streptococcus pneumoniae serotypes causing invasive infections in Canada: the SAVE study, 2011-2020. J Antimicrob Chemother 2023; 78:i26-i36. [PMID: 37130587 DOI: 10.1093/jac/dkad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
OBJECTIVES To investigate the lineages and genomic antimicrobial resistance (AMR) determinants of the 10 most common pneumococcal serotypes identified in Canada during the five most recent years of the SAVE study, in the context of the 10-year post-PCV13 period in Canada. METHODS The 10 most common invasive Streptococcus pneumoniae serotypes collected by the SAVE study from 2016 to 2020 were 3, 22F, 9N, 8, 4, 12F, 19A, 33F, 23A and 15A. A random sample comprising ∼5% of each of these serotypes collected during each year of the full SAVE study (2011-2020) were selected for whole-genome sequencing (WGS) using the Illumina NextSeq platform. Phylogenomic analysis was performed using the SNVPhyl pipeline. WGS data were used to identify virulence genes of interest, sequence types, global pneumococcal sequence clusters (GPSC) and AMR determinants. RESULTS Of the 10 serotypes analysed in this study, six increased significantly in prevalence from 2011 to 2020: 3, 4, 8, 9N, 23A and 33F (P ≤ 0.0201). Serotypes 12F and 15A remained stable in prevalence over time, while serotype 19A decreased in prevalence (P < 0.0001). The investigated serotypes represented four of the most prevalent international lineages causing non-vaccine serotype pneumococcal disease in the PCV13 era: GPSC3 (serotypes 8/33F), GPSC19 (22F), GPSC5 (23A) and GPSC26 (12F). Of these lineages, GPSC5 isolates were found to consistently possess the most AMR determinants. Commonly collected vaccine serotypes 3 and 4 were associated with GPSC12 and GPSC27, respectively. However, a more recently collected lineage of serotype 4 (GPSC192) was highly clonal and possessed AMR determinants. CONCLUSIONS Continued genomic surveillance of S. pneumoniae in Canada is essential to monitor for the appearance of new and evolving lineages, including antimicrobial-resistant GPSC5 and GPSC162.
Collapse
Affiliation(s)
- Alyssa R Golden
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Heather J Adam
- Clinical Microbiology, Shared Health, MS673-820 Sherbrook Street, Winnipeg, Manitoba, R3A 1R9, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| | - James A Karlowsky
- Clinical Microbiology, Shared Health, MS673-820 Sherbrook Street, Winnipeg, Manitoba, R3A 1R9, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Melanie Baxter
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| | - John Schellenberg
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Irene Martin
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Walter Demczuk
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Jessica Minion
- Roy Romanow Provincial Laboratory, Saskatchewan Health Authority, 5 Research Drive, Regina, Saskatchewan, S4S 0A4, Canada
| | - Paul Van Caeseele
- Cadham Provincial Laboratory, Shared Health, 750 William Avenue, Winnipeg, Manitoba, R3E 3J7, Canada
| | - Julianne V Kus
- Public Health Ontario Laboratory, 661 University Avenue, Toronto, Ontario, M5G 1M1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle-6th Floor, Toronto, Ontario, M5S 1A8, Canada
| | - Allison McGeer
- Toronto Invasive Bacterial Diseases Network (TIBDN), Department of Microbiology, Mount Sinai Hospital. 600 University Avenue-Suite 171, Toronto, Ontario, M5G 1X5, Canada
| | - Brigitte Lefebvre
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, 20045 Ch Ste-Marie, Ste-Anne-de-Bellevue, Québec, H9X 3R5, Canada
| | - Hanan Smadi
