1
|
Sridhar GR, Gumpeny L. Melanocortin 4 receptor mutation in obesity. World J Exp Med 2024; 14:99239. [PMID: 39713072 PMCID: PMC11551707 DOI: 10.5493/wjem.v14.i4.99239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/31/2024] Open
Abstract
Obesity is increasingly prevalent worldwide, with genetic factors contributing to its development. The hypothalamic leptin-melanocortin pathway is central to the regulation of appetite and weight; leptin activates the proopiomelanocortin neurons, leading to the production of melanocortin peptides; these in turn act on melanocortin 4 receptors (MC4R) which suppress appetite and increase energy expenditure. MC4R mutations are responsible for syndromic and non-syndromic obesity. These mutations are classified based on their impact on the receptor's life cycle: i.e. null mutations, intracellular retention, binding defects, signaling defects, and variants of unknown function. Clinical manifestations of MC4R mutations include early-onset obesity, hyperphagia, and metabolic abnormalities such as hyperinsulinemia and dyslipidemia. Management strategies for obesity due to MC4R mutations have evolved with the development of targeted therapies such as Setmelanotide, an MC4R agonist which can reduce weight and manage symptoms without adverse cardiovascular effects. Future research directions must include expansion of population studies to better understand the epidemiology of MC4R mutations, exploration of the molecular mechanisms underlying MC4R signaling, and development of new therapeutic agents. Understanding the interaction between MC4R and other genetic and environmental factors will be key to advancing both the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Gumpeny R Sridhar
- Department of Endocrinology and Diabetes, Endocrine and Diabetes Centre, Visakhapatnam 530002, Andhra Pradesh, India
| | - Lakshmi Gumpeny
- Department of Internal Medicine, Gayatri Vidya Parishad Institute of Healthcare and Medical Technology, Visakhapatnam 530048, Andhra Pradesh, India
| |
Collapse
|
2
|
Wu R, Gragnoli C. The melanocortin receptor genes are linked to and associated with the risk of polycystic ovary syndrome in Italian families. J Ovarian Res 2024; 17:242. [PMID: 39633478 PMCID: PMC11619144 DOI: 10.1186/s13048-024-01567-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder occurring in women of reproductive age. The disease is caused by a complex interplay of genetic and environmental factors including genes encoding components of the hypothalamic-pituitary-adrenal (HPA) axis. We have recently reported the association of melanocortin receptor genes (MC1R, MC2R, MC3R, MC4R, and MC5R) with the risk of type 2 diabetes (T2D) and/or major depressive disorder (MDD). The latter 2 disorders are comorbid with PCOS. In this study, we used microarray to test 12 single nucleotide polymorphisms (SNPs) in the MC1R gene, 10 SNPs in the MC2R gene, 5 SNPs in the MC3R gene, 6 SNPs in the MC4R gene, and 4 SNPs in the MC5R gene in 212 original Italian families with PCOS. We identified 1 SNP in MC1R, 1 SNP in MC2R, 2 SNPs in MC3R, and 2 SNPs in MC5R significantly linked and/or associated to/with the risk of PCOS in Italian families. This is the first study to report the novel implication of melanocortin receptor genes (MC1R, MC2R, and MC5R) in PCOS. MC3R and MC4R were previously reported in PCOS. However, functional studies are needed to validate these results.
Collapse
MESH Headings
- Humans
- Polycystic Ovary Syndrome/genetics
- Female
- Polymorphism, Single Nucleotide
- Italy/epidemiology
- Genetic Predisposition to Disease
- Receptors, Melanocortin/genetics
- Receptor, Melanocortin, Type 1/genetics
- Receptor, Melanocortin, Type 4/genetics
- Adult
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 3/genetics
Collapse
Affiliation(s)
- Rongling Wu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA
- Department of Statistics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Claudia Gragnoli
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA.
- Division of Endocrinology, Department of Medicine, Creighton University School of Medicine, Omaha, NE, 68124, USA.
- Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, 00197, Italy.
| |
Collapse
|
3
|
Singh H, Nair A, Mahajan SD. Impact of genetic variations of gene involved in regulation of metabolism, inflammation and coagulation on pathogenesis of cardiac injuries associated with COVID-19. Pathol Res Pract 2024; 263:155608. [PMID: 39447244 DOI: 10.1016/j.prp.2024.155608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND SARS-CoV-2 infection can result in long-term chronic cardiovascular (CV) damage after the acute phase of the illness. COVID-19 frequently causes active myocarditis, SARS-CoV-2 can directly infect and kill cardiac cells, causing severe pathology and dysfunction across the organs and cells. Till now, the pathogenesis of COVID-19-associated cardiac injuries has not been understood, but there are several factors that contribute to the progression of cardiac injuries, such as genetic, dietary, and environmental. Among them ranges of host genetic factor including metabolizing, inflammation, and coagulation related genes have a role to contribute the cardiac injuries induced by COVID-19. Hereditary DNA sequence variations contribute to the risk of illness in almost all of these diseases. Hence, we comprehended the occurrence of genetic variations of metabolizing, inflammation and coagulation-related genes in the general population, their expression in various diseases, and their impact on cardiac injuries induced by COVID-19. METHOD We utilized multiple databases, including PubMed (Medline), EMBASE, and Google Scholar, for literature searches. DESCRIPTION The genes involved in metabolism (APOE, MTHFR), coagulation (PAI-1, ACE2), and immune factors (CRP, ESR, and troponin I) may have a role in the progression of COVID-19-associated cardiac injuries. The risk factors for CVD are significantly varied between and within different regions. In healthy individuals, the ACE I allele is responsible for the predisposition to CAD, but the ACE D haplotype is responsible for susceptibility and severity, which ultimately leads to heart failure. Patients who carry the T allele of rs12329760 in the TMPRSS2 gene are at risk for developing the severe form of COVID-19. IL-6 (rs1800796/rs1800795) polymorphism is associated with an increased mortality rate and susceptibility to severe COVID-19 disease. While the putative role of IL-6 associated with chronic, inflammatory diseases like cardiac and cerebrovascular disease is well known. CONCLUSION The occurrence of genetic variations in the ACE-2, AGT, DPP-IV, TMPRSS2, FUIRN, IL-4, IL-6, IFN-γ, and CYP2D6 genes is varied among different populations. Examining the correlation between these variations and their protein levels and cardiac injuries induced by COVID-19 may provide valuable insights into the pathogenesis of cardiac injuries induced by COVID-19.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, National AIDS Research Institute, Pune 411026, India.
| | - Aishwarya Nair
- Department of Molecular Biology, National AIDS Research Institute, Pune 411026, India
| | - Supriya D Mahajan
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo's Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
4
|
Sekar P, Aji AS, Ariyasra U, Sari SR, Tasrif N, Yani FF, Lovegrove JA, Sudji IR, Lipoeto NI, Vimaleswaran KS. A Novel Interaction between a 23-SNP Genetic Risk Score and Monounsaturated Fatty Acid Intake on HbA1c Levels in Southeast Asian Women. Nutrients 2024; 16:3022. [PMID: 39275336 PMCID: PMC11397529 DOI: 10.3390/nu16173022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Metabolic diseases result from interactions between genetic and lifestyle factors. Understanding the combined influences of single-nucleotide polymorphisms (SNPs) and lifestyle is crucial. This study employs genetic risk scores (GRS) to assess SNPs, providing insight beyond single gene/SNP studies by revealing synergistic effects. Here, we aim to investigate the association of a 23-SNP GRS with metabolic disease-related traits (obesity and type 2 diabetes) to understand if these associations are altered by lifestyle/dietary factors. For this study, 106 Minangkabau women were included and underwent physical, anthropometric, biochemical, dietary and genetic evaluations. The interaction of GRS with lifestyle factors was analyzed using linear regression models, adjusting for potential confounders. No statistically significant associations were observed between GRS and metabolic traits; however, this study demonstrates a novel interaction observed between 13-SNP GRS and monounsaturated fatty acid (MUFA) intake, and that it had an effect on HbA1c levels (p = 0.026). Minangkabau women with low MUFA intake (≤7.0 g/day) and >13 risk alleles had significantly higher HbA1c levels (p = 0.010). This finding has implications for public health, suggesting the need for large-scale studies to confirm our results before implementing dietary interventions in the Indonesian population. Identifying genetic influences on dietary response can inform personalized nutrition strategies to reduce the risk of metabolic disease.
