1
|
Liu ID, Willis NS, Craig JC, Hodson EM. Interventions for idiopathic steroid-resistant nephrotic syndrome in children. Cochrane Database Syst Rev 2025; 5:CD003594. [PMID: 40337980 PMCID: PMC12060654 DOI: 10.1002/14651858.cd003594.pub7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
BACKGROUND Nephrotic syndrome is a condition in which the glomeruli of the kidney leak large amounts of protein from the blood into the urine. Most children who present with their first episode of nephrotic syndrome achieve remission with corticosteroids. Children who fail to respond to corticosteroids in the first episode of nephrotic syndrome (initial resistance) or develop resistance after one or more responses to corticosteroids (delayed resistance) may be treated with immunosuppressive agents, including calcineurin inhibitors (cyclosporin or tacrolimus), and with non-immunosuppressive agents, such as angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. However, response to these agents is limited, so newer agents, including anti-CD20 antibodies (rituximab, ofatumumab) and dual endothelin-angiotensin receptor antagonists (sparsentan), are being assessed for efficacy and safety. This is an update of a review first published in 2004 and updated in 2006, 2010, 2016 and 2019. OBJECTIVES To evaluate the benefits and harms of different interventions used in children with idiopathic nephrotic syndrome, who do not achieve remission following four weeks or more of daily corticosteroid therapy. SEARCH METHODS The Cochrane Kidney and Transplant (CKT) Information Specialist searched the CKT Register of Studies to 28 January 2025 using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE and Embase, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA We included randomised controlled trials (RCTs) and quasi-RCTs that compared different immunosuppressive or non-immunosuppressive agents with placebo, prednisone or another agent given orally or parenterally in children aged three months to 18 years with steroid-resistant nephrotic syndrome (SRNS). We included studies that enrolled children and adults, in which paediatric data could not be separated from adult data. DATA COLLECTION AND ANALYSIS Two review authors independently screened the search results, determined study eligibility, assessed risk of bias and extracted study data. We expressed dichotomous outcomes as risk ratios (RRs) with 95% confidence intervals (CIs), and continuous outcomes as mean differences (MDs) with 95% CIs. We used a random-effects model to pool data, and GRADE to assess the certainty of the evidence. The main outcomes of interest were treatment response (complete, partial, or complete or partial remission), kidney failure and adverse events. MAIN RESULTS We included 29 studies (1248 evaluated children). Sixteen studies were at low risk of bias for sequence generation and allocation concealment. Seven and 21 studies were at low risk of performance and detection bias, respectively. Sixteen, 15 and 15 studies were at low risk of attrition bias, reporting bias and other bias, respectively. Compared with placebo, corticosteroid or no treatment, cyclosporin may increase the number who achieve complete remission (RR 3.50, 95% CI 1.09 to 11.20; 4 studies, 74 children) or complete or partial remission (RR 3.15, 95% CI 1.04 to 9.57; 4 studies, 74 children) by two to six months (low-certainty evidence). It is uncertain whether cyclosporin reduces the likelihood of kidney failure or increases the likelihood of worsening hypertension or infection (very low-certainty evidence). Compared with intravenous cyclophosphamide, calcineurin inhibitors may increase the number with complete remission (RR 3.43, 95% CI 1.84 to 6.41; 2 studies, 156 children) and complete or partial remission (RR 1.98, 95% CI 1.25 to 3.13; 2 studies, 156 children) at three to six months (low-certainty evidence), and probably reduces the number with treatment failure (no response, serious infection, persistently elevated creatinine) and medications ceased due to adverse events (moderate-certainty evidence), with little or no increase in serious infections (moderate-certainty evidence). Kidney failure was not reported. Tacrolimus may make little or no difference to the number who achieve complete, or complete or partial remission at six and 12 months compared with cyclosporin, but may reduce the number who relapse during treatment (RR 0.22, 95% CI 0.06 to 0.90; 1 study, 34 children) or the number with worsening hypertension (low-certainty evidence). Hypertrichosis and gingival hyperplasia probably increased with cyclosporin. Kidney failure was not reported. Compared with mycophenolate mofetil (MMF) and dexamethasone, cyclosporin probably makes little or no difference to complete, partial, or complete or partial remission (moderate-certainty evidence), and may make little or no difference to kidney failure, serious infection requiring hospitalisation or hypertension (low-certainty evidence). Among children who have achieved complete remission, tacrolimus compared with MMF may increase the number who maintain complete, partial, or complete or partial response for 12 months, but may make little or no difference to serious adverse events and serious infection (low-certainty evidence). Oral cyclophosphamide plus prednisone compared with prednisone alone may make little or no difference to the number who achieve complete remission (low-certainty evidence) and has uncertain effects on adverse events. Kidney failure was not reported. Compared with oral cyclophosphamide plus intravenous dexamethasone, intravenous cyclophosphamide may make little or no difference to complete, partial, or complete or partial remission at six months. There may be little or no difference in bacterial infections; however, hypertension may decrease (all low-certainty evidence). Kidney failure was not reported. It is uncertain whether rituximab/cyclosporin/prednisolone compared with cyclosporin/prednisolone increases the likelihood of remission or reduces adverse events because the certainty of the evidence is very low. Kidney failure was not reported. AUTHORS' CONCLUSIONS Calcineurin inhibitors may increase the likelihood of complete or partial remission compared with placebo/no treatment or cyclophosphamide. For other regimens, it remains unclear whether the interventions alter outcomes because the certainty of the evidence is low. Further adequately powered, well-designed RCTs are needed to evaluate other regimens for children with idiopathic SRNS. Since SRNS represents a spectrum of diseases, future studies should enrol children from better-defined groups of people with SRNS.
Collapse
Affiliation(s)
- Isaac D Liu
- Duke-NUS Medical School; Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Narelle S Willis
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Elisabeth M Hodson
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| |
Collapse
|
2
|
Zhu Y, Xu G. Advances in Focal Segmental Glomerulosclerosis Treatment From the Perspective of the Newest Mechanisms of Podocyte Injury. Drug Des Devel Ther 2025; 19:857-875. [PMID: 39935575 PMCID: PMC11812565 DOI: 10.2147/dddt.s498457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025] Open
Abstract
Podocyte injury was widely recognized as a fundamental mechanism driving the progression of focal segmental glomerulosclerosis (FSGS). Recent research has therefore focused on the development of targeted therapies aimed at disrupting specific pathogenic signaling cascades within podocytes, resulting in noteworthy advancements. The role of mechanisms such as alterations in the actin cytoskeleton, oxidative stress, mitochondrial dysfunction, and inadequate autophagy within the microenvironment of podocyte injury have garnered increasing attention. Corresponding targeted medications such as Abatacept, chemokine receptor (CCR) inhibitors, CDDO-Im (2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide), adenosine monophosphate-activated protein kinase (AMPK) activators, and Adalimumab are currently under investigation. Notably, some medications such as Rituximab and Sparsentan, may simultaneously target multiple downstream mechanisms, Furthermore, exploring molecular strategies for established medications and developing novel treatments guided by biomarkers such as Anti-CD40 antibody, blood microRNA, urinary microRNA, and tumor necrosis factor-alpha (TNF-α) may provide additional therapeutic avenues for patients with FSGS.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
| |
Collapse
|
3
|
Trachtman H, Modi ZJ, Ju W, Lee E, Chinnakotla S, Massengill S, Sedor J, Mariani L, Zhai Y, Hao W, Desmond H, Eddy S, Ramani K, Spino C, Kretzler M. Precision Medicine Proof-of-Concept Study of a TNF Inhibitor in FSGS and Treatment-Resistant Minimal Change Disease. KIDNEY360 2025; 6:284-295. [PMID: 39808779 PMCID: PMC11882258 DOI: 10.34067/kid.0000000635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/04/2024] [Indexed: 01/16/2025]
Abstract
Key Points Precision medicine trials are feasible in patients with primary glomerular diseases. Patients with FSGS and the best-preserved kidney parenchyma demonstrated the most favorable biomarker response to short-term adalimumab treatment. Targeted therapies for FSGS are more likely to succeed during the course of disease when the injury pathway is activated and can be modified. Background FSGS and treatment-resistant minimal change disease (TR-MCD) are heterogeneous disorders with subgroups defined by distinct underlying mechanisms of glomerular and tubulointerstitial injury. A noninvasive urinary biomarker profile has been generated to identify patients with intrakidney TNF activation and to predict response to anti-TNF treatment. We conducted this proof-of-concept, multicenter, open-label clinical trial to test the hypothesis that in patients with FSGS or TR-MCD and evidence of intrarenal TNF activation based on their biomarker profile, short-term treatment with adalimumab would reverse the elevated urinary excretion of monocyte chemoattractant protein-1 (MCP-1) and tissue inhibitor of metalloproteinases 1. Methods Patients with FSGS or TR-MCD, eGFR >30 ml/min per 1.73 m2, urine protein:creatinine ratio ≥1.5 g/g, and age 6–80 years were eligible for this trial. Adalimumab, 20–40 mg, was administered through subcutaneous injection every 2 weeks for five doses. Participants were evaluated at weeks 0 (baseline), 2, 8, and 10. Excretion of urinary monocyte chemoattractant protein-1, urinary tissue inhibitor of metalloproteinases 1, urinary excretion of EGF, and plasma monocyte chemoattractant protein-1 were measured at each visit. Results Seven participants were enrolled, with median baseline urine protein:creatinine ratio 12.1 mg/mg (interquartile range [IQR], 2.2–18.6), serum albumin 2.4 g/dl (IQR, 2.0–2.8), and eGFR 57 ml/min per 1.73 m2 (IQR, 44–96). On the basis of self-report, they received all prescribed doses of adalimumab. The patients with the most favorable response on the basis of changes in urinary biomarkers had the best preserved kidney parenchyma based on urinary excretion of EGF. Conclusions Precision medicine trials are feasible in rare glomerular disorders. In this pilot study, adalimumab resulted in a heterogenous response of the candidate mechanistic-predictive biomarkers of TNF-mediated inflammation in patients with FSGS or TR-MCD. A reduction was seen in a subgroup of patients with preserved kidney parenchyma. The findings may reflect the challenge to reverse chronic injury at advanced stages of kidney disease or insufficient intrarenal target engagement with the intervention drug dose. Clinical Trial registry name and registration number: NCT04009668 .
Collapse
Affiliation(s)
- Howard Trachtman
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Zubin J. Modi
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Department of Pediatrics, Susan B. Meister Child Health Evaluation and Research Center, University of Michigan, Ann Arbor, Michigan
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Edmond Lee
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Silpa Chinnakotla
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Susan Massengill
- Atrium Health Levine Children's Hospital, Charlotte, North Carolina
| | - John Sedor
- Department of Kidney Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Lerner College of Medicine Case Western University School of Medicine, Cleveland, Ohio
| | - Laura Mariani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Yan Zhai
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Wei Hao
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Hailey Desmond
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Karthik Ramani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Cathie Spino
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
4
|
Zhu Y, Chen B, Xu G. Efficacy and safety of nine immunosuppressive agents for primary focal segmental glomerulosclerosis in adults: a pairwise and network meta-analysis. Ren Fail 2024; 46:2438861. [PMID: 39663153 PMCID: PMC11636141 DOI: 10.1080/0886022x.2024.2438861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Immunosuppressants are widely used as the preferred treatment for primary focal segmental glomerulosclerosis (pFSGS). Nevertheless, controversies persist regarding the effectiveness and side effects of different immunosuppressive medications. METHODS From July 2023 until June 2024, we systematically searched PubMed, Cochrane Library, Web of Science, clinicalrials.gov, SinoMed, Chinese Biomedical, Chinese National Knowledge Infrastructure, Wanfang, and VIP information. Randomized controlled trials comparing different immunosuppressants were included in adult patients with pFSGS, with total remission (TR) and 24-h urine total protein (24-h UTP) as the main outcome measures. RESULTS We identified 20 RCTs comparing nine different immunosuppressants for the final analysis. Most immunosuppressants showed better therapeutic effects in TR compared to non-immunosuppressive therapies (NIT), with risk ratios (RRs) of 2.22 (95% CI 1.41-3.50) for cyclosporin, 2.10 (1.57-2.80) for leflunomide-combined steroids, 2.01 (1.24-3.27) for chlorambucil-combined steroids, 1.98 (1.17-3.33) for tacrolimus-combined steroids, 1.89 (1.36-2.63) for cyclosporin-combined steroids, 1.67 (1.28-2.18) for mycophenolate mofetil-combined steroids, and 1.47 (1.21-1.80) for steroids. Only mycophenolate mofetil-combined steroids (SMD -11, 95% CI -21 to -0.64) showed significant superiority in reducing 24-h UTP when compared with NIT. The subgroup analyses of steroids-resistant nephrotic syndrome (SRNS) patients showed that CSA + STE was significantly superior than the NIT group, with RR of 10.5 (95% CI 2.28-44.35). CONCLUSION Steroids remain the recommended initial treatment for pFSGS. For those patients with SRNS, CSA + STE might be the best choice for improving the rate of TR. LEF + STE and MMF + STE also appear to offer a steroid-saving alternative to high-dose glucocorticoids for patients.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Bo Chen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| |
Collapse
|
5
|
Ng MSY, Kaur G, Francis RS, Hawley CM, Johnson DW. Drug repurposing for glomerular diseases: an underutilized resource. Nat Rev Nephrol 2024; 20:707-721. [PMID: 39085415 DOI: 10.1038/s41581-024-00864-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/02/2024]
Abstract
Drug repurposing in glomerular disease can deliver opportunities for steroid-free regimens, enable personalized multi-target options for resistant or relapsing disease and enhance treatment options for understudied populations (for example, children) and in resource-limited settings. Identification of drug-repurposing candidates can be data driven, which utilizes existing data on disease pathobiology, drug features and clinical outcomes, or experimental, which involves high-throughput drug screens. Information from databases of approved drugs, clinical trials and PubMed registries suggests that at least 96 drugs on the market cover 49 targets with immunosuppressive potential that could be candidates for drug repurposing in glomerular disease. Furthermore, evidence to support drug repurposing is available for 191 immune drug target-glomerular disease pairs. Non-immunological drug repurposing includes strategies to reduce haemodynamic overload, podocyte injury and kidney fibrosis. Recommended strategies to expand drug-repurposing capacity in glomerular disease include enriching drug databases with glomeruli-specific information, enhancing the accessibility of primary clinical trial data, biomarker discovery to improve participant selection into clinical trials and improve surrogate outcomes and initiatives to reduce patent, regulatory and organizational hurdles.