- Epidemiology and Surveillance Branch, New Brunswick Department of Health, 520 King Street, Fredericton, New Brunswick, E3B 5G8, Canada
| | - David Haldane
- Department of Pathology and Laboratory Medicine, Queen Elizabeth II Health Science Centre, 1276 South Park Street, Halifax, Nova Scotia, B3H 2Y9, Canada
| | - Yang Yu
- Newfoundland and Labrador Public Health Laboratory, Dr. Leonard A. Miller Centre-Suite 1, 100 Forest Road, St. John's, Newfoundland and Labrador, A1A 1E3, Canada
| | - Kristen Mead
- Provincial Laboratory Services, Queen Elizabeth Hospital, 60 Riverside Drive, Charlottetown, Prince Edward Island, C1A 8T5, Canada
| | - Michael R Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|
13
|
Perdrizet J, Horn EK, Hayford K, Grant L, Barry R, Huang L, McDade C, Wilson M. Historical Population-Level Impact of Infant 13-Valent Pneumococcal Conjugate Vaccine (PCV13) National Immunization Programs on Invasive Pneumococcal Disease in Australia, Canada, England and Wales, Israel, and the United States. Infect Dis Ther 2023; 12:1351-1364. [PMID: 37079175 DOI: 10.1007/s40121-023-00798-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 04/21/2023] Open
Abstract
INTRODUCTION This study estimates the annual population-level impact of 13-valent pneumococcal conjugate vaccine (PCV13) infant national immunization programs (NIPs) on vaccine-type and non-vaccine type invasive pneumococcal disease (IPD) incidence across all ages using national surveillance data. METHODS We identified countries (Australia, Canada, England and Wales, Israel, and the US) with national IPD active surveillance data that introduced the seven-valent PCV (PCV7) followed by PCV13, which also reported annual serotype- and age group-specific incidence. We extracted IPD incidence by serotype groupings [PCV13 minus PCV7 (PCV13-7) serotypes; PCV13-7 serotypes excluding serotype 3; non-PCV13 serotypes; and the 20-valent (PCV20) minus PCV13 (PCV20-13) serotypes] and by age groups (< 2 years, 2-4 years, 5-17 years, 18-34 years, 35-49 years, 50-64 years, and ≥ 65 years). For each country, we calculated the annual relative change in IPD incidence (percent change), and the corresponding incidence rate ratio (IRR), for 7 years post introduction compared to the year prior to PCV13 program initiation. RESULTS PCV13-7 vaccine-type IPD incidence consistently decreased over time following introduction of PCV13 across countries, reaching an approximate steady state after 3-4 years in ages < 5 years, with roughly 60-90% decrease (IRRs = 0.1-0.4) and after 4-5 years in ages ≥ 65 years with approximately 60-80% decrease (IRRs = 0.2-0.4). Incidence declines were more substantial for the PCV13-7 grouping when excluding serotype 3. Non-PCV13 serotype incidence was variable by country and age group, ranging from virtually no serotype replacement compared to the PCV7 period across ages in the US to increases for other countries ranging from 10 to 204% (IRRs = 1.10-3.04) in children < 5 years and 41% to 123% (IRRs = 1.41-2.23) in ages ≥ 65 years. CONCLUSIONS Countries with longstanding PCV13 infant NIPs have observed substantial direct and indirect benefits, which are demonstrated in this study by the reduction in PCV13-7 IPD incidence compared to PCV7 period in all age groups. Over time, non-PCV13 serotypes have emerged in response to the reduction of incidence of PCV13-unique serotypes. Higher-valent PCVs are needed to address this emerging pneumococcal disease burden as well as the direct vaccination of both pediatric and adult populations against the most prevalent circulating serotypes.
Collapse
Affiliation(s)
- Johnna Perdrizet
- Global Health Economics and Outcomes Research, Pfizer Inc., 235 East 42nd Street, New York, NY, 10017, USA.
| | - Emily K Horn
- Global Health Economics and Outcomes Research, Pfizer Inc., 235 East 42nd Street, New York, NY, 10017, USA
| | - Kyla Hayford
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer Inc., New York, NY, USA
| | - Lindsay Grant
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer Inc., New York, NY, USA
| | - Rachid Barry
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer Inc., New York, NY, USA
| | - Liping Huang
- Global Health Economics and Outcomes Research, Pfizer Inc., 235 East 42nd Street, New York, NY, 10017, USA
| | - Cheryl McDade
- RTI Health Solutions, Research Triangle Park, NC, USA
| | | |
Collapse
|
14
|
Müller A, Lekhuleni C, Hupp S, du Plessis M, Holivololona L, Babiychuk E, Leib SL, Grandgirard D, Iliev AI, von Gottberg A, Hathaway LJ. Meningitis-associated pneumococcal serotype 8, ST 53, strain is hypervirulent in a rat model and has non-haemolytic pneumolysin which can be attenuated by liposomes. Front Cell Infect Microbiol 2023; 12:1106063. [PMID: 36683678 PMCID: PMC9852819 DOI: 10.3389/fcimb.2022.1106063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Streptococcus pneumoniae bacteria cause life-threatening invasive pneumococcal disease (IPD), including meningitis. Pneumococci are classified into serotypes, determined by differences in capsular polysaccharide and both serotype and pneumolysin toxin are associated with disease severity. Strains of serotype 8, ST 53, are increasing in prevalence in IPD in several countries. Methods Here we tested the virulence of such an isolate in a rat model of meningitis in comparison with a serotype 15B and a serotype 14 isolate. All three were isolated from meningitis patients in South Africa in 2019, where serotype 8 is currently the most common serotype in IPD. Results and Discussion Only the serotype 8 isolate was hypervirulent causing brain injury and a high mortality rate. It induced a greater inflammatory cytokine response than either the serotype 15B or 14 strain in the rat model and from primary mixed-glia cells isolated from mouse brains. It had the thickest capsule of the three strains and produced non-haemolytic pneumolysin. Pneumolysin-sequestering liposomes reduced the neuroinflammatory cytokine response in vitro indicating that liposomes have the potential to be an effective adjuvant therapy even for hypervirulent pneumococcal strains with non-haemolytic pneumolysin.
Collapse
Affiliation(s)
- Annelies Müller
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Cebile Lekhuleni
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sabrina Hupp
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Mignon du Plessis
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lalaina Holivololona
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| | | | - Stephen L. Leib
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| | | | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lucy J. Hathaway
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Li L, Ma J, Yu Z, Li M, Zhang W, Sun H. Epidemiological characteristics and antibiotic resistance mechanisms of Streptococcus pneumoniae: An updated review. Microbiol Res 2023; 266:127221. [DOI: 10.1016/j.micres.2022.127221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022]
|
16
|
Egorova E, Kumar N, Gladstone RA, Urban Y, Voropaeva E, Chaplin A, Rumiantseva E, Svistunova TS, Hawkins PA, Klugman KP, Breiman RF, McGee L, Bentley SD, Lo SW. Key features of pneumococcal isolates recovered in Central and Northwestern Russia in 2011–2018 determined through whole-genome sequencing. Microb Genom 2022; 8. [PMID: 36112007 PMCID: PMC9676041 DOI: 10.1099/mgen.0.000851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Invasive pneumococcal disease remains one of the leading causes of morbidity and mortality worldwide. In Russia, 13- valent pneumococcal conjugate vaccine (PCV13) was introduced into the childhood immunization programme nationwide in 2014. As part of the Global Pneumococcal Sequencing Project (GPS), we used genome data to characterize 179 pneumococcal isolates collected from Russia in 2011–2018 to investigate the circulating pneumococcal strains using a standardized genomic definition of pneumococcal lineages (global pneumococcal sequence clusters, GPSCs), prevalent serotypes and antimicrobial resistance profiles. We observed high serotype and lineage diversity among the 179 isolates recovered from cerebrospinal fluid (n=77), nasopharyngeal swabs (n=99) and other non-sterile site swabs (n=3). Overall, 60 GPSCs were identified, including 48 clonal complexes (CCs) and 14 singletons, and expressed 42 serotypes (including non-typable). Among PCV13 serotypes, 19F, 6B and 23F were the top three serotypes while 11A, 15B/C and 8 were the top three among non-PCV13 serotypes in the collection. Two lineages (GPSC6 and GPSC47) expressed both PCV13 and non-PCV13 serotypes that caused invasive disease, and were penicillin- and multidrug-resistant (MDR), highlighting their potential to adapt and continue to cause infections under vaccine and antibiotic selective pressure. PCV13 serotypes comprised 92 % (11/12) of the CSF isolates from the children aged below 5 years; however, the prevalence of PCV13 serotype isolates dropped to 53 % (31/58) among the nasopharyngeal isolates. Our analysis showed that 59 % (105/179) of the isolates were predicted to be non-susceptible to at least one class of antibiotics and 26 % (46/179) were MDR. Four MDR lineages (GPSC1, GPSC6, GPSC10 and GPSC47) accounted for 65 % (30/46) of the MDR isolates and expressed PCV13 serotypes (93 %, 28/30). This study provides evidence of high genetic and serotype diversity contributed by a mix of globally spreading and regionally circulating lineages in Russia. The observations suggest that the PCV13 vaccine could be important in reducing both invasive disease and antimicrobial resistance. We also identify potential lineages (GPSC6 and GPSC47) that may evade the vaccine.
Collapse
Affiliation(s)
- Ekaterina Egorova
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Narender Kumar
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Rebecca A. Gladstone
- Department of Biostatistics, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Yulia Urban
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Elena Voropaeva
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - A.V. Chaplin
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | | | | | | | - Keith P. Klugman
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - Lesley McGee
- Centers for Disease Control and Prevention, Atlanta, USA
| | - Stephen D. Bentley
- Department of Pathology, University of Cambridge, Cambridge, UK
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Stephanie W. Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| |
Collapse
|
17
|
Yamba Yamba L, Uddén F, Fuursted K, Ahl J, Slotved HC, Riesbeck K. Extensive/Multidrug-Resistant Pneumococci Detected in Clinical Respiratory Tract Samples in Southern Sweden Are Closely Related to International Multidrug-Resistant Lineages. Front Cell Infect Microbiol 2022; 12:824449. [PMID: 35392607 PMCID: PMC8981583 DOI: 10.3389/fcimb.2022.824449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background/ObjectiveThe frequencies of non-susceptibility against common antibiotics among pneumococci vary greatly across the globe. When compared to other European countries antibiotic resistance against penicillin and macrolides has been uncommon in Sweden in recent years. Multidrug resistance (MDR) is, however, of high importance since relevant treatment options are scarce. The purpose of this study was to characterize the molecular epidemiology, presence of resistance genes and selected virulence genes of extensively drug-resistant (XDR) (n=15) and MDR (n=10) Streptococcus pneumoniae detected in clinical respiratory tract samples isolated from patients in a southern Swedish county 2016-2018. With the aim of relating them to global MDR pneumococci.MethodsWhole genome sequencing (WGS) was performed to determine molecular epidemiology, resistance genes and presence of selected virulence factors. Antimicrobial susceptibility profiles were determined using broth microdilution testing. Further analyses were performed on isolates from the study and from the European nucleotide archive belonging to global pneumococcal sequence cluster (GPSC) 1 (n=86), GPSC9 (n=55) and GPSC10 (n=57). Bacteria were analyzed regarding selected virulence determinants (pilus islet 1, pilus islet 2 and Zinc metalloproteinase C) and resistance genes.ResultsNineteen of 25 isolates were related to dominant global MDR lineages. Seventeen belonged to GPSC1, GPSC9 or GPSC10 with MDR non-PCV serotypes in GPSC9 (serotype 15A and 15C) as well as GPSC10 (serotype 7B, 15B and serogroup 24). Pilus islet-1 and pilus islet-2 were present in most sequence types belonging to GPSC1 and in two isolates within GPSC9 but were not detected in isolates belonging to GPSC10. Zinc metalloproteinase C was well conserved within all analyzed isolates belonging to GPSC9 but were not found in isolates from GPSC1 or GPSC10.ConclusionsAlthough MDR S. pneumoniae is relatively uncommon in Sweden compared to other countries, virulent non-PCV serotypes that are MDR may become an increasing problem, particularly from clusters GPSC9 and GPSC10. Since the incidence of certain serotypes (3, 15A, and 19A) found among our MDR Swedish study isolates are persistent or increasing in invasive pneumococcal disease further surveillance is warranted.
Collapse
Affiliation(s)
- Linda Yamba Yamba
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Fabian Uddén
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kurt Fuursted
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Jonas Ahl
- Infectious Diseases, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Hans-Christian Slotved
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
- *Correspondence: Kristian Riesbeck,
| |
Collapse
|