Collapse
Affiliation(s)
- Padmini Sekar
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6DZ, UK
| | - Arif S Aji
- Department of Nutrition, Faculty of Health Sciences, Alma Ata University, Bantul, Yogyakarta 55183, Indonesia
| | - Utami Ariyasra
- Department of Biomedical Science, Faculty of Medicine, Andalas University, Padang 25163, Indonesia
| | - Sri R Sari
- Department of Biomedical Science, Faculty of Medicine, Andalas University, Padang 25163, Indonesia
| | - Nabila Tasrif
- Culinary Study Program, Faculty of Tourism and Hospitality, Universitas Negeri Padang, Padang 25163, Indonesia
| | - Finny F Yani
- Department of Child Health, Faculty of Medicine, Andalas University, Padang 25163, Indonesia
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6DZ, UK
| | - Ikhwan R Sudji
- Biomedical Laboratory, Faculty of Medicine, Andalas University, Padang 25163, Indonesia
| | - Nur I Lipoeto
- Department of Nutrition, Faculty of Medicine, Andalas University, Padang 25163, Indonesia
| | - Karani S Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6DZ, UK
- Institute for Food, Nutrition and Health (IFNH), University of Reading, Reading RG6 6AH, UK
| |
Collapse
|
5
|
Yang H, Huang Q, Yu H, Quan Z. Associations Between Obesity-Related Gene MC4R rs17782313 Locus Polymorphism and Components of Metabolic Syndrome: A Systematic Review and Meta-Analysis. Metab Syndr Relat Disord 2024; 22:241-250. [PMID: 38466981 DOI: 10.1089/met.2023.0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Objective: It is well established that melanocortin-4 receptor (MC4R) rs17782313 locus polymorphism is associated with increased obesity risk and that obesity is strongly associated with an enhanced risk of all metabolic syndrome (MS) components. Thus, in this study, we examined the association between the MC4R rs17782313 locus polymorphism and the risk of the remaining MS components, namely, diabetes, hypertension, low high-density lipoprotein (HDL), and hypertriglyceridemia. Methods: We performed an extensive literature screening across six scientific databases, namely, PubMed, Embase, Web of Science, Medline, ScienceDirect, CNKI, and WanFang employing a specific search strategy. Eligible studies were selected for inclusion in our meta-analysis, and odds ratio (OR) values and 95% confidence interval (CI) were computed through fixed- or random-effects models to examine correlation strength. In addition, we performed subgroup analyses involving adjustment factors (unadjusted body mass index [BMI], adjusted BMI), race (Caucasian, Asian), and source of controls (population, hospital). Results: Twenty-two eligible studies were selected from 846 articles, involving 28,018 patients and 98,994 normal participants. Based on this meta-analysis, the MC4R rs17782313 locus polymorphism was associated with an augmented risk of diabetes (allele contrast model T vs. C: OR = 1.05, 95% CI = 1.03-1.08; dominant model TT vs. TC + CC: OR = 1.07, 95% CI = 1.03-1.11) and hypertension (dominant model TT vs. TC + CC: OR = 1.16, 95% CI = 1.03-1.31) risk. However, based on this analysis, the MC4R rs17782313 locus polymorphism was not associated with low HDL and hypertriglyceridemia risk. Conclusions: Based on this analysis, the MC4R rs17782313 locus polymorphism is associated with enhanced risks of diabetes and hypertension, while the associations with low HDL and hypertriglyceridemia require further exploration.
Collapse
Affiliation(s)
- Huazhao Yang
- Department of Preventive Medicine, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Qingzhi Huang
- Department of Preventive Medicine, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Hana Yu
- Department of Preventive Medicine, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Zhenyu Quan
- Department of Preventive Medicine, College of Medicine, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
6
|
Mori K, Okuma H, Nakamura S, Uchinuma H, Kaga S, Nakajima H, Ogawa Y, Tsuchiya K. Melanocortin-4 receptor in macrophages attenuated angiotensin II-induced abdominal aortic aneurysm in mice. Sci Rep 2023; 13:19768. [PMID: 37957201 PMCID: PMC10643430 DOI: 10.1038/s41598-023-46831-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
Obesity is recognized as an independent risk factor for abdominal aortic aneurysm (AAA). While mutations in the melanocortin-4 receptor (MC4R) gene is the most common cause of obesity caused by mutations in a single gene, the link between MC4R function and vascular disease has still remained unclear. Here, by using melanocortin-4 receptor (MC4R) deficient mice, we confirmed MC4R deficiency promotes AAA and atherosclerosis. We demonstrated the contribution of two novel factors towards vascular vulnerability in this model: leptin signaling in vascular smooth muscle cells (VSMCs) and loss of MC4R signaling in macrophages. Leptin was shown to promote vascular vulnerability via PI3K-dependent upregulation of Spp1 expression in VSMC. Additionally, Ang II-induced AAA incidence was significantly reduced when MC4R gene expression was myeloid cell-specifically rescued in MC4R deficient (MC4RTB/TB) mice. Ex vivo analysis showed a suppression in NF-κB activity in bone marrow-derived macrophages from LysM(+);MC4RTB/TB mice compared to LysM(-);MC4RTB/TB mice, which exaggerates with endogenous MC4R ligand treatment; α-MSH. These results suggest that MC4R signaling in macrophages attenuates AAA by inhibiting NF-κB activity and subsequent vascular inflammation.