Collapse
Affiliation(s)
- Monica Suet Ying Ng
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia.
| | - Gursimran Kaur
- Department of Rheumatology, Saint Vincent's Hospital, Sydney, New South Wales, Australia
- Saint Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Rheumatology Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Ross S Francis
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Carmel M Hawley
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
- Centre for Kidney Disease Research, University of Queensland, Brisbane, Queensland, Australia
| | - David W Johnson
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
- Centre for Kidney Disease Research, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Xie Y, Liu F. Precision medicine for focal segmental glomerulosclerosis. Kidney Res Clin Pract 2024; 43:709-723. [PMID: 38325863 PMCID: PMC11615440 DOI: 10.23876/j.krcp.23.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 02/09/2024] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is one of the common causes of nephrotic syndrome in adults and children worldwide. FSGS consists of a group of kidney diseases classified based on specific histopathological features. The current classification of FSGS makes it difficult to distinguish individual differences in pathogenesis, disease progression, and response to treatment. In recent years, the spread of next-generation sequencing, updates in biological techniques, and improvements of treatment have changed our understanding of FSGS. In this review, we will discuss the use of genetic testing in patients with FSGS, explore its clinical significance from a genetic identification perspective, and introduce several new biomarkers, that may help in the early diagnosis of FSGS and guide the development of specific or targeted therapies, so as to understand the biological characteristics in FSGS. This will certainly help develop more effective and safer treatments and advance precision medicine.
Collapse
Affiliation(s)
- Yi Xie
- Department of Nephrology, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Meliambro K, He JC, Campbell KN. Podocyte-targeted therapies - progress and future directions. Nat Rev Nephrol 2024; 20:643-658. [PMID: 38724717 DOI: 10.1038/s41581-024-00843-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 09/14/2024]
Abstract
Podocytes are the key target cells for injury across the spectrum of primary and secondary proteinuric kidney disorders, which account for up to 90% of cases of kidney failure worldwide. Seminal experimental and clinical studies have established a causative link between podocyte depletion and the magnitude of proteinuria in progressive glomerular disease. However, no substantial advances have been made in glomerular disease therapies, and the standard of care for podocytopathies relies on repurposed immunosuppressive drugs. The past two decades have seen a remarkable expansion in understanding of the mechanistic basis of podocyte injury, with prospects increasing for precision-based treatment approaches. Dozens of disease-causing genes with roles in the pathogenesis of clinical podocytopathies have been identified, as well as a number of putative glomerular permeability factors. These achievements, together with the identification of novel targets of podocyte injury, the development of potential approaches to harness the endogenous podocyte regenerative potential of progenitor cell populations, ongoing clinical trials of podocyte-specific pharmacological agents and the development of podocyte-directed drug delivery systems, contribute to an optimistic outlook for the future of glomerular disease therapy.
Collapse
Affiliation(s)
- Kristin Meliambro
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John C He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirk N Campbell
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Jones OY, Malone LC, Brunson C. Anti-Tumor Necrosis Factor Treatment for Glomerulopathy: Case Report and Review of Literature. Fed Pract 2024; 41:250-255. [PMID: 39410922 PMCID: PMC11473030 DOI: 10.12788/fp.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Glomerulopathy involves damage to the glomerular filtration barrier for several reasons, resulting in idiopathic nephrotic syndrome (NS). Treatment options are limited and often include steroids with varying levels of response. Case Presentation A 7-year-old male with a history of NS at age 2 years that developed following a respiratory tract infection was found to have a heterozygous variant of uncertain significance in COL4A4 and TRPC6 genes. Biopsy findings included podocytopathy and changes in the basement membrane. Upon initial response to steroids, the patient was treated with a brief course of anakinra followed by adalimumab for > 2 years as steroid-sparing biological response modifiers. After a gradual taper, the patient remains in remission and has not received treatment in the last 12 months. Conclusions This case shows the complex nature of biologically predetermined cascading events in the emergence of glomerular disease with environmental triggers and genetic factors. Downregulation of somatic tissue-driven proinflammatory milieu originating from the constituents of the glomerular microenvironment can help in recovery from emerging podocytopathy. Blocking tumor necrosis factor-α early in the disease course, even temporarily, may allow time for the de novo regenerative process to prevail. Additional research is warranted to test this hypothesis and minimize steroid use.
Collapse
Affiliation(s)
- Olcay Y Jones
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Laura C Malone
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | | |
Collapse
|
9
|
Koehler S, Hengel FE, Dumoulin B, Damashek L, Holzman LB, Susztak K, Huber TB. The 14th International Podocyte Conference 2023: from podocyte biology to glomerular medicine. Kidney Int 2024; 105:935-952. [PMID: 38447880 DOI: 10.1016/j.kint.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024]
Abstract
The 14th International Podocyte Conference took place in Philadelphia, Pennsylvania, USA from May 23 to 26, 2023. It commenced with an early-career researchers' meeting on May 23, providing young scientists with a platform to present and discuss their research findings. Throughout the main conference, 29 speakers across 9 sessions shared their insights on podocyte biology, glomerular medicine, novel technologic advancements, and translational approaches. Additionally, the event featured 3 keynote lectures addressing engineered chimeric antigen receptor T cell- and mRNA-based therapies and the use of biobanks for enhanced disease comprehension. Furthermore, 4 brief oral abstract sessions allowed scientists to present their findings to a broad audience. The program also included a panel discussion addressing the challenges of conducting human research within the American Black community. Remarkably, after a 5-year hiatus from in-person conferences, the 14th International Podocyte Conference successfully convened scientists from around the globe, fostering the presentation and discussion of crucial research findings, as summarized in this review. Furthermore, to ensure continuous and sustainable education, research, translation, and trial medicine related to podocyte and glomerular diseases for the benefit of patients, the International Society of Glomerular Disease was officially launched during the conference.
Collapse
Affiliation(s)
- Sybille Koehler
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Felicitas E Hengel
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bernhard Dumoulin
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laurel Damashek
- International Society of Glomerular Disease, Florence, Massachusetts, USA
| | - Lawrence B Holzman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tobias B Huber
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; International Society of Glomerular Disease, Florence, Massachusetts, USA.
| |
Collapse
|
10
|
Trachtman H, Desmond H, Williams AL, Mariani LH, Eddy S, Ju W, Barisoni L, Ascani HK, Uhlmann WR, Spino C, Holzman LB, Sedor JR, Gadegbeku C, Subramanian L, Lienczewski CC, Manieri T, Roberts SJ, Gipson DS, Kretzler M. Rationale and design of the Nephrotic Syndrome Study Network (NEPTUNE) Match in glomerular diseases: designing the right trial for the right patient, today. Kidney Int 2024; 105:218-230. [PMID: 38245210 PMCID: PMC11090626 DOI: 10.1016/j.kint.2023.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024]
Abstract
Glomerular diseases are classified using a descriptive taxonomy that is not reflective of the heterogeneous underlying molecular drivers. This limits not only diagnostic and therapeutic patient management, but also impacts clinical trials evaluating targeted interventions. The Nephrotic Syndrome Study Network (NEPTUNE) is poised to address these challenges. The study has enrolled >850 pediatric and adult patients with proteinuric glomerular diseases who have contributed to deep clinical, histologic, genetic, and molecular profiles linked to long-term outcomes. The NEPTUNE Knowledge Network, comprising combined, multiscalar data sets, captures each participant's molecular disease processes at the time of kidney biopsy. In this editorial, we describe the design and implementation of NEPTUNE Match, which bridges a basic science discovery pipeline with targeted clinical trials. Noninvasive biomarkers have been developed for real-time pathway analyses. A Molecular Nephrology Board reviews the pathway maps together with clinical, laboratory, and histopathologic data assembled for each patient to compile a Match report that estimates the fit between the specific molecular disease pathway(s) identified in an individual patient and proposed clinical trials. The NEPTUNE Match report is communicated using established protocols to the patient and the attending nephrologist for use in their selection of available clinical trials. NEPTUNE Match represents the first application of precision medicine in nephrology with the aim of developing targeted therapies and providing the right medication for each patient with primary glomerular disease.
Collapse
Affiliation(s)
- Howard Trachtman
- Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Hailey Desmond
- Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Amanda L Williams
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura H Mariani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura Barisoni
- Department of Pathology and Medicine, Duke University, Durham, North Carolina, USA
| | - Heather K Ascani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Wendy R Uhlmann
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Cathie Spino
- Statistical Analysis, Biomedical and Educational Research Unit, University of Michigan, Ann Arbor, Michigan, USA
| | - Lawrence B Holzman
- Renal-Electrolyte and Hypertension Division, Department of Internal Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - John R Sedor
- Department of Kidney Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Crystal Gadegbeku
- Department of Kidney Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lalita Subramanian
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Chrysta C Lienczewski
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Tina Manieri
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott J Roberts
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Debbie S Gipson
- Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
11
|
Nørregaard R, Mutsaers HAM, Frøkiær J, Kwon TH. Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. Physiol Rev 2023; 103:2827-2872. [PMID: 37440209 PMCID: PMC10642920 DOI: 10.1152/physrev.00027.2022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
The kidneys play a key role in maintaining total body homeostasis. The complexity of this task is reflected in the unique architecture of the organ. Ureteral obstruction greatly affects renal physiology by altering hemodynamics, changing glomerular filtration and renal metabolism, and inducing architectural malformations of the kidney parenchyma, most importantly renal fibrosis. Persisting pathological changes lead to chronic kidney disease, which currently affects ∼10% of the global population and is one of the major causes of death worldwide. Studies on the consequences of ureteral obstruction date back to the 1800s. Even today, experimental unilateral ureteral obstruction (UUO) remains the standard model for tubulointerstitial fibrosis. However, the model has certain limitations when it comes to studying tubular injury and repair, as well as a limited potential for human translation. Nevertheless, ureteral obstruction has provided the scientific community with a wealth of knowledge on renal (patho)physiology. With the introduction of advanced omics techniques, the classical UUO model has remained relevant to this day and has been instrumental in understanding renal fibrosis at the molecular, genomic, and cellular levels. This review details key concepts and recent advances in the understanding of obstructive nephropathy, highlighting the pathophysiological hallmarks responsible for the functional and architectural changes induced by ureteral obstruction, with a special emphasis on renal fibrosis.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
12
|
Salfi G, Casiraghi F, Remuzzi G. Current understanding of the molecular mechanisms of circulating permeability factor in focal segmental glomerulosclerosis. Front Immunol 2023; 14:1247606. [PMID: 37795085 PMCID: PMC10546017 DOI: 10.3389/fimmu.2023.1247606] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
The pathogenetic mechanisms underlying the onset and the post-transplant recurrence of primary focal segmental glomerulosclerosis (FSGS) are complex and remain yet to be fully elucidated. However, a growing body of evidence emphasizes the pivotal role of the immune system in both initiating and perpetuating the disease. Extensive investigations, encompassing both experimental models and patient studies, have implicated T cells, B cells, and complement as crucial actors in the pathogenesis of primary FSGS, with various molecules being proposed as potential "circulating factors" contributing to the disease and its recurrence post kidney-transplantation. In this review, we critically assessed the existing literature to identify essential pathways for a comprehensive characterization of the pathogenesis of FSGS. Recent discoveries have shed further light on the intricate interplay between these mechanisms. We present an overview of the current understanding of the engagement of distinct molecules and immune cells in FSGS pathogenesis while highlighting critical knowledge gaps that require attention. A thorough characterization of these intricate immune mechanisms holds the potential to identify noninvasive biomarkers that can accurately identify patients at high risk of post-transplant recurrence. Such knowledge can pave the way for the development of targeted and personalized therapeutic approaches in the management of FSGS.
Collapse
Affiliation(s)
| | - Federica Casiraghi
- Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy
| | | |
Collapse
|
13
|
Shankland SJ, Jefferson JA, Wessely O. Repurposing drugs for diseases associated with podocyte dysfunction. Kidney Int 2023; 104:455-462. [PMID: 37290603 PMCID: PMC11088848 DOI: 10.1016/j.kint.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/02/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023]
Abstract
The majority of podocyte disorders are progressive in nature leading to chronic kidney disease and often kidney failure. The scope of current therapies is typically nonspecific immunosuppressant medications, which are accompanied by unwanted and serious side effects. However, many exciting clinical trials are underway to reduce the burden of podocyte diseases in our patients. Major advances and discoveries have recently been made experimentally in our understanding of the molecular and cellular mechanisms underlying podocyte injury in disease. This begs the question of how best to take advantage of these impressive strides. One approach to consider is the repurposing of therapeutics that have already been approved by the Food and Drug Administration, European Medicines Agency, and other regulatory agencies for indications beyond the kidney. The advantages of therapy repurposing include known safety profiles, drug development that has already been completed, and overall reduced costs for studying alternative indications for selected therapies. The purpose of this mini review is to examine the experimental literature of podocyte damage and determine if there are mechanistic targets in which prior approved therapies can be considered for repurposing to podocyte disorders.
Collapse
Affiliation(s)
- Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| | - J Ashley Jefferson
- Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Oliver Wessely
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
| |
Collapse
|
14
|
Boussaid S, Tbini H, Rekik S, Mami I, Ben Fatma L, Jammali S, Bargaoui H, Sahli H, Rais L, Zouaghi MK, Elleuch M. Focal Segmental Glomerulosclerosis and Hyalinosis in a Patient with Spondyloarthritis: A Rare Renal Involvement Case Report. Mediterr J Rheumatol 2023; 34:257-261. [PMID: 37654640 PMCID: PMC10466365 DOI: 10.31138/mjr.34.2.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 09/02/2023] Open
Abstract
Background During its course, spondyloarthritis (SpA) may be associated with extra-articular manifestations affecting several organs. Renal involvement is one of the most common extra-articular manifestations and is dominated by secondary amyloidosis (AA), immunoglobulin A (IgA) nephropathy, and urolithiasis. Other nephropathies such as Focal segmental glomerulosclerosis and hyalinosis (FSGS) are less common and are limited to few case reports. Case We report the case of a patient followed for axial SpA, who consulted, after being lost to follow-up for 3 years, for elevated blood pressure and edema of both lower limbs associated with an hydrocele and bilateral pleural effusion. Biological examinations showed hypoproteinemia, hypoalbuminemia, and proteinuria. In this context of nephrotic syndrome, the diagnosis of FSGS was confirmed by renal biopsy. Furthermore, the etiological investigation ruled out the causes of secondary FSGS. Conclusion Renal involvement is a sign of severity in SpA. Its detection and management should be part of the overall management of SpA.
Collapse
Affiliation(s)
- Soumaya Boussaid
- Rheumatology Department, Rabta Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Houssem Tbini
- Rheumatology Department, Rabta Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Sonia Rekik
- Rheumatology Department, Rabta Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Ikram Mami
- Nephrology, Dialysis, and Renal Transplantation Department, Rabta Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Lilia Ben Fatma
- Nephrology, Dialysis, and Renal Transplantation Department, Rabta Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Samia Jammali
- Rheumatology Department, Rabta Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hela Bargaoui
- Nephrology, Dialysis, and Renal Transplantation Department, Rabta Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hela Sahli
- Rheumatology Department, Rabta Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Lamia Rais
- Nephrology, Dialysis, and Renal Transplantation Department, Rabta Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Mohamed Karim Zouaghi
- Nephrology, Dialysis, and Renal Transplantation Department, Rabta Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Mohamed Elleuch
- Rheumatology Department, Rabta Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
15
|
Mariani LH, Eddy S, AlAkwaa FM, McCown PJ, Harder JL, Nair V, Eichinger F, Martini S, Ademola AD, Boima V, Reich HN, El Saghir J, Godfrey B, Ju W, Tanner EC, Vega-Warner V, Wys NL, Adler SG, Appel GB, Athavale A, Atkinson MA, Bagnasco SM, Barisoni L, Brown E, Cattran DC, Coppock GM, Dell KM, Derebail VK, Fervenza FC, Fornoni A, Gadegbeku CA, Gibson KL, Greenbaum LA, Hingorani SR, Hladunewich MA, Hodgin JB, Hogan MC, Holzman LB, Jefferson JA, Kaskel FJ, Kopp JB, Lafayette RA, Lemley KV, Lieske JC, Lin JJ, Menon R, Meyers KE, Nachman PH, Nast CC, O'Shaughnessy MM, Otto EA, Reidy KJ, Sambandam KK, Sedor JR, Sethna CB, Singer P, Srivastava T, Tran CL, Tuttle KR, Vento SM, Wang CS, Ojo AO, Adu D, Gipson DS, Trachtman H, Kretzler M. Precision nephrology identified tumor necrosis factor activation variability in minimal change disease and focal segmental glomerulosclerosis. Kidney Int 2023; 103:565-579. [PMID: 36442540 DOI: 10.1016/j.kint.2022.10.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022]
Abstract
The diagnosis of nephrotic syndrome relies on clinical presentation and descriptive patterns of injury on kidney biopsies, but not specific to underlying pathobiology. Consequently, there are variable rates of progression and response to therapy within diagnoses. Here, an unbiased transcriptomic-driven approach was used to identify molecular pathways which are shared by subgroups of patients with either minimal change disease (MCD) or focal segmental glomerulosclerosis (FSGS). Kidney tissue transcriptomic profile-based clustering identified three patient subgroups with shared molecular signatures across independent, North American, European, and African cohorts. One subgroup had significantly greater disease progression (Hazard Ratio 5.2) which persisted after adjusting for diagnosis and clinical measures (Hazard Ratio 3.8). Inclusion in this subgroup was retained even when clustering was limited to those with less than 25% interstitial fibrosis. The molecular profile of this subgroup was largely consistent with tumor necrosis factor (TNF) pathway activation. Two TNF pathway urine markers were identified, tissue inhibitor of metalloproteinases-1 (TIMP-1) and monocyte chemoattractant protein-1 (MCP-1), that could be used to predict an individual's TNF pathway activation score. Kidney organoids and single-nucleus RNA-sequencing of participant kidney biopsies, validated TNF-dependent increases in pathway activation score, transcript and protein levels of TIMP-1 and MCP-1, in resident kidney cells. Thus, molecular profiling identified a subgroup of patients with either MCD or FSGS who shared kidney TNF pathway activation and poor outcomes. A clinical trial testing targeted therapies in patients selected using urinary markers of TNF pathway activation is ongoing.
Collapse
Affiliation(s)
- Laura H Mariani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Fadhl M AlAkwaa
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Phillip J McCown
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer L Harder
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Felix Eichinger
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sebastian Martini
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Adebowale D Ademola
- Department of Paediatrics, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Vincent Boima
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Heather N Reich
- Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Jamal El Saghir
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bradley Godfrey
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily C Tanner
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Virginia Vega-Warner
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Noel L Wys
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharon G Adler
- Division of Nephrology and Hypertension at Harbor-UCLA Medical Center and The Lundquist Institute for Biomedical Innovation, Torrance, California, USA
| | - Gerald B Appel
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Ambarish Athavale
- Division of Nephrology-Hypertension, University of San Diego, California, San Diego, California, USA
| | - Meredith A Atkinson
- Division of Pediatric Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Serena M Bagnasco
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laura Barisoni
- Department of Pathology and Medicine, Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Elizabeth Brown
- Division of Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel C Cattran
- Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Gaia M Coppock
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine M Dell
- Center for Pediatric Nephrology, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vimal K Derebail
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Fernando C Fervenza
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Crystal A Gadegbeku
- Department of Kidney Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Keisha L Gibson
- Pediatric Nephrology Division, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laurence A Greenbaum
- Division of Nephrology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sangeeta R Hingorani
- Division of Nephrology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Michelle A Hladunewich
- Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Marie C Hogan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lawrence B Holzman
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J Ashley Jefferson
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Frederick J Kaskel
- Division of Pediatric Nephrology, Montefiore Medical Center, Bronx, New York, USA
| | - Jeffrey B Kopp
- National Institute of Diabetes and Digestive Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard A Lafayette
- Department of Medicine, Division of Nephrology, Stanford University, Stanford, California, USA
| | - Kevin V Lemley
- Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jen-Jar Lin
- Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Rajarasee Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin E Meyers
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Patrick H Nachman
- Division of Nephrology and Hypertension, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cynthia C Nast
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Edgar A Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kimberly J Reidy
- Division of Pediatric Nephrology, Montefiore Medical Center, Bronx, New York, USA
| | - Kamalanathan K Sambandam
- Division of Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John R Sedor
- Lerner Research Institutes, Cleveland Clinic, Cleveland, Ohio, USA; Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Physiology, Case Western Reserve University, Cleveland, Ohio, USA; Department of Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christine B Sethna
- Division of Pediatric Nephrology, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Pamela Singer
- Division of Pediatric Nephrology, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Cheryl L Tran
- Pediatric Nephrology, Mayo Clinic, Rochester, Minnesota, USA
| | - Katherine R Tuttle
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA; Providence Medical Research Center, Providence Health Care, University of Washington, Spokane, Washington, USA
| | - Suzanne M Vento
- Division of Nephrology, Department of Pediatrics, New York University School of Medicine, New York, New York, USA
| | - Chia-Shi Wang
- Division of Nephrology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Akinlolu O Ojo
- Department of Population Health, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Dwomoa Adu
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Debbie S Gipson
- Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Howard Trachtman
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
16
|
Cirillo L, Lugli G, Raglianti V, Ravaglia F, Buti E, Landini S, Becherucci F. Defining diagnostic trajectories in patients with podocytopathies. Clin Kidney J 2022; 15:2006-2019. [PMID: 36325008 PMCID: PMC9613436 DOI: 10.1093/ckj/sfac123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Indexed: 11/29/2022] Open
Abstract
Podocytopathies are glomerular disorders in which podocyte injury drives proteinuria and progressive kidney disease. They encompass a broad spectrum of aetiologies, resulting in pathological pictures of minimal-changes, focal segmental glomerulosclerosis, diffuse mesangial sclerosis or collapsing glomerulopathy. Despite improvement in classifying podocytopathies as a distinct group of disorders, the histological definition fails to capture the relevant biological heterogeneity underlying each case, manifesting as extensive variability in disease progression and response to therapies. Increasing evidence suggests that podocytopathies can result from a single causative factor or a combination of multiple genetic and/or environmental risk factors with different relative contributions, identifying complex physiopathological mechanisms. Consequently, the diagnosis can still be challenging. In recent years, significant advances in genetic, microscopy and biological techniques revolutionized our understanding of the molecular mechanisms underlying podocytopathies, pushing nephrologists to integrate innovative information with more conventional data obtained from kidney biopsy in the diagnostic workflow. In this review, we will summarize current approaches in the diagnosis of podocytopathies, focusing on strategies aimed at elucidating the aetiology underlying the histological picture. We will provide several examples of an integrative view of traditional concepts and new data in patients with suspected podocytopathies, along with a perspective on how a reclassification could help to improve not only diagnostic pathways and therapeutic strategies, but also the management of disease recurrence after kidney transplantation. In the future, the advantages of precision medicine will probably allow diagnostic trajectories to be increasingly focused, maximizing therapeutic results and long-term prognosis.
Collapse
Affiliation(s)
- Luigi Cirillo
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences ‘Mario Serio’, University of Florence, Florence, Italy
| | - Gianmarco Lugli
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
- Department of Biomedical, Experimental and Clinical Sciences ‘Mario Serio’, University of Florence, Florence, Italy
| | | | | | - Elisa Buti
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
| | - Samuela Landini
- Medical Genetics Unit, Meyer Children's Hospital, Florence, Italy
| | | |
Collapse
|
17
|
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther 2022; 7:182. [PMID: 35680856 PMCID: PMC9184651 DOI: 10.1038/s41392-022-01036-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a chronic renal dysfunction syndrome that is characterized by nephron loss, inflammation, myofibroblasts activation, and extracellular matrix (ECM) deposition. Lipotoxicity and oxidative stress are the driving force for the loss of nephron including tubules, glomerulus, and endothelium. NLRP3 inflammasome signaling, MAPK signaling, PI3K/Akt signaling, and RAAS signaling involves in lipotoxicity. The upregulated Nox expression and the decreased Nrf2 expression result in oxidative stress directly. The injured renal resident cells release proinflammatory cytokines and chemokines to recruit immune cells such as macrophages from bone marrow. NF-κB signaling, NLRP3 inflammasome signaling, JAK-STAT signaling, Toll-like receptor signaling, and cGAS-STING signaling are major signaling pathways that mediate inflammation in inflammatory cells including immune cells and injured renal resident cells. The inflammatory cells produce and secret a great number of profibrotic cytokines such as TGF-β1, Wnt ligands, and angiotensin II. TGF-β signaling, Wnt signaling, RAAS signaling, and Notch signaling evoke the activation of myofibroblasts and promote the generation of ECM. The potential therapies targeted to these signaling pathways are also introduced here. In this review, we update the key signaling pathways of lipotoxicity, oxidative stress, inflammation, and myofibroblasts activation in kidneys with chronic injury, and the targeted drugs based on the latest studies. Unifying these pathways and the targeted therapies will be instrumental to advance further basic and clinical investigation in CKD.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ben Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
18
|
Musiała A, Donizy P, Augustyniak-Bartosik H, Jakuszko K, Banasik M, Kościelska-Kasprzak K, Krajewska M, Kamińska D. Biomarkers in Primary Focal Segmental Glomerulosclerosis in Optimal Diagnostic-Therapeutic Strategy. J Clin Med 2022; 11:jcm11123292. [PMID: 35743361 PMCID: PMC9225193 DOI: 10.3390/jcm11123292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) involves podocyte injury. In patients with nephrotic syndrome, progression to end-stage renal disease often occurs over the course of 5 to 10 years. The diagnosis is based on a renal biopsy. It is presumed that primary FSGS is caused by an unknown plasma factor that might be responsible for the recurrence of FSGS after kidney transplantation. The nature of circulating permeability factors is not explained and particular biological molecules responsible for inducing FSGS are still unknown. Several substances have been proposed as potential circulating factors such as soluble urokinase-type plasminogen activator receptor (suPAR) and cardiolipin-like-cytokine 1 (CLC-1). Many studies have also attempted to establish which molecules are related to podocyte injury in the pathogenesis of FSGS such as plasminogen activator inhibitor type-1 (PAI-1), angiotensin II type 1 receptors (AT1R), dystroglycan(DG), microRNAs, metalloproteinases (MMPs), forkheadbox P3 (FOXP3), and poly-ADP-ribose polymerase-1 (PARP1). Some biomarkers have also been studied in the context of kidney tissue damage progression: transforming growth factor-beta (TGF-β), human neutrophil gelatinase-associated lipocalin (NGAL), malondialdehyde (MDA), and others. This paper describes molecules that could potentially be considered as circulating factors causing primary FSGS.
Collapse
Affiliation(s)
- Aleksandra Musiała
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
- Correspondence: ; Tel.: +48-6-0172-8231
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Division of Clinical Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Hanna Augustyniak-Bartosik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Katarzyna Jakuszko
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Katarzyna Kościelska-Kasprzak
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| | - Dorota Kamińska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland; (H.A.-B.); (K.J.); (M.B.); (K.K.-K.); (M.K.); (D.K.)
| |
Collapse
|
19
|
Efficacy and Safety of ACE Inhibitor and Angiotensin Receptor Blocker Therapies in Primary Focal Segmental Glomerulosclerosis Treatment: A Systematic Review and Meta-analysis. Kidney Med 2022; 4:100457. [PMID: 35518835 PMCID: PMC9065901 DOI: 10.1016/j.xkme.2022.100457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rationale and Objective Angiotensin-converting enzyme inhibitor or angiotensin receptor blocker therapy (renin-angiotensin-aldosterone system [RAAS] inhibitor) to control proteinuria in primary and genetic focal segmental glomerulosclerosis (FSGS) follows guidelines based on other proteinuria-related kidney diseases. There is no consensus on the efficacy and safety of RAAS inhibitor therapies in primary and genetic FSGS. This systematic review assessed the effects of RAAS inhibitor therapy on kidney outcomes in these patients. Study Design Systematic review of randomized controlled trials, interventional nonrandomized studies, observational studies, and retrospective studies. Setting & Study Populations Patients with primary and genetic FSGS. Selection Criteria for Studies PubMed, Cochrane Library, and Embase. Data Extraction 2 investigators independently screened studies and extracted data. Analytical Approach Results were summarized as the ratio of means (ROM) between baseline and follow-up measurements or as the hazard ratio using random-effects models. Results 30 publications were selected; 5 were controlled trials (4 randomized controlled trials). 8 assessed RAAS inhibitor monotherapy, while the rest studied RAAS inhibitors in combination with other drugs, mainly immunosuppressants. On average, a 32% proteinuria reduction (ROM, 0.68; 95% CI, 0.47-0.98) and no change in creatinine clearance (ROM, 0.95; 95% CI, 0.77-1.16) from baseline to the last reported follow-up was observed in patients treated with RAAS inhibitor monotherapy. When a RAAS inhibitor was combined with other drugs, a 72% proteinuria reduction was observed from baseline to the last reported follow-up (ROM, 0.24; 95% CI, 0.08-0.75). The published data did not allow for the assessment of the effects of RAAS inhibitor monotherapy on estimated glomerular filtration rate and end-stage kidney disease risks. Limitations Large study heterogeneity in design, patient populations, and treatment regimens. No access to individual patient-level data. Conclusions This review supports the tendency to observe a proteinuria reduction with RAAS inhibitors in patients with primary FSGS. RAAS inhibitor monotherapy was associated with maintained kidney function, as shown by no change in creatinine clearance. Strong evidence to quantify the effects of RAAS inhibitor monotherapy on end-stage kidney disease and glomerular filtration rate was lacking. Larger, well-designed clinical trials are needed to better understand the effects of RAAS inhibitors on primary FSGS.
Collapse
|
20
|
Abstract
BACKGROUND Focal segmental glomerulosclerosis (FSGS) can be separated into primary, genetic or secondary causes. Primary disease results in nephrotic syndrome while genetic and secondary forms may be associated with asymptomatic proteinuria or with nephrotic syndrome. Overall only about 20% of patients with FSGS experience a partial or complete remission of nephrotic syndrome with treatment. FSGS progresses to kidney failure in about half of the cases. This is an update of a review first published in 2008. OBJECTIVES To assess the benefits and harms of immunosuppressive and non-immunosuppressive treatment regimens in adults with FSGS. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies to 21 June 2021 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs of any intervention for FSGS in adults were included. Studies comparing different types, routes, frequencies, and duration of immunosuppressive agents and non-immunosuppressive agents were assessed. DATA COLLECTION AND ANALYSIS At least two authors independently assessed study quality and extracted data. Statistical analyses were performed using the random-effects model and results were expressed as a risk ratio (RR) for dichotomous outcomes, or mean difference (MD) for continuous data with 95% confidence intervals (CI). Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS Fifteen studies (560 participants) were included. No studies specifically evaluating corticosteroids compared with placebo or supportive therapy were identified. Studies evaluated participants with steroid-resistant FSGS. Five studies (240 participants) compared cyclosporin with or without prednisone with different comparators (no specific treatment, prednisone, methylprednisolone, mycophenolate mofetil (MMF), dexamethasone). Three small studies compared monoclonal antibodies (adalimumab, fresolimumab) with other agents or placebo. Six single small studies compared rituximab with tacrolimus, cyclosporin plus valsartan with cyclosporin alone, MMF with prednisone, chlorambucil plus methylprednisolone and prednisone with no specific treatment, different regimens of dexamethasone and CCX140-B (an antagonist of the chemokine receptor CCR2) with placebo. The final study (109 participants) compared sparsentan, a dual inhibitor of endothelin Type A receptor and of the angiotensin II Type 1 receptor, with irbesartan. In the risk of bias assessment, seven and five studies were at low risk of bias for sequence generation and allocation concealment, respectively. Four studies were at low risk of performance bias and 14 studies were at low risk of detection bias. Thirteen, six and five studies were at low risk of attrition bias, reporting bias and other bias, respectively. Of five studies evaluating cyclosporin, four could be included in our meta-analyses (231 participants). Cyclosporin with or without prednisone compared with different comparators may increase the likelihood of complete remission (RR 2.31, 95% CI 1.13 to 4.73; I² = 1%; low certainty evidence) and of complete or partial remission (RR 1.64, 95% CI 1.10 to 2.44; I² = 19%) but not of partial remission (RR 1.36, 95% CI 0.78 to 2.39, I² = 22%). In Individual studies, cyclosporin with prednisone versus prednisone may increase the likelihood of partial (49 participants: RR 7.96, 95% CI 1.09 to 58.15) or complete or partial remission (49 participants: RR 8.85, 95% CI 1.22 to 63.92) but not of complete remission. The remaining individual comparisons may make little or no difference to the likelihood of complete remission, partial remission or complete or partial remission compared with no treatment, methylprednisolone, MMF, or dexamethasone. Individual study data and combined data showed that cyclosporin may make little or no difference to the outcomes of chronic kidney disease or kidney failure. It is uncertain whether cyclosporin compared with these comparators in individual or combined analyses makes any difference to the outcomes of hypertension or infection. MMF compared with prednisone may make little or no difference to the likelihood of complete remission (33 participants: RR 1.05, 95% CI 0.58 to 1.88; low certainty evidence), partial remission, complete or partial remission, glomerular filtration rate, or infection. It is uncertain whether other interventions make any difference to outcomes as the certainty of the evidence is very low. It is uncertain whether sparsentan reduces proteinuria to a greater extent than irbesartan. AUTHORS' CONCLUSIONS No RCTs, which evaluated corticosteroids, were identified although the KDIGO guidelines recommend corticosteroids as the first treatment for adults with FSGS. The studies identified included participants with steroid-resistant FSGS. Treatment with cyclosporin for at least six months was more likely to achieve complete remission of proteinuria compared with other treatments but there was considerable imprecision due to few studies and small participant numbers. In future studies of existing or new interventions, the investigators must clearly define the populations included in the study to provide appropriate recommendations for patients with primary, genetic or secondary FSGS.
Collapse
Affiliation(s)
- Elisabeth M Hodson
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Aditi Sinha
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Tess E Cooper
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| |
Collapse
|
21
|
Hackl A, Zed SEDA, Diefenhardt P, Binz-Lotter J, Ehren R, Weber LT. The role of the immune system in idiopathic nephrotic syndrome. Mol Cell Pediatr 2021; 8:18. [PMID: 34792685 PMCID: PMC8600105 DOI: 10.1186/s40348-021-00128-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic nephrotic syndrome (INS) in children is characterized by massive proteinuria and hypoalbuminemia and usually responds well to steroids. However, relapses are frequent, which can require multi-drug therapy with deleterious long-term side effects. In the last decades, different hypotheses on molecular mechanisms underlying INS have been proposed and several lines of evidences strongly indicate a crucial role of the immune system in the pathogenesis of non-genetic INS. INS is traditionally considered a T-cell-mediated disorder triggered by a circulating factor, which causes the impairment of the glomerular filtration barrier and subsequent proteinuria. Additionally, the imbalance between Th17/Tregs as well as Th2/Th1 has been implicated in the pathomechanism of INS. Interestingly, B-cells have gained attention, since rituximab, an anti-CD20 antibody demonstrated a good therapeutic response in the treatment of INS. Finally, recent findings indicate that even podocytes can act as antigen-presenting cells under inflammatory stimuli and play a direct role in activating cellular pathways that cause proteinuria. Even though our knowledge on the underlying mechanisms of INS is still incomplete, it became clear that instead of a traditionally implicated cell subset or one particular molecule as a causative factor for INS, a multi-step control system including soluble factors, immune cells, and podocytes is necessary to prevent the occurrence of INS. This present review aims to provide an overview of the current knowledge on this topic, since advances in our understanding of the immunopathogenesis of INS may help drive new tailored therapeutic approaches forward.
Collapse
Affiliation(s)
- Agnes Hackl
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany. .,Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Seif El Din Abo Zed
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Paul Diefenhardt
- Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Julia Binz-Lotter
- Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Rasmus Ehren
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lutz Thorsten Weber
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
22
|
De Vriese AS, Wetzels JF, Glassock RJ, Sethi S, Fervenza FC. Therapeutic trials in adult FSGS: lessons learned and the road forward. Nat Rev Nephrol 2021; 17:619-630. [PMID: 34017116 PMCID: PMC8136112 DOI: 10.1038/s41581-021-00427-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is not a specific disease entity but a lesion that primarily targets the podocyte. In a broad sense, the causes of the lesion can be divided into those triggered by a presumed circulating permeability factor, those that occur secondary to a process that might originate outside the kidneys, those caused by a genetic mutation in a podocyte or glomerular basement membrane protein, and those that arise through an as yet unidentifiable process, seemingly unrelated to a circulating permeability factor. A careful attempt to correctly stratify patients with FSGS based on their clinical presentation and pathological findings on kidney biopsy is essential for sound treatment decisions in individual patients. However, it is also essential for the rational design of therapeutic trials in FSGS. Greater recognition of the pathophysiology underlying podocyte stress and damage in FSGS will increase the likelihood that the cause of an FSGS lesion is properly identified and enable stratification of patients in future interventional trials. Such efforts will facilitate the identification of effective therapeutic agents.
Collapse
Affiliation(s)
- An S De Vriese
- Division of Nephrology and Infectious Diseases, AZ Sint-Jan Brugge, Brugge, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Jack F Wetzels
- Department of Nephrology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Richard J Glassock
- Department of Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
23
|
Sun K, Xie Q, Hao CM. Mechanisms of Scarring in Focal Segmental Glomerulosclerosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:350-358. [PMID: 34604342 PMCID: PMC8443927 DOI: 10.1159/000517108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/27/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Focal segmental glomerulosclerosis (FSGS) is a histologic pattern characterized by focal glomerular scarring, which often progresses to systemic and diffuse glomerulosclerosis. Previous studies have emphasized that the initiation of classic FSGS occurs in podocytes. The dysfunction and loss of podocytes have been associated with the development of proteinuria and the progression of various diseases. In addition, primary, secondary, and genetic FSGS are caused by different mechanisms of podocyte injury. SUMMARY The potential sources and mechanism of podocyte supplementation are the focus of our current research. Increasing attention has been paid to the role played by parietal epithelial cells (PECs) during the progression of FSGS. PECs are not only the primary influencing factors in glomerulosclerosis lesions but also have repair abilities, which remain a focus of debate. Notably, other resident glomerular cells also play significant roles in the progression of this disease. KEY MESSAGE In this review, we focus on the mechanism of scarring in FSGS and discuss current and potential therapeutic strategies.
Collapse
Affiliation(s)
- Ke Sun
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qionghong Xie
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
- Nephrology Division, Vanderbilt University Medical Center School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Guo HL, Li L, Xu ZY, Jing X, Xia Y, Qiu JC, Ji X, Chen F, Xu J, Zhao F. Steroid-resistant Nephrotic Syndrome in Children: A Mini-review on Genetic Mechanisms, Predictive Biomarkers and Pharmacotherapy Strategies. Curr Pharm Des 2021; 27:319-329. [PMID: 33138756 DOI: 10.2174/1381612826666201102104412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022]
Abstract
Steroid-resistant nephrotic syndrome (SRNS) constitutes the second most frequent cause of chronic kidney disease in childhood. The etiology of SRNS remains largely unknown and no standardized treatment exists. Recent advances in genomics have helped to build understanding of the molecular mechanisms and pathogenesis of the disease. The genetic polymorphisms in genes encoding proteins which are involved in the pharmacokinetics and pharmacodynamics of glucocorticoids (GCs) partially account for the different responses between patients with nephrotic syndrome. More importantly, single-gene causation in podocytes-associated proteins was found in approximately 30% of SRNS patients. Some potential biomarkers have been tested for their abilities to discriminate against pediatric patients who are sensitive to GCs treatment and patients who are resistant to the same therapy. This article reviews the recent findings on genetic mechanisms, predictive biomarkers and current therapies for SRNS with the goal to improve the management of children with this syndrome.
Collapse
Affiliation(s)
- Hong-Li Guo
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ling Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ze-Yue Xu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xia Jing
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ying Xia
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jin-Chun Qiu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xing Ji
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jing Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Fei Zhao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Immune-mediated entities of (primary) focal segmental glomerulosclerosis. Cell Tissue Res 2021; 385:423-434. [PMID: 33907872 PMCID: PMC8523460 DOI: 10.1007/s00441-021-03454-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/19/2021] [Indexed: 12/21/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) represents a glomerular scar formation downstream of various different mechanisms leading to podocytopathy and podocyte loss. Recently, significant advances were made in understanding genetic factors, podocyte intrinsic mechanisms, and adaptive mechanisms causing FSGS. However, while most cases of nephrotic FSGS are being treated with immunosuppressants, the underlying immune dysregulation, involved immune cells, and soluble factors are only incompletely understood. Thus, we here summarize the current knowledge of proposed immune effector cells, secreted soluble factors, and podocyte response in immune-mediated (primary) FSGS.
Collapse
|
26
|
CD80 Insights as Therapeutic Target in the Current and Future Treatment Options of Frequent-Relapse Minimal Change Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6671552. [PMID: 33506028 PMCID: PMC7806396 DOI: 10.1155/2021/6671552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022]
Abstract
Minimal change disease (MCD) is the most common cause of idiopathic nephrotic syndrome in children, and it is well known for its multifactorial causes which are the manifestation of the disease. Proteinuria is an early consequence of podocyte injury and a typical sign of kidney disease. Steroid-sensitive patients react well with glucocorticoids, but there is a high chance of multiple relapses. CD80, also known as B7-1, is generally expressed on antigen-presenting cells (APCs) in steroid-sensitive MCD patients. Various glomerular disease models associated with proteinuria demonstrated that the detection of CD80 with the increase of urinary CD80 was strongly associated closely with frequent-relapse MCD patients. The role of CD80 in MCD became controversial because one contradicts finding. This review covers the treatment alternatives for MCD with the insight of CD80 as a potential therapeutic target. The promising effectiveness of CD20 (rituximab) antibody and CD80 inhibitor (abatacept) encourages further investigation of CD80 as a therapeutic target in frequent-relapse MCD patients. Therapeutic-based antibody towards CD80 (galiximab) had never been investigated in MCD or any kidney-related disease; hence, the role of CD80 is still undetermined. A new therapeutic approach towards MCD is essential to provide broader effective treatment options besides the general immunosuppressive agents with gruesome adverse effects.
Collapse
|
27
|
Lee JM, Kronbichler A, Shin JI, Oh J. Current understandings in treating children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 2021; 36:747-761. [PMID: 32086590 PMCID: PMC7910243 DOI: 10.1007/s00467-020-04476-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 12/22/2019] [Accepted: 01/07/2020] [Indexed: 12/27/2022]
Abstract
Steroid-resistant nephrotic syndrome (SRNS) remains a challenge for paediatric nephrologists. SRNS is viewed as a heterogeneous disease entity including immune-based and monogenic aetiologies. Because SRNS is rare, treatment strategies are individualized and vary among centres of expertise. Calcineurin inhibitors (CNI) have been effectively used to induce remission in patients with immune-based SRNS; however, there is still no consensus on treating children who become either CNI-dependent or CNI-resistant. Rituximab is a steroid-sparing agent for patients with steroid-sensitive nephrotic syndrome, but its efficacy in SRNS is controversial. Recently, several novel monoclonal antibodies are emerging as treatment option, but their efficacy remains to be seen. Non-immune therapies, such as angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers, have been proven efficacious in children with SRNS and are recommended as adjuvant agents. This review summarizes and discusses our current understandings in treating children with idiopathic SRNS.
Collapse
Affiliation(s)
- Jiwon M. Lee
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, South Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, C.P.O. Box 8044, Seoul, 120-752 South Korea ,Division of Pediatric Nephrology, Severance Children’s Hospital, Seoul, South Korea ,Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jun Oh
- Department of Pediatrics Nephrology, University Hamburg-Eppendorf, Martinistrasse, 52 20246, Hamburg, Germany.
| |
Collapse
|
28
|
Podestà MA, Ponticelli C. Autoimmunity in Focal Segmental Glomerulosclerosis: A Long-Standing Yet Elusive Association. Front Med (Lausanne) 2020; 7:604961. [PMID: 33330569 PMCID: PMC7715033 DOI: 10.3389/fmed.2020.604961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/26/2020] [Indexed: 01/17/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histological term that describes a pathologic renal entity affecting both adults and children, with a wide array of possible underlying etiologies. Podocyte damage with scarring, the hallmark of this condition, leads to altered permeability of the glomerular barrier, which may result in massive proteinuria and relentless renal function deterioration. A definite cause of focal segmental glomerulosclerosis can be confirmed in a minority of cases, while most forms have been traditionally labeled as primary or idiopathic. Despite this definition, increasing evidence indicates that primary forms are a heterogenous group rather than a single disease entity: several circulating factors that may affect glomerular permeability have been proposed as potential culprits, and both humoral and cellular immunity have been implicated in the pathogenesis of the disease. Consistently, immunosuppressive drugs are considered as the cornerstone of treatment for primary focal segmental glomerulosclerosis, but response to these agents and long-term outcomes are highly variable. In this review we provide a summary of historical and recent advances on the pathogenesis of primary focal segmental glomerulosclerosis, focusing on implications for its differential diagnosis and treatment.
Collapse
|
29
|
Abstract
Podocytopathies are kidney diseases in which direct or indirect podocyte injury drives proteinuria or nephrotic syndrome. In children and young adults, genetic variants in >50 podocyte-expressed genes, syndromal non-podocyte-specific genes and phenocopies with other underlying genetic abnormalities cause podocytopathies associated with steroid-resistant nephrotic syndrome or severe proteinuria. A variety of genetic variants likely contribute to disease development. Among genes with non-Mendelian inheritance, variants in APOL1 have the largest effect size. In addition to genetic variants, environmental triggers such as immune-related, infection-related, toxic and haemodynamic factors and obesity are also important causes of podocyte injury and frequently combine to cause various degrees of proteinuria in children and adults. Typical manifestations on kidney biopsy are minimal change lesions and focal segmental glomerulosclerosis lesions. Standard treatment for primary podocytopathies manifesting with focal segmental glomerulosclerosis lesions includes glucocorticoids and other immunosuppressive drugs; individuals not responding with a resolution of proteinuria have a poor renal prognosis. Renin-angiotensin system antagonists help to control proteinuria and slow the progression of fibrosis. Symptomatic management may include the use of diuretics, statins, infection prophylaxis and anticoagulation. This Primer discusses a shift in paradigm from patient stratification based on kidney biopsy findings towards personalized management based on clinical, morphological and genetic data as well as pathophysiological understanding.
Collapse
|
30
|
Waller AP, Agrawal S, Wolfgang KJ, Kino J, Chanley MA, Smoyer WE, Kerlin BA. Nephrotic syndrome-associated hypercoagulopathy is alleviated by both pioglitazone and glucocorticoid which target two different nuclear receptors. Physiol Rep 2020; 8:e14515. [PMID: 32776495 PMCID: PMC7415912 DOI: 10.14814/phy2.14515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Thrombosis is a potentially life-threatening nephrotic syndrome (NS) complication. We have previously demonstrated that hypercoagulopathy is proportional to NS severity in rat models and that pioglitazone (Pio) reduces proteinuria both independently and in combination with methylprednisolone (MP), a glucocorticoid (GC). However, the effect of these treatments on NS-associated hypercoagulopathy remains unknown. We thus sought to determine the ability of Pio and GC to alleviate NS-associated hypercoagulopathy. METHODS Puromycin aminonucleoside-induced rat NS was treated with sham, Low- or High-dose MP, Pio, or combination (Pio + Low-MP) and plasma was collected at day 11. Plasma samples were collected from children with steroid-sensitive NS (SSNS) and steroid-resistant NS (SRNS) upon presentation and after 7 weeks of GC therapy. Plasma endogenous thrombin potential (ETP), antithrombin (AT) activity, and albumin (Alb) were measured using thrombin generation, amidolytic, and colorimetric assays, respectively. RESULTS In a rat model of NS, both High-MP and Pio improved proteinuria and corrected hypoalbuminemia, ETP and AT activity (p < .05). Proteinuria (p = .005) and hypoalbuminemia (p < .001) were correlated with ETP. In childhood NS, while ETP was not different at presentation, GC therapy improved proteinuria, hypoalbuminemia, and ETP in children with SSNS (p < .001) but not SRNS (p = .330). CONCLUSIONS Both Pio and GC diminish proteinuria and significantly alleviate hypercoagulopathy. Both Pio and MP improved hypercoagulopathy in rats, and successful GC therapy (SSNS) also improved hypercoagulopathy in childhood NS. These data suggest that even a partial reduction in proteinuria may reduce NS-associated thrombotic risk.
Collapse
Affiliation(s)
- Amanda P. Waller
- Center for Clinical & Translational ResearchThe Abigail Wexner Research Institute at Nationwide Children'sColumbusOHUSA
| | - Shipra Agrawal
- Center for Clinical & Translational ResearchThe Abigail Wexner Research Institute at Nationwide Children'sColumbusOHUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOHUSA
| | - Katelyn J. Wolfgang
- Center for Clinical & Translational ResearchThe Abigail Wexner Research Institute at Nationwide Children'sColumbusOHUSA
| | - Jiro Kino
- Center for Clinical & Translational ResearchThe Abigail Wexner Research Institute at Nationwide Children'sColumbusOHUSA
| | - Melinda A. Chanley
- Center for Clinical & Translational ResearchThe Abigail Wexner Research Institute at Nationwide Children'sColumbusOHUSA
| | - William E. Smoyer
- Center for Clinical & Translational ResearchThe Abigail Wexner Research Institute at Nationwide Children'sColumbusOHUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOHUSA
| | - Bryce A. Kerlin
- Center for Clinical & Translational ResearchThe Abigail Wexner Research Institute at Nationwide Children'sColumbusOHUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOHUSA
| |
Collapse
|
31
|
Zhao J, Liu Z. Treatment of nephrotic syndrome: going beyond immunosuppressive therapy. Pediatr Nephrol 2020; 35:569-579. [PMID: 30904930 DOI: 10.1007/s00467-019-04225-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/13/2019] [Accepted: 02/25/2019] [Indexed: 01/15/2023]
Abstract
It is indisputable that immunosuppressive therapy and pathological diagnosis of renal biopsy have greatly improved the prognosis of childhood nephrotic syndrome. Unfortunately, there is no "one-size-fits-all" approach for precise patient stratification and treatment when facing the huge challenges posed by steroid-resistant nephrotic syndrome (SRNS). But genomic medicine has brought a glimmer of light, and the cognition of SRNS has entered a new stage. Based on this, identification of single genetic variants of SRNS has recognized the key role of podocyte injury in its pathogenesis. Targeted treatment of podocyte injury is paramount, and immunosuppressant with podocyte-targeted therapy seems to be more suitable as the first choice for SRNS, that is, we need to pay attention to their additional non-immunosuppressive effects. In the same way, other effect factors of nephrotic syndrome and the related causes of immunosuppressive therapy resistance require us to select reasonable and targeted non-immunosuppressive therapies, instead of only blindly using steroids and immunosuppressants, which may be ineffective and bring significant side effects. This article provides a summary of the clinical value of identification of genetic variants in podocytes and non-immunosuppressive therapy for nephrotic syndrome in children.
Collapse
Affiliation(s)
- Jinghong Zhao
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
32
|
Candelier JJ, Lorenzo HK. Idiopathic nephrotic syndrome and serum permeability factors: a molecular jigsaw puzzle. Cell Tissue Res 2019; 379:231-243. [PMID: 31848752 DOI: 10.1007/s00441-019-03147-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Nephrotic syndrome is traditionally defined using the triad of edema, hypoalbuminemia, and proteinuria, but this syndrome is very heterogeneous and difficult to clarify. Its idiopathic form (INS) is probably the most harmful and essentially comprises two entities: minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS). We will consider some hypotheses regarding the mechanisms underlying INS: (i) the presence of several glomerular permeability factors in the sera of patients that alter the morphology and function of podocytes leading to proteinuria, (ii) the putative role of immune cells. Thanks to recent data, our understanding of these disorders is evolving towards a more multifactorial origin. In this context, circulating factors may be associated according to sequential kinetic mechanisms or micro-environmental changes that need to be determined. In addition, the resulting proteinuria may trigger more proteinuria enhancing the glomerular destabilization.
Collapse
Affiliation(s)
- Jean-Jacques Candelier
- INSERM U1197, Hôpital Paul Brousse, 14 Avenue Paul Vaillant Couturier, 94800, Villejuif, France.,Université Paris-Saclay, Campus Universitaire d'Orsay, 91405, Orsay, France
| | - Hans-Kristian Lorenzo
- INSERM U1197, Hôpital Paul Brousse, 14 Avenue Paul Vaillant Couturier, 94800, Villejuif, France. .,Université Paris-Saclay, Campus Universitaire d'Orsay, 91405, Orsay, France. .,Service de Néphrologie, Hôpital Bicêtre, Faculté de Médecine Paris-Saclay, 94270, Le Kremlin-Bicêtre, France.
| |
Collapse
|
33
|
Liu ID, Willis NS, Craig JC, Hodson EM, Cochrane Kidney and Transplant Group. Interventions for idiopathic steroid-resistant nephrotic syndrome in children. Cochrane Database Syst Rev 2019; 2019:CD003594. [PMID: 31749142 PMCID: PMC6868353 DOI: 10.1002/14651858.cd003594.pub6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The majority of children who present with their first episode of nephrotic syndrome achieve remission with corticosteroid therapy. Children who fail to respond to corticosteroids in the first episode of nephrotic syndrome (initial resistance) or develop resistance after one or more responses to corticosteroids (delayed resistance) may be treated with immunosuppressive agents including calcineurin inhibitors (CNI) (cyclosporin or tacrolimus) and with non-immunosuppressive agents such as angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB). However, response to these agents is limited so newer agents are being assessed for efficacy. This is an update of a review first published in 2004 and updated in 2006, 2010 and 2016. OBJECTIVES To evaluate the benefits and harms of different interventions used in children with idiopathic nephrotic syndrome, who do not achieve remission following four weeks or more of daily corticosteroid therapy. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies to 17 September 2019 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs were included if they compared different immunosuppressive agents or non-immunosuppressive agents with placebo, prednisone or other agent given orally or parenterally in children aged three months to 18 years with steroid-resistant nephrotic syndrome (SRNS). Studies, which enrolled children and adults but in which paediatric data could not be separated from adult data, were also included. DATA COLLECTION AND ANALYSIS Two authors independently searched the literature, determined study eligibility, assessed risk of bias and extracted data. For dichotomous outcomes, results were expressed as risk ratios (RR) and 95% confidence intervals (CI). For continuous outcomes, results were expressed as mean difference (MD) and 95% CI. Data were pooled using the random effects model. The certainty of the evidence was assessed using the GRADE approach. MAIN RESULTS Twenty-five studies (1063 participants) were included. Fourteen studies were at low risk of bias for sequence generation and allocation concealment. Five and 19 studies were at low risk of performance and detection bias. Fourteen, 14 and 13 studies were at low risk of attrition bias, reporting bias and other bias respectively. Cyclosporin compared with placebo or no treatment may increase the number of participants who achieve complete remission (4 studies, 74 participants: RR 3.50, 95% CI 1.09 to 11.20) or complete or partial remission (4 studies, 74 children: RR 3.15, 95% CI 1.04 to 9.57) by 6 months (low certainty evidence). It is uncertain whether cyclosporin increases the likelihood of worsening hypertension or reduces the likelihood of end-stage kidney disease (very low certainty evidence). CNI compared with IV cyclophosphamide (CPA) may increase the number of participants with complete or partial remission at 3 to 6 months (2 studies, 156 children: RR 1.98, 95% CI 1.25 to 3.13) (low certainty evidence) and probably reduces the number with treatment failure (non response, serious infection, persistently elevated creatinine (1 study, 124 participants: RR 0.32, 95% CI 0.18 to 0.58) (moderate certainty evidence) with little or no increase in serious infections (1 study, 131 participants: RR 0.49, 95% CI 0.16 to 1.56) (moderate certainty evidence). Tacrolimus compared with cyclosporin may make little or no difference to the number who achieve complete or partial remission (2 studies, 58 participants: RR 1.05, 95% CI 0.87 to 1.25) (low certainty evidence) or in the number with worsening hypertension (2 studies, 58 participants: RR 0.41, 95% CI 0.08 to 2.15) (low certainty evidence). Cyclosporin compared with mycophenolate mofetil (MMF) and dexamethasone probably makes little or no difference to the number who achieve complete or partial remission (1 study, 138 participants: RR 2.14, 95% CI 0.87 to 5.24) (moderate certainty evidence) and makes little or no difference to the number dying (1 study, 138 participants: RR 2.14, 95% CI 0.87 to 5.24) or with 50% reduction in glomerular filtration rate (GFR) (1 study, 138 participants: RR 2.29, 95% CI 0.46 to 11.41) (low certainty evidence). Among children, who have achieved complete remission, tacrolimus compared with MMF may increase the number of children who maintain complete or partial response for 12 months (1 study, 60 children: RR 2.01, 95% CI 1.32 to 3.07) (low certainty evidence). Oral CPA with prednisone compared with prednisone alone may make little or no difference to the number who achieve complete remission (2 studies, 84 children: RR 1.06, 95% CI 0.61 to 1.87) (low certainty evidence). IV CPA compared with oral CPA (2 studies, 61 children: RR 1.58, 95% CI 0.65 to 3.85) and IV compared with oral CPA plus IV dexamethasone (1 study, 49 children: RR 1.13, 95% CI 0.65 to 1.96) may make little or no difference to the number who achieve complete remission (low certainty evidence). It is uncertain whether rituximab and cyclosporin compared with cyclosporin increases the likelihood of remission because the certainty of the evidence is very low. It is uncertain whether adalimumab or galactose compared with conservative therapy increases the likelihood of remission because the certainty of the evidence is very low. Two studies reported that ACEi may reduce proteinuria in children with SRNS. One study reported that the dual angiotensin II and endothelin Type A receptor antagonist, sparsentan, may reduce proteinuria more effectively than the angiotensin receptor blocker, irbesartan. AUTHORS' CONCLUSIONS To date RCTs have demonstrated that CNIs may increase the likelihood of complete or partial remission compared with placebo/no treatment or CPA. For other regimens assessed, it remains uncertain whether the interventions alter outcomes because the certainty of the evidence is low. Further adequately powered, well designed RCTs are needed to evaluate other regimens for children with idiopathic SRNS. Since SRNS represents a spectrum of diseases, future studies should enrol children from better defined groups of patients with SRNS.
Collapse
Affiliation(s)
- Isaac D Liu
- National University Health SystemDepartment of Paediatrics1E Kent Ridge Road, NUHS Tower Block, Level 12SingaporeSingapore119228
| | - Narelle S Willis
- The University of SydneySydney School of Public HealthSydneyNSWAustralia2006
- The Children's Hospital at WestmeadCochrane Kidney and Transplant, Centre for Kidney ResearchLocked Bag 4001WestmeadNSWAustralia2145
| | - Jonathan C Craig
- The Children's Hospital at WestmeadCochrane Kidney and Transplant, Centre for Kidney ResearchLocked Bag 4001WestmeadNSWAustralia2145
- Flinders UniversityCollege of Medicine and Public HealthAdelaideSAAustralia5001
| | - Elisabeth M Hodson
- The University of SydneySydney School of Public HealthSydneyNSWAustralia2006
- The Children's Hospital at WestmeadCochrane Kidney and Transplant, Centre for Kidney ResearchLocked Bag 4001WestmeadNSWAustralia2145
| | | |
Collapse
|
34
|
Zhong J, Whitman JB, Yang HC, Fogo AB. Mechanisms of Scarring in Focal Segmental Glomerulosclerosis. J Histochem Cytochem 2019; 67:623-632. [PMID: 31116068 PMCID: PMC6713971 DOI: 10.1369/0022155419850170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/22/2019] [Indexed: 01/17/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) presents with scar in parts of some glomeruli and often progresses to global and diffuse glomerulosclerosis. Podocyte injury is the initial target in primary FSGS, induced by a circulating factor. Several gene variants, for example, APOL1, are associated with increased susceptibility to FSGS. Primary FSGS may be due to genetic mutation in key podocyte genes. Increased work stress after loss of nephrons, epigenetic mechanisms, and various profibrotic pathways can contribute to progressive sclerosis, regardless of the initial injury. The progression of FSGS lesions also involves crosstalk between podocytes and other kidney cells, such as parietal epithelial cells, glomerular endothelial cells, and even tubular epithelial cells. New insights related to these mechanisms could potentially lead to new therapeutic strategies to prevent progression of FSGS.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jacob B Whitman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hai-Chun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
35
|
Intrinsic tumor necrosis factor-α pathway is activated in a subset of patients with focal segmental glomerulosclerosis. PLoS One 2019; 14:e0216426. [PMID: 31095586 PMCID: PMC6522053 DOI: 10.1371/journal.pone.0216426] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/20/2019] [Indexed: 01/09/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is frequently found in biopsies of patients with steroid resistant nephrotic syndrome (SRNS). The pathogenesis of SRNS/FSGS is often unknown and the disease will recur in up to 50% of patients post-transplant, indicating the presence of circulating podocyte-toxic factor(s). Several studies have reported clinical improvement after anti-TNFα therapy. However, prediction of the clinical outcome in SRNS/FSGS is difficult, and novel predictive biomarkers are needed. An image-based assay, which measures disassembly of focal adhesion complexes in cultured podocytes, was used to ascertain the presence of podocyte toxic activity in SRNS/FSGS sera. Expression of TNFα pathway genes was analysed in the Nephroseq FSGS cohort and in cultured podocytes treated with SRNS/FSGS sera. Podocyte toxic activity was detected in 48/96 SRNS/FSGS patients. It did not correlate with serum TNFα levels, age, sex, ethnicity or glomerular filtration rate. In ~25% of the toxic samples, the toxicity was strongly inhibited by blockade of TNFα signaling. Transcriptional profiling of human FSGS biopsies and podocytes treated with FSGS sera revealed significant increases in expression of TNFα pathway genes. We identified patients with serum podocyte toxic activity who may be at risk for FSGS recurrence, and those patients in whom serum podocyte toxicity may be reversed by TNFα blockade. Activation of TNFα pathway genes occurs in podocytes of FSGS patients suggesting a causative effect of this pathway in response to circulating factor(s). In vitro analyses of patient sera may stratify patients according to prognostic outcomes and potential responses to specific clinical interventions.
Collapse
|
36
|
Siligato R, Cernaro V, Nardi C, De Gregorio F, Gembillo G, Costantino G, Conti G, Buemi M, Santoro D. Emerging therapeutic strategies for minimal change disease and focal and segmental glomerulosclerosis. Expert Opin Investig Drugs 2018; 27:839-879. [PMID: 30360670 DOI: 10.1080/13543784.2018.1540587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Minimal change disease (MCD) and Focal and segmental glomerulosclerosis (FSGS) are two of the major causes of nephrotic syndrome (NS) in children and adults. According to KDIGO (Kidney Disease: Improving Global Outcomes) guidelines, the treatment of adult primary MCD and FSGS should be based on immunosuppressants and antiproteinuric drugs. Recently, Rituximab, a humanized monoclonal antibody (mAb) has emerged as a potential treatment for steroid or calcineurin inhibitor-dependent patients; it has however demonstrated lower efficacy in those with nephrotic syndrome that is resistant to the above indicated drugs. AREAS COVERED Analysis of ongoing and already completed clinical trials, retrieved from clinicaltrials.gov, clinicaltrialsregister.eu and PubMed involving new therapies for nephrotic syndrome secondary to MCD and FSGS. EXPERT OPINION The most promising drugs under investigation for MCD and FSGS are mAbs. We are hopeful that new therapeutic options to treat multi-drug resistant MCD and FSGS will emerge from currently ongoing studies. What appears certain is the difficulty in enrolling patients affected by orphan renal diseases and the selection of valid endpoints in clinical trials, such as kidney failure.
Collapse
Affiliation(s)
- Rossella Siligato
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Valeria Cernaro
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Chiara Nardi
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Francesca De Gregorio
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Guido Gembillo
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Giuseppe Costantino
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Giovanni Conti
- b Unit of Pediatric Nephrology and Rheumatology , University of Messina , Messina , Italy
| | - Michele Buemi
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Domenico Santoro
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| |
Collapse
|
37
|
Tullus K, Webb H, Bagga A. Management of steroid-resistant nephrotic syndrome in children and adolescents. THE LANCET CHILD & ADOLESCENT HEALTH 2018; 2:880-890. [PMID: 30342869 DOI: 10.1016/s2352-4642(18)30283-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023]
Abstract
More than 85% of children and adolescents (majority between 1-12 years old) with idiopathic nephrotic syndrome show complete remission of proteinuria following daily treatment with corticosteroids. Patients who do not show remission after 4 weeks' treatment with daily prednisolone are considered to have steroid-resistant nephrotic syndrome (SRNS). Renal histology in most patients shows presence of focal segmental glomerulosclerosis, minimal change disease, and (rarely) mesangioproliferative glomerulonephritis. A third of patients with SRNS show mutations in one of the key podocyte genes. The remaining cases of SRNS are probably caused by an undefined circulating factor. Treatment with calcineurin inhibitors (ciclosporin and tacrolimus) is the standard of care for patients with non-genetic SRNS, and approximately 70% of patients achieve a complete or partial remission and show satisfactory long-term outcome. Additional treatment with drugs that inhibit the renin-angiotensin axis is recommended for hypertension and for reducing remaining proteinuria. Patients with SRNS who do not respond to treatment with calcineurin inhibitors or other immunosuppressive drugs can show declining kidney function and are at risk for end-stage renal failure. Approximately a third of those who undergo renal transplantation show recurrent focal segmental glomerulosclerosis in the allograft and often respond to combined treatment with plasma exchange, rituximab, and intensified immunosuppression.
Collapse
Affiliation(s)
- Kjell Tullus
- Nephrology Unit, Great Ormond Street Hospital for Children, Great Ormond Street, London, UK.
| | - Hazel Webb
- Nephrology Unit, Great Ormond Street Hospital for Children, Great Ormond Street, London, UK
| | - Arvind Bagga
- Division of Nephrology, Indian Council of Medical Research Advanced Center for Research in Nephrology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
38
|
Liu Y, Shi Y, Ren R, Xie J, Wang W, Chen N. Advanced therapeutics in focal and segmental glomerulosclerosis. Nephrology (Carlton) 2018; 23 Suppl 4:57-61. [PMID: 30298667 DOI: 10.1111/nep.13463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Yunzi Liu
- Department of Nephrology; Ruijin Hospital, Institute of Nephrology, Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yifan Shi
- Department of Nephrology; Ruijin Hospital, Institute of Nephrology, Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Rong Ren
- Department of Nephrology; Ruijin Hospital, Institute of Nephrology, Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Jingyuan Xie
- Department of Nephrology; Ruijin Hospital, Institute of Nephrology, Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Weiming Wang
- Department of Nephrology; Ruijin Hospital, Institute of Nephrology, Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Nan Chen
- Department of Nephrology; Ruijin Hospital, Institute of Nephrology, Shanghai Jiao Tong University School of Medicine; Shanghai China
| |
Collapse
|
39
|
Difficult-to-treat idiopathic nephrotic syndrome: established drugs, open questions and future options. Pediatr Nephrol 2018; 33:1641-1649. [PMID: 28879428 DOI: 10.1007/s00467-017-3780-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 10/18/2022]
Abstract
The idiopathic nephrotic syndrome in childhood can be classified according to the International Study of Kidney Disease in Children (ISKDC) based on the response to steroids. Typically, steroid-sensitive nephrotic syndrome (SSNS) is characterised by minimal changes in disease (MCD) histology, whereas in steroid-resistant nephrotic syndrome (SRNS) focal segmental glomerulosclerosis (FSGS) is the most prevalent lesion. Patients with SSNS may develop frequent relapses and/or steroid dependency, which can be difficult to treat. New studies confirm the value of calcineurin inhibitors (CNIs) and mycophenolic acid in preventing relapses of SSNS. Rituximab also plays an important role, but many questions regarding initial dosing, repetitions of courses, and long-term side effects remain unclear. SRNS, especially when unresponsive to treatment, can lead to chronic kidney disease. In particular, treatment with CNIs has improved the prognosis and recent data indicate that treatment can even be discontinued in many patients with full remission. In CNI-unresponsive SRNS, rituximab is less effective than in SSNS and the role of other biologicals (such as ofatumumab, abatacept, and others) remains unclear. A significant proportion of children with FSGS have genetic causes and most patients do not respond to immunosuppression, although individual patients with partial and even complete response have been documented. Future studies should evaluate treatments leading to long-term remission without maintenance immunosuppression in SSNS; in both genetic and immune-mediated SRNS, novel options to decrease the number of treatment-unresponsive patients seem mandatory, as they are at a high risk of developing end-stage renal disease.
Collapse
|
40
|
Wong AY, John RM. Diagnosis and primary care management of focal segmental glomerulosclerosis in children. Nurse Pract 2018; 43:28-37. [PMID: 30134435 DOI: 10.1097/01.npr.0000544275.97385.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a pattern of kidney damage that can occur in individuals at any age, including children. Pediatric patients with FSGS require medication monitoring, growth, and psychological health. This article discusses the NP's role in the clinical presentation, diagnostic workup, and treatment of FSGS in pediatric patients.
Collapse
Affiliation(s)
- Angela Y Wong
- Angela Y. Wong is a pediatric NP at Maimonides Children's Hospital, Brooklyn, N.Y. Rita Marie John is a PNP program director and associate professor of nursing at Columbia University Medical Center, Columbia University School of Nursing, New York, N.Y
| | | |
Collapse
|
41
|
Allinovi M, De Chiara L, Angelotti ML, Becherucci F, Romagnani P. Anti-fibrotic treatments: A review of clinical evidence. Matrix Biol 2018; 68-69:333-354. [DOI: 10.1016/j.matbio.2018.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 02/06/2023]
|
42
|
Lv W, Booz GW, Wang Y, Fan F, Roman RJ. Inflammation and renal fibrosis: Recent developments on key signaling molecules as potential therapeutic targets. Eur J Pharmacol 2017; 820:65-76. [PMID: 29229532 DOI: 10.1016/j.ejphar.2017.12.016] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022]
Abstract
Chronic kidney disease (CKD) is a major public health issue. At the histological level, renal fibrosis is the final common pathway of progressive kidney disease irrespective of the initial injury. Considerable evidence now indicates that renal inflammation plays a central role in the initiation and progression of CKD. Some of the inflammatory signaling molecules involved in CKD include: monocyte chemoattractant protein-1 (MCP-1), bradykinin B1 receptor (B1R), nuclear factor κB (NF-κB), tumor necrosis factor-α (TNFα), transforming growth factor β (TGF-β), and platelet-derived growth factor (PDGF). Multiple antifibrotic factors, such as interleukin-10 (IL-10), interferon-γ (IFN-γ), bone morphogenetic protein-7 (BMP-7), hepatocyte growth factor (HGF) are also downregulated in CKD. Therefore, restoration of the proper balance between pro- and antifibrotic signaling pathways could serve as a guiding principle for the design of new antifibrotic strategies that simultaneously target many pathways. The purpose of this review is to summarize the existing body of knowledge regarding activation of cytokine pathways and infiltration of inflammatory cells as a starting point for developing novel antifibrotic therapies to prevent progression of CKD.
Collapse
Affiliation(s)
- Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 26003, China
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yangang Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 26003, China
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
43
|
Cannito S, Novo E, Parola M. Therapeutic pro-fibrogenic signaling pathways in fibroblasts. Adv Drug Deliv Rev 2017; 121:57-84. [PMID: 28578015 DOI: 10.1016/j.addr.2017.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/28/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
Abstract
Myofibroblasts (MFs) play a critical role in the progression of chronic inflammatory and fibroproliferative diseases in different tissues/organs, whatever the etiology. Fibrosis is preceded and sustained by persistent injury and inflammatory response in a profibrogenic scenario involving mutual interactions, operated by several mediators and pathways, of MFs and related precursor cells with innate immunity cells and virtually any cell type in a defined tissue. These interactions, mediators and related signaling pathways are critical in initiating and perpetuating the differentiation of precursor cells into MFs that in different tissues share peculiar traits and phenotypic responses, including the ability to proliferate, produce ECM components, migrate and contribute to the modulation of inflammatory response and tissue angiogenesis. Literature studies related to liver, lung and kidney fibrosis have outlined a number of MF-related core regulatory fibrogenic signaling pathways conserved across these different organs and potentially targetable in order to develop effective antifibrotic therapeutic strategies.
Collapse
|
44
|
McAdoo SP, Pusey CD. Is there a role for TNFα blockade in ANCA-associated vasculitis and glomerulonephritis? Nephrol Dial Transplant 2017; 32:i80-i88. [PMID: 28391344 DOI: 10.1093/ndt/gfw361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
Abstract
Tumour necrosis factor alpha (TNFα) is a cytokine that is pivotal in the inflammatory response. Blockade of TNFα has been shown to be effective in a number of human autoimmune diseases, including rheumatoid arthritis, raising the question of whether this approach may be effective in inflammatory kidney disease, such as ANCA-associated vasculitis (AAV). In AAV, there is considerable evidence for the role of TNFα in the pathophysiology of disease, including increased expression of TNFα mRNA in leucocytes and in renal tissue. Importantly, TNFα can induce leucocyte cell membrane expression of the autoantigens involved in vasculitis [proteinase 3 and myeloperoxidase (MPO)], thus priming cells for the effects of ANCA. In rodent models of anti-GBM disease (nephrotoxic nephritis), TNFα enhances glomerular injury and TNFα blockade using soluble TNFα receptor or anti-TNFα antibody ameliorates disease. Mice deficient in TNFα are protected from nephrotoxic nephritis and this effect is dependent mainly on intrinsic renal cells. A mouse model of anti-MPO antibody-induced glomerulonephritis is enhanced by LPS, and this effect is blocked by anti-TNFα antibody. In a rat model of AAV induced by MPO (experimental autoimmune vasculitis), anti-TNFα antibody improves renal pathology and also reduces leucocyte transmigration, as shown by intravital microscopy. In clinical studies, the Wegener's Granulomatosis Etanercept Trial (WGET) showed no benefit of additional etanercept versus standard therapy. However, there are several reasons why the results of the WGET study do not rule out the use of anti-TNFα antibody in acute renal AAV, including the study design and the considerable biological differences between the effects of etanercept and anti-TNFα antibody. There are several clinical studies demonstrating a response to anti-TNFα antibody in patients with AAV refractory to conventional treatment, and in some of these, the addition of anti-TNFα antibody was the only change in treatment. We suggest that further investigation of TNFα blockade in AAV is warranted.
Collapse
Affiliation(s)
- Stephen P McAdoo
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, London, UK
| | - Charles D Pusey
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
45
|
Ravani P, Bertelli E, Gill S, Ghiggeri GM. Clinical trials in minimal change disease. Nephrol Dial Transplant 2017; 32:i7-i13. [PMID: 28391333 DOI: 10.1093/ndt/gfw235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/22/2016] [Indexed: 12/14/2022] Open
Abstract
Minimal change disease (MCD) is a pathological condition characterized by subtle glomerular lesions causing massive and reversible proteinuria that is usually steroid sensitive. Recurrence of symptoms of active disease following successful treatment (including proteinuria, oedema and oliguria) and steroid toxicity requires the use of other drugs to attain or maintain remission. Unresolved MCD is considered the initial step in the pathological pathway leading to focal and segmental glomerulosclerosis (FSGS). Historically, cyclophosphamide, chlorambucil, mycophenolate and calcineurin inhibitors have been utilized with success in MCD; however, the chronic nature of the disease and the toxicity of long-term use of these medications has pushed the development of new therapies. Synthetic corticotropin (adrenocorticotropic hormone) and anti-CD20 monoclonal antibodies, for example, are currently under investigation in clinical trials. In addition, these new interventions have dramatically impacted our understanding of the mechanisms of the disease. Phase II-IV clinical trials targeting new mechanisms and/or molecules are in progress. The list is long and includes drugs blocking the adaptive immune system (abatacept and anti-CD40 antibodies), as well as retinoids and the sialic acid precursor N-acetyl-D-mannosamine (ManNAc), two agents that affect the sieving properties of the glomerular basement membrane. Other drugs are being tested against FSGS and, if successful, could also be utilized against MCD. Clinical trials currently in progress should furnish a proper solution to what appears to be a solvable problem.
Collapse
Affiliation(s)
- Pietro Ravani
- Division of Nephrology, Faculty of Medicine, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
| | - Enrica Bertelli
- Division of Nephrology, Dialysis, Transplantation, Giannina Gaslini Children's Hospital, Genoa, Italy.,Laboratory on Pathophysiology of Uremia, Giannina Gaslini Children's Hospital, Largo Gerolamo Gaslini 5, Genoa, Italy
| | - Simardeep Gill
- Division of Nephrology, Faculty of Medicine, Foothills Medical Centre, University of Calgary, Calgary, Alberta, Canada
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, Transplantation, Giannina Gaslini Children's Hospital, Genoa, Italy.,Laboratory on Pathophysiology of Uremia, Giannina Gaslini Children's Hospital, Largo Gerolamo Gaslini 5, Genoa, Italy
| |
Collapse
|
46
|
Trachtman H, Gipson DS, Somers M, Spino C, Adler S, Holzman L, Kopp JB, Sedor J, Overfield S, Elegbe A, Maldonado M, Greka A. Randomized Clinical Trial Design to Assess Abatacept in Resistant Nephrotic Syndrome. Kidney Int Rep 2017; 3:115-121. [PMID: 29340321 PMCID: PMC5762951 DOI: 10.1016/j.ekir.2017.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/28/2017] [Accepted: 08/21/2017] [Indexed: 11/18/2022] Open
Abstract
Introduction Treatment-resistant nephrotic syndrome is a rare form of glomerular disease that occurs in children and adults. No Food and Drug Administration-approved treatments consistently achieve remission of proteinuria and preservation of kidney function. CD80 (B7-1) can be expressed on injured podocytes, and administration of abatacept (modified CTLA4-Ig based on a natural ligand to CD80) has been associated with sustained normalization of urinary protein excretion and maintenance of glomerular filtration rate in experimental and clinical settings. Methods In this report, we describe the rationale for and design of a randomized, placebo-controlled, clinical trial of abatacept in patients with treatment-resistant nephrotic syndrome caused by focal segmental glomerulosclerosis or minimal change disease. The design is a hybrid of a parallel-group and crossover design (switchover) with the primary objectives assessed in the first period of the study and the secondary objectives assessed using data from both periods. All participants will receive the active agent in 1 of the periods. The duration of treatment will be 4 months per period. Results The primary outcome will be improvement in nephrotic-range proteinuria to subnephrotic range, that is, reduction from baseline to 4 months in urine protein:creatinine ratio ≥ 50% and to a level < 3. The projected sample size is 90 patients, which has 80% power to detect a treatment difference of 28%. Conclusion This study advances efforts to validate CD80 as a therapeutic target for treatment-resistant nephrotic syndrome, and implements a precision medicine-based approach to this serious kidney condition in which the selection of a therapeutic agent is guided by the underlying disease mechanism operating in individual patients.
Collapse
Affiliation(s)
- Howard Trachtman
- Division of Nephrology, Department of Pediatrics, New York University Langone Medical Center, New York, New York, USA
| | - Debbie S. Gipson
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Somers
- Division of Nephrology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Cathie Spino
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharon Adler
- Division of Nephrology and Hypertension, Harbor-University of California Los Angeles Medical Center, Los Angeles, California, USA
| | - Lawrence Holzman
- Department of Medicine, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, USA
| | - Jeffrey B. Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John Sedor
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | | | | | - Anna Greka
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, and Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
- Correspondence: Anna Greka, Brigham and Women’s Hospital, Harvard Medical School, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, Massachusetts 02115, USA; or The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, USA.Brigham and Women’s HospitalHarvard Medical SchoolHarvard Institutes of Medicine, 4 Blackfan Circle, Boston, Massachusetts 02115, USA; or The Broad Institute of MIT and Harvard415 Main StreetCambridgeMassachusetts 02142USA
| |
Collapse
|
47
|
Multiple Targets for Novel Therapy of FSGS Associated with Circulating Permeability Factor. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6232616. [PMID: 28951873 PMCID: PMC5603123 DOI: 10.1155/2017/6232616] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/10/2017] [Accepted: 06/15/2017] [Indexed: 01/13/2023]
Abstract
A plasma component is responsible for altered glomerular permeability in patients with focal segmental glomerulosclerosis. Evidence includes recurrence after renal transplantation, remission after plasmapheresis, proteinuria in infants of affected mothers, transfer of proteinuria to experimental animals, and impaired glomerular permeability after exposure to patient plasma. Therapy may include decreasing synthesis of the injurious agent, removing or blocking its interaction with cells, or blocking signaling or enhancing cell defenses to restore the permeability barrier and prevent progression. Agents that may prevent the synthesis of the permeability factor include cytotoxic agents or aggressive chemotherapy. Extracorporeal therapies include plasmapheresis, immunoadsorption with protein A or anti-immunoglobulin, or lipopheresis. Oral or intravenous galactose also decreases Palb activity. Studies of glomeruli have shown that several strategies prevent the action of FSGS sera. These include blocking receptor-ligand interactions, modulating cell reactions using indomethacin or eicosanoids 20-HETE or 8,9-EET, and enhancing cytoskeleton and protein interactions using calcineurin inhibitors, glucocorticoids, or rituximab. We have identified cardiotrophin-like cytokine factor 1 (CLCF-1) as a candidate for the permeability factor. Therapies specific to CLCF-1 include potential use of cytokine receptor-like factor (CRLF-1) and inhibition of Janus kinase 2. Combined therapy using multiple modalities offers therapy to reverse proteinuria and prevent scarring.
Collapse
|
48
|
Trachtman H. Investigational drugs in development for focal segmental glomerulosclerosis. Expert Opin Investig Drugs 2017; 26:945-952. [PMID: 28707483 DOI: 10.1080/13543784.2017.1351544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Focal segmental glomerulosclerosis is an important cause of end stage kidney disease and is a paradigm for the study of glomerular scarring. There are no FDA approved treatments for this condition. Current therapies, assessed based on reduction in proteinuria, are generally effective in a subset of patients which suggests that FSGS is a heterogeneous group of glomerular disorders or podocytopathies that converge on a common histopathological phenotype. Areas covered: We searched for investigational drugs agents that target different pathophysiological pathways using the key words 'FSGS' and 'podocyte' in American and European clinical trial registers (clinicaltrials.gov; clinicaltrialsregister.eu). Published articles were searched in PubMed, Medline, the Web of Science and the Cochrane Central Register of Controlled Trials Library. Expert opinion: Progress is being made in defining the mechanism of action of subtypes of FSGS. Current and investigational therapies for FSGS target these different pathways of injury. It is anticipated that advances in systems biology will further refine the classification of FSGS by subdividing the disease based on the primary mechanism of glomerular injury, identify biomarkers to discriminate between different subtypes, and enable appropriate selection of appropriate therapy for each individual in accordance with the goals of precision medicine.
Collapse
Affiliation(s)
- Howard Trachtman
- a Department of Pediatrics, Division of Nephrology , NYU Langone Medical Center , New York , NY , USA
| |
Collapse
|
49
|
Recent Treatment Advances and New Trials in Adult Nephrotic Syndrome. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7689254. [PMID: 28553650 PMCID: PMC5434278 DOI: 10.1155/2017/7689254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022]
Abstract
The etiology of nephrotic syndrome is complex and ranges from primary glomerulonephritis to secondary forms. Patients with nephrotic syndrome often need immunosuppressive treatment with its side effects and may progress to end stage renal disease. This review focuses on recent advances in the treatment of primary causes of nephrotic syndrome (idiopathic membranous nephropathy (iMN), minimal change disease (MCD), and focal segmental glomerulosclerosis (FSGS)) since the publication of the KDIGO guidelines in 2012. Current treatment recommendations are mostly based on randomized controlled trials (RCTs) in children, small RCTs, or case series in adults. Recently, only a few new RCTs have been published, such as the Gemritux trial evaluating rituximab treatment versus supportive antiproteinuric and antihypertensive therapy in iMN. Many RCTs are ongoing for iMN, MCD, and FSGS that will provide further information on the effectiveