1
|
Zolotareva K, Dotsenko PA, Podkolodnyy N, Ivanov R, Makarova AL, Chadaeva I, Bogomolov A, Demenkov PS, Ivanisenko V, Oshchepkov D, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of the TATA-Binding Protein for the Promoters of Human Genes Associated with Primary Open-Angle Glaucoma. Int J Mol Sci 2024; 25:12802. [PMID: 39684516 DOI: 10.3390/ijms252312802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Primary open-angle glaucoma (POAG) is the most common form of glaucoma. This condition leads to optic nerve degeneration and eventually to blindness. Tobacco smoking, alcohol consumption, fast-food diets, obesity, heavy weight lifting, high-intensity physical exercises, and many other bad habits are lifestyle-related risk factors for POAG. By contrast, moderate-intensity aerobic exercise and the Mediterranean diet can alleviate POAG. In this work, we for the first time estimated the phylostratigraphic age indices (PAIs) of all 153 POAG-related human genes in the NCBI Gene Database. This allowed us to separate them into two groups: POAG-related genes that appeared before and after the phylum Chordata, that is, ophthalmologically speaking, before and after the camera-type eye evolved. Next, in the POAG-related genes' promoters, we in silico predicted all 3835 candidate SNP markers that significantly change the TATA-binding protein (TBP) affinity for these promoters and, through this molecular mechanism, the expression levels of these genes. Finally, we verified our results against five independent web services-PANTHER, DAVID, STRING, MetaScape, and GeneMANIA-as well as the ClinVar database. It was concluded that POAG is likely to be a symptom of the human self-domestication syndrome, a downside of being civilized.
Collapse
Affiliation(s)
- Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Polina A Dotsenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, SB RAS, Novosibirsk 630090, Russia
| | - Roman Ivanov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Aelita-Luiza Makarova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Pavel S Demenkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Vladimir Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Wang W, Wang H. Understanding the complex genetics and molecular mechanisms underlying glaucoma. Mol Aspects Med 2023; 94:101220. [PMID: 37856931 DOI: 10.1016/j.mam.2023.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. Currently the only effective treatment for glaucoma is to reduce the intraocular pressure, which can halt the progression of the disease. Highlighting the importance of identifying individuals at risk of developing glaucoma and those with early-stage glaucoma will help patients receive treatment before sight loss. However, some cases of glaucoma do not have raised intraocular pressure. In fact, glaucoma is caused by a variety of different mechanisms and has a wide range of different subtypes. Understanding other risk factors, the underlying mechanisms, and the pathology of glaucoma might lead to novel treatments and treatment of underlying diseases. In this review we present the latest research into glaucoma including the genetics and molecular basis of the disease.
Collapse
Affiliation(s)
- Weiwei Wang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital, Northwest University, Xi'an, 710004, Shaanxi Province, China.
| | - Huaizhou Wang
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
3
|
Kondkar AA, Azad TA, Sultan T, Osman EA, Almobarak FA, Lobo GP, Al-Obeidan SA. The 3' UTR polymorphisms rs3742330 in DICER1 and rs10719 in DROSHA genes are not associated with primary open-angle and angle-closure glaucoma: As case-control study. PLoS One 2023; 18:e0284852. [PMID: 37099569 PMCID: PMC10132650 DOI: 10.1371/journal.pone.0284852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/10/2023] [Indexed: 04/27/2023] Open
Abstract
AIM In a retrospective and exploratory case-control study, we examined the genetic association of two common polymorphisms in the 3' untranslated region (UTR) of DICER1 (rs3742330) and DROSHA (rs10719) genes in primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG), and its related clinical phenotypes in a Saudi cohort. METHODS DNA genotyping was performed using TaqMan real-time PCR assays in 500 participants, including 152 POAG, 102 PACG, and 246 non-glaucomatous controls. Statistical analyses were performed to examine the association(s). RESULTS Allele and genotype frequency of rs3742330 and rs10719 did not vary significantly in POAG and PACG compared to controls. No significant deviation was observed from Hardy-Weinberg Equilibrium (p > 0.05). Gender stratification revealed no significant allelic/genotype association with glaucoma types. Also, these polymorphisms showed no significant genotype effect on clinical markers such as intraocular pressure, cup/disc ratio, and the number of antiglaucoma medications. Logistic regression showed no effect of age, sex, rs3742330, and rs10719 genotypes on the risk of disease outcome. We also examined a combined allelic effect of rs3742330 (A>G) and rs10719 (A>G). However, none of the allelic combinations significantly affected POAG and PACG. CONCLUSIONS The 3' UTR polymorphisms rs3742330 and rs10719 of DICER1 and DROSHA genes are not associated with POAG and PACG or its related glaucoma indices in this Middle-Eastern cohort of Saudi Arab ethnicity. However, there is a need to validate the results on a broader population and other ethnicities.
Collapse
Affiliation(s)
- Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Taif A. Azad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Tahira Sultan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Essam A. Osman
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Faisal A. Almobarak
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Glenn P. Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Saleh A. Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Wu H, Li Y, Wang Y, Yu J, Bao X, Hu M. Effect of recombinant human fibroblast growth factor 21 on the mineralization of cementoblasts and its related mechanism. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2023; 41:140-148. [PMID: 37056179 PMCID: PMC10427260 DOI: 10.7518/hxkq.2023.2022375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/08/2023] [Indexed: 04/15/2023]
Abstract
OBJECTIVES To investigate the effect of recombinant human fibroblast growth factor 21 (rhFGF21) on the proliferation and mineralization of cementoblasts and its mechanism. METHODS Hematoxylin eosin, immunohistochemical staining, and immunofluorescence were used to detect the expression and distribution of fibroblast growth factor 21 (FGF21) in rat periodontal tissues and cementoblasts (OCCM-30), separately. Cell Counting Kit-8 was used to detect the proliferation of OCCM-30 under treatment with rhFGF21. Alkaline phosphatase staining and Alizarin Red staining were used to detect the mineralization state of OCCM-30 after 3 and 7 days of mineralization induction. The transcription and protein expression of the osteogenic-related genes Runx2 and Osterix were detected by real-time quantitative polymerase chain reaction (PCR) and Western blot analysis. The expression levels of genes of transforming growth factor β (TGFβ)/bone morphogenetic protein (BMP) signaling pathway in OCCM-30 were detected through PCR array analysis. RESULTS FGF21 was expressed in rat periodontal tissues and OCCM-30. Although rhFGF21 had no significant effect on the proliferation of OCCM-30, treatment with 50 ng/mL rhFGF21 could promote the mineralization of OCCM-30 cells after 7 days of mineralization induction. The transcriptional levels of Runx2 and Osterix increased significantly at 3 days of mineralization induction and decreased at 5 days of mineralization induction. Western blot analysis showed that the protein expression levels of Runx2 and Osterix increased during mineralization induction. rhFGF21 up-regulated Bmpr1b protein expression in cells. CONCLUSIONS rhFGF21 can promote the mineralization ability of OCCM-30. This effect is related to the activation of the TGFβ/BMP signaling pathway.
Collapse
Affiliation(s)
- Hao Wu
- Dept. of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Ying Li
- Dept. of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Yuzhuo Wang
- Dept. of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Jize Yu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
- Dept. of Implantation, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xingfu Bao
- Dept. of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Min Hu
- Dept. of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| |
Collapse
|
5
|
Kondkar AA, Sultan T, Azad TA, Osman EA, Almobarak FA, Lobo GP, Al-Obeidan SA. Evaluation of ABCA1 and FNDC3B Gene Polymorphisms Associated With Pseudoexfoliation Glaucoma and Primary Angle-Closure Glaucoma in a Saudi Cohort. Front Genet 2022; 13:877174. [PMID: 35719397 PMCID: PMC9198278 DOI: 10.3389/fgene.2022.877174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: It is plausible that common disease mechanisms exist in glaucoma pathophysiology. Accordingly, we investigated the genetic association of two previously reported primary open-angle glaucoma (POAG)-related gene polymorphisms, rs2472493 (A > G) in ABCA1 and rs7636836 (C > T) in FNDC3B, in primary angle-closure glaucoma (PACG) and pseudoexfoliation glaucoma (PXG). Methods: TaqMan genotyping was performed in a total of 442 subjects consisting of 246 healthy controls, 102 PACG patients, and 94 PXG patients. Statistical evaluations were performed to detect allelic and genotype association of the variants with the disease and clinical variables such as intraocular pressure (IOP) and cup/disc ratio. Results: Overall, there was no allelic or genotype association of these variants in PACG and PXG. However, rs7636836[T] allele significantly increased the risk of PXG among men (p = 0.029, odds ratio [OR] = 2.69, 95% confidence interval = 1.11–6.51). Similarly, rs2472493 and rs7636836 genotypes also showed significant association with PXG among men in over-dominant model (p = 0.031, OR = 1.98, 95% CI = 1.06–3.71) and co-dominant model (p = 0.029, OR = 2.69, 95% CI = 1.11–6.51), respectively. However, none survived Bonferroni’s correction. Besides, the synergic presence of rs2472493[G] and rs7636836[T] alleles (G-T) was found to significantly increase the risk of PACG (p = 0.026, OR = 2.85, 95% CI = 1.09–7.46). No significant genotype influence was observed on IOP and cup/disc ratio. Conclusion: Our results suggest that the polymorphisms rs2472493 in ABCA1 and rs7636836 in FNDC3B genes may be associated with PXG among men, and a G-T allelic combination may confer an increased risk of PACG in the middle-eastern Saudi cohort. Further research in a larger population-based sample is needed to validate these findings.
Collapse
Affiliation(s)
- Altaf A Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Tahira Sultan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Taif A Azad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Essam A Osman
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Faisal A Almobarak
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Glenn P Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| | - Saleh A Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Mullany S, Marshall H, Zhou T, Thomson D, Schmidt JM, Qassim A, Knight LSW, Hollitt G, Berry EC, Nguyen T, To MS, Dimasi D, Kuot A, Dubowsky J, Fogarty R, Sun M, Chehade L, Kuruvilla S, Supramaniam D, Breen J, Sharma S, Landers J, Lake S, Mills RA, Hassall MM, Chan WO, Klebe S, Souzeau E, Siggs OM, Craig JE. RNA Sequencing of Lens Capsular Epithelium Implicates Novel Pathways in Pseudoexfoliation Syndrome. Invest Ophthalmol Vis Sci 2022; 63:26. [PMID: 35348588 PMCID: PMC8982629 DOI: 10.1167/iovs.63.3.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Pseudoexfoliation syndrome (PEX) is a common systemic disease that results in severe and often irreversible vision loss. Despite considerable research effort, PEX remains incompletely understood. This study sought to perform the first RNAseq study in elucidate the pathophysiology of PEX, and contribute a publicly available transcriptomic data resource for future research. Methods Human ocular lens capsular epithelium samples were collected from 25 patients with PEX and 39 non-PEX controls undergoing cataract surgery. RNA extracted from these specimens was subjected to polyadenylated (mRNA) selection and deep bulk RNA sequencing. Differential expression analysis investigated protein-coding gene transcripts. Exploratory analyses used pathway analysis tools, and curated class- and disease-specific gene sets. Results Differential expression analysis demonstrated that 2882 genes were differentially expressed according to PEX status. Genes associated with viral gene expression pathways were among the most upregulated, alongside genes encoding ribosomal and mitochondrial respiratory transport chain proteins. Cell adhesion protein transcripts including type 4 collagen subunits were downregulated. Conclusions This comparative transcriptomic dataset highlights novel and previously recognized pathogenic pathways in PEX and provides the first comprehensive transcriptomic resource, adding an additional layer to build further understanding of PEX pathophysiology.
Collapse
Affiliation(s)
- Sean Mullany
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Henry Marshall
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Tiger Zhou
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Daniel Thomson
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Joshua M Schmidt
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Ayub Qassim
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Lachlan S W Knight
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Georgina Hollitt
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Ella C Berry
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Thi Nguyen
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Minh-Son To
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - David Dimasi
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Abraham Kuot
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Joshua Dubowsky
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Rhys Fogarty
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Michelle Sun
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Luke Chehade
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Shilpa Kuruvilla
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Devaraj Supramaniam
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - James Breen
- SAHMRI Bioinformatics Core, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Shiwani Sharma
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - John Landers
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Stewart Lake
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Richard A Mills
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Mark M Hassall
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Weng O Chan
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Sonja Klebe
- Flinders Department of Pathology, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Emmanuelle Souzeau
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Owen M Siggs
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia.,Garvan Institute of Medical Research Institute, Darlinghurst, Sydney, Australia
| | - Jamie E Craig
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| |
Collapse
|
7
|
Kondkar AA. Updates on Genes and Genetic Mechanisms Implicated in Primary Angle-Closure Glaucoma. APPLICATION OF CLINICAL GENETICS 2021; 14:89-112. [PMID: 33727852 PMCID: PMC7955727 DOI: 10.2147/tacg.s274884] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/18/2021] [Indexed: 12/29/2022]
Abstract
Primary angle-closure glaucoma (PACG) is estimated to affect over 30 million people worldwide by 2040 and is highly prevalent in the Asian population. PACG is more severe and carries three times the higher risk of blindness than primary open-angle glaucoma, thus representing a significant public health concern. High heritability and ethnic-specific predisposition to PACG suggest the involvement of genetic factors in disease development. In the recent past, genetic studies have led to the successful identification of several genes and loci associated with PACG across different ethnicities. The precise cellular and molecular roles of these multiple loci in the development and progression of PACG remains to be elucidated. Nonetheless, these studies have significantly increased our understanding of the emerging cellular processes and biological pathways that might provide more significant insights into the disease’s genetic etiology and may be valuable for future clinical applications. This review aims to summarize and update the current knowledge of PACG genetics analysis research.
Collapse
Affiliation(s)
- Altaf A Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The genetic basis of pseudoexfoliation (PEX) syndrome, the most common identifiable cause of open-angle glaucoma, is steadily being elucidated. This review summarizes the recent advances on genetic risk factors for PEX syndrome/glaucoma and their potential functional implications in PEX pathophysiology. RECENT FINDINGS As of today, seven loci associated with the risk of PEX surpassing genome-wide significance have been identified by well-powered genome-wide association studies and sequencing efforts. LOXL1 (lysyl oxidase-like 1) represents the major genetic effect locus, although the biological role of common risk variants and their reversed effect in different ethnicities remain an unresolved problem. Rare protein-coding variants at LOXL1 and a single noncoding variant downstream of LOXL1 showed no allele effect reversal and suggested potential roles for elastin homeostasis and vitamin A metabolism in PEX pathogenesis. Other PEX-associated genetic variants provided biological insights into additional disease processes and pathways, including ubiquitin-proteasome function, calcium signaling, and lipid biosynthesis. Gene-environment interactions, epigenetic alterations, and integration of multiomics data have further contributed to our knowledge of the complex etiology underlying PEX syndrome and glaucoma. SUMMARY PEX-associated genes are beginning to reveal relevant biological pathways and processes involved in disease development. To understand the functional consequences and molecular mechanisms of these loci and to translate them into novel therapeutic approaches are the major challenges for the future.
Collapse
|
9
|
Kondkar AA, Azad TA, Sultan T, Osman EA, Almobarak FA, Al-Obeidan SA. Association of rs12997 variant in the ACVR1 gene: a member of bone morphogenic protein signaling pathway with primary open-angle glaucoma in a Saudi cohort. J Investig Med 2021; 69:402-407. [PMID: 33443061 DOI: 10.1136/jim-2020-001596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
We investigated the association between variants rs12997 in activin A receptor type I (ACVR1) and rs1043784 in BMP6 located in the 3' untranslated region, and primary open-angle glaucoma (POAG). The retrospective case-control study used TaqMan real-time PCR assay to genotype 400 subjects, including 150 patients with POAG and 250 controls. The minor 'G' allele of rs12997 in ACVR1 showed significant association with POAG (p=0.027, OR=1.39, 95% CI=1.03 to 1.87). Likewise, rs12997 genotypes showed moderate association with POAG in recessive (p=0.048, OR=1.80, 95% CI=1.01 to 3.20) and log-additive models (p=0.030, OR=1.39, 95% CI=1.03 to 1.87), but did not survive Bonferroni correction. Rs1043784 in BMP6 showed no associations. Furthermore, rs12997 G/G genotype significantly (p=0.033) increased the risk of POAG (twofolds) independent of age, sex and rs1043784 genotypes in regression analysis. However, clinical variables such as intraocular pressure and cup/disc ratio showed no association with both the polymorphisms. To conclude, the study shows a modest association between rs12997 in the ACVR1 gene, a member of the bone morphogenic protein signaling pathway and POAG. However, the results need further replication in large population-based cohorts and different ethnicities to validate its role as an important genetic biomarker.
Collapse
Affiliation(s)
- Altaf A Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia .,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Taif A Azad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Tahira Sultan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Essam A Osman
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Faisal A Almobarak
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Molecular Genetics of Glaucoma: Subtype and Ethnicity Considerations. Genes (Basel) 2020; 12:genes12010055. [PMID: 33396423 PMCID: PMC7823611 DOI: 10.3390/genes12010055] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Glaucoma, the world’s leading cause of irreversible blindness, is a complex disease, with differential presentation as well as ethnic and geographic disparities. The multifactorial nature of glaucoma complicates the study of genetics and genetic involvement in the disease process. This review synthesizes the current literature on glaucoma and genetics, as stratified by glaucoma subtype and ethnicity. Primary open-angle glaucoma (POAG) is the most common cause of glaucoma worldwide, with the only treatable risk factor (RF) being the reduction of intraocular pressure (IOP). Genes associated with elevated IOP or POAG risk include: ABCA1, AFAP1, ARHGEF12, ATXN2, CAV1, CDKN2B-AS1, FOXC1, GAS7, GMDS, SIX1/SIX6, TMCO1, and TXNRD2. However, there are variations in RF and genetic factors based on ethnic and geographic differences; it is clear that unified molecular pathways accounting for POAG pathogenesis remain uncertain, although inflammation and senescence likely play an important role. There are similar ethnic and geographic complexities in primary angle closure glaucoma (PACG), but several genes have been associated with this disorder, including MMP9, HGF, HSP70, MFRP, and eNOS. In exfoliation glaucoma (XFG), genes implicated include LOXL1, CACNA1A, POMP, TMEM136, AGPAT1, RBMS3, and SEMA6A. Despite tremendous progress, major gaps remain in resolving the genetic architecture for the various glaucoma subtypes across ancestries. Large scale carefully designed studies are required to advance understanding of genetic loci as RF in glaucoma pathophysiology and to improve diagnosis and treatment options.
Collapse
|