Collapse
Affiliation(s)
- Kentaro Mori
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan.
| | - Hideyuki Okuma
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Suguru Nakamura
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Hiroyuki Uchinuma
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Shigeaki Kaga
- Department of Surgery II, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroyuki Nakajima
- Department of Surgery II, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoichiro Tsuchiya
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan.
| |
Collapse
|
7
|
Chermon D, Birk R. Predisposition of the Common MC4R rs17782313 Female Carriers to Elevated Obesity and Interaction with Eating Habits. Genes (Basel) 2023; 14:1996. [PMID: 38002939 PMCID: PMC10671328 DOI: 10.3390/genes14111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The global rise in obesity is attributed to genetic predisposition interaction with an obesogenic environment. Melanocortin 4 receptor (MC4R) rs17782313 polymorphism has been linked to common obesity with varying influence across different populations. MC4R is a crucial player in the leptin proopiomelanocortin pathway that regulates weight hemostasis. We aimed to study MC4R rs17782313 and its interaction with eating behaviors on obesity predisposition in the Israeli population. Adults' (n = 5785, >18 y) genotype and anthropometric and demographic data were analyzed using logistic regression models adjusting for age, sex, T1DM, and T2DM. MC4R rs17782313 significantly predisposes to elevated obesity risk under the recessive and additive models (OR = 1.38, 95% CI: 1.1-1.72, p = 0.005 and OR = 1.1, 95% CI: 1.01-1.2, p = 0.03, respectively) adjusted for confounders (age, sex, T1DM, and T2DM). Stratification by sex demonstrated that carrying the common MC4R rs17782313 is significantly associated with an elevated predisposition to obesity under the recessive model among females only (OR = 1.41, 95% CI: 1.09-1.82, p = 0.01), with an average of 0.85 BMI increment compared with wild type and one risk allele carriers. MC4R rs17782313 significantly interacted with several eating behaviors to enhance the risk of obesity. Our findings demonstrate that MC4R rs17782313 homozygous female carriers are significantly predisposed to obesity amplified by eating behaviors.
Collapse
Affiliation(s)
| | - Ruth Birk
- Nutrition Department, Health Sciences Faculty, Ariel University, Ariel 40700, Israel;
| |
Collapse
|
8
|
Zhang Y, Li S, Nie H, Wang X, Li X, Wen J, Li M, Song Y. The rs17782313 polymorphism near MC4R gene confers a high risk of obesity and hyperglycemia, while PGC1α rs8192678 polymorphism is weakly correlated with glucometabolic disorder: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1210455. [PMID: 37621650 PMCID: PMC10445758 DOI: 10.3389/fendo.2023.1210455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Background The relationships of the rs17782313 polymorphism near melanocortin 4 receptor gene (MC4R) and the rs8192678 polymorphism in peroxisome proliferator-activated receptor gamma coactivator 1 alpha gene (PGC1α) with metabolic abnormalities have been explored in many populations around the world, but the findings were not all consistent and sometimes even a bit contradictory. Methods Electronic databases including Medline, Scopus, Embase, Web of Science, CNKI and Google Scholar were checked for studies that met the inclusion criteria. Data were carefully extracted from eligible studies. Standardized mean differences (SMDs) were calculated by using a random-effects model to examine the differences in the indexes of obesity, glucometabolic disorder and dyslipidemia between the genotypes of the rs17782313 and rs8192678 polymorphisms. Cochran's Q-statistic test and Begg's test were employed to identify heterogeneity among studies and publication bias, respectively. Results Fifty studies (58,716 subjects) and 51 studies (18,660 subjects) were respectively included in the pooled meta-analyses for the rs17782313 and rs8192678 polymorphisms. The C-allele carriers of the rs17782313 polymorphism had a higher average level of body mass index (SMD = 0.21 kg/m2, 95% confidence interval [95% CI] = 0.12 to 0.29 kg/m2, p < 0.001), waist circumference (SMD = 0.14 cm, 95% CI = 0.06 to 0.23 cm, p < 0.001) and blood glucose (SMD = 0.09 mg/dL, 95% CI = 0.02 to 0.16 mg/dL, p = 0.01) than the TT homozygotes. Regarding the rs8192678 polymorphism, no significant associations with the indexes of obesity, glucometabolic disorder and dyslipidemia were detected. However, significant correlations between the rs8192678 polymorphism and multiple glucometabolic indexes were observed in subgroup analyses stratified by sex, age, ethnicity and health status. Conclusion The meta-analysis demonstrates that the C allele of the MC4R rs17782313 polymorphism confers a higher risk of obesity and hyperglycemia, and the PGC1α rs8192678 polymorphism is weakly correlated with glucometabolic disorder. These findings may partly explain the relationships between these variants and diabetes as well as cardiovascular disease. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022373543.
Collapse
Affiliation(s)
- Youjin Zhang
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Shiyun Li
- Department of Endocrinology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Haiyan Nie
- Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
| | - Xue Wang
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Xuanxuan Li
- Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
| | - Jinhui Wen
- Department of Endocrinology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Mengxi Li
- Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
| | - Yongyan Song
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Carrasco-Luna J, Navarro-Solera M, Gombert M, Martín-Carbonell V, Carrasco-García Á, Del Castillo-Villaescusa C, García-Pérez MÁ, Codoñer-Franch P. Association of the rs17782313, rs17773430 and rs34114122 Polymorphisms of/near MC4R Gene with Obesity-Related Biomarkers in a Spanish Pediatric Cohort. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1221. [PMID: 37508717 PMCID: PMC10378299 DOI: 10.3390/children10071221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Obesity is a multifactorial disease whose onset and development are shaped by the individual genetic background. The melanocortin 4 receptor gene (MC4R) is involved in the regulation of food intake and energy expenditure. Some of the single nucleotide polymorphisms (SNPs) of this gene are related to obesity and metabolic risk factors. The present study was undertaken to assess the relationship between three polymorphism SNPs, namely, rs17782313, rs17773430 and rs34114122, and obesity and metabolic risk factors. One hundred seventy-eight children with obesity aged between 7 and 16 years were studied to determine anthropometric variables and biochemical and inflammatory parameters. Our results highlight that metabolic risk factors, especially alterations in carbohydrate metabolism, were related to rs17782313. The presence of the minor C allele in the three variants (C-C-C) was significantly associated with anthropometric measures indicative of obesity, such as the body mass and fat mass indexes, and increased the values of insulinemia to 21.91 µIU/mL with respect to the wild type values. Our study suggests that the C-C-C haplotype of the SNPs rs17782313, rs17773430 and rs34114122 of the MC4R gene potentiates metabolic risk factors at early ages in children with obesity.
Collapse
Affiliation(s)
- Joaquín Carrasco-Luna
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain; (J.C.-L.); (M.N.-S.); (V.M.-C.); (Á.C.-G.)
- Department for Biotechnology, Faculty of Experimental Science, Catholic University of Valencia, 46001 Valencia, Spain
| | - María Navarro-Solera
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain; (J.C.-L.); (M.N.-S.); (V.M.-C.); (Á.C.-G.)
| | - Marie Gombert
- Biosciences Division, Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA;
| | - Vanessa Martín-Carbonell
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain; (J.C.-L.); (M.N.-S.); (V.M.-C.); (Á.C.-G.)
| | - Álvaro Carrasco-García
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain; (J.C.-L.); (M.N.-S.); (V.M.-C.); (Á.C.-G.)
| | - Cristina Del Castillo-Villaescusa
- Department of Pediatrics, University Hospital Doctor Peset, Foundation of Promotion of Health, Biomedical Research in the Valencian Region (FISABIO), 46020 Valencia, Spain;
| | - Miguel Ángel García-Pérez
- Department of Genetics, Faculty of Biological Sciences, University of Valencia, INCLIVA, 46100 Valencia, Spain;
| | - Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain; (J.C.-L.); (M.N.-S.); (V.M.-C.); (Á.C.-G.)
- Department of Pediatrics, University Hospital Doctor Peset, Foundation of Promotion of Health, Biomedical Research in the Valencian Region (FISABIO), 46020 Valencia, Spain;
| |
Collapse
|
10
|
Valeeva FV, Medvedeva MS, Khasanova KB, Valeeva EV, Kiseleva TA, Egorova ES, Pickering C, Ahmetov II. Association of gene polymorphisms with body weight changes in prediabetic patients. Mol Biol Rep 2022; 49:4217-4224. [PMID: 35292917 PMCID: PMC9262768 DOI: 10.1007/s11033-022-07254-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/09/2022] [Indexed: 10/28/2022]
Abstract
BACKGROUND Recent research has demonstrated that Type 2 Diabetes (T2D) risk is influenced by a number of common polymorphisms, including MC4R rs17782313, PPARG rs1801282, and TCF7L2 rs7903146. Knowledge of the association between these single nucleotide polymorphisms (SNPs) and body weight changes in different forms of prediabetes treatment is still limited. The aim of this study was to investigate the association of polymorphisms within the MC4R, PPARG, and TCF7L2 genes on the risk of carbohydrate metabolism disorders and body composition changes in overweight or obese patients with early carbohydrate metabolism disorders. METHODS AND RESULTS From 327 patients, a subgroup of 81 prediabetic female patients (48.7 ± 14.8 years) of Eastern European descent participated in a 3-month study comprised of diet therapy or diet therapy accompanied with metformin treatment. Bioelectrical impedance analysis and genotyping of MC4R rs17782313, PPARG rs1801282, and TCF7L2 rs7903146 polymorphisms were performed. The MC4R CC and TCF7L2 TT genotypes were associated with increased risk of T2D (OR = 1.46, p = 0.05 and OR = 2.47, p = 0.006, respectively). PPARG CC homozygotes experienced increased weight loss; however, no additional improvements were experienced with the addition of metformin. MC4R TT homozygotes who took metformin alongside dietary intervention experienced increased weight loss and reductions in fat mass (p < 0.05). CONCLUSIONS We have shown that the obesity-protective alleles (MC4R T and PPARG C) were positively associated with weight loss efficiency. Furthermore, we confirmed the previous association of the MC4R C and TCF7L2 T alleles with T2D risk.
Collapse
Affiliation(s)
- Farida V Valeeva
- Department of Endocrinology, Kazan State Medical University, Kazan, Russia
| | - Mariya S Medvedeva
- Department of Endocrinology, Kazan State Medical University, Kazan, Russia
| | | | - Elena V Valeeva
- Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.,Department of Biochemistry, Biotechnology and Pharmacology, Kazan Federal (Volga Region) University, Kazan, Russia
| | - Tatyana A Kiseleva
- Department of Endocrinology, Kazan State Medical University, Kazan, Russia
| | - Emiliya S Egorova
- Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia
| | - Craig Pickering
- Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Preston, UK
| | - Ildus I Ahmetov
- Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia. .,Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia. .,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
11
|
Moazzam-Jazi M, Sadat Zahedi A, Akbarzadeh M, Azizi F, Daneshpour MS. Diverse effect of MC4R risk alleles on obesity-related traits over a lifetime: Evidence from a well-designed cohort study. Gene 2022; 807:145950. [PMID: 34481003 DOI: 10.1016/j.gene.2021.145950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
This population-based longitudinal study is the first investigation that assesses the association of common MC4R SNPs with the obesity-related parameters over time and determines the effect of risk alleles during the three adulthood life periods (early, middle, and late) in a large Iranian cohort, a population with a unique genetic make-up that has been understudied and relatively unexplored. We obtained the genotype of 5370 unrelated adults who participated in the ongoing Tehran Cardiometabolic Genetic Study (TCGS) cohort project for the common MC4R SNPs. Linear regression and linear mixed model analyses were performed to examine the effect of MC4R polymorphisms on maximum BMI and other obesity-related factors over time. We recognized that several SNPs associated with the maximum BMI and the increased BMI, waist circumference, and waist-hip ratio across Iranian adults over a lifetime. Interestingly, we found that rs9954571-A has a yet unreported protective role against obesity-related factors, including BMI, waist circumference, waist-hip ratio, and triglyceride level. Additionally, a survey of the impact of the MC4R risk score throughout the adulthood life periods indicated that the MC4R risk score is influenced both the elevated BMI and waist circumference only during the early adulthood period. Our findings can expand our knowledge about the MC4R genetic variant's contributions to adulthood obesity and highlight the importance of evaluating the genetic components affecting obesity over a lifetime, which could be considered for obesity clinical screening and treatment.
Collapse
Affiliation(s)
- Maryam Moazzam-Jazi
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asiyeh Sadat Zahedi
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Akbarzadeh
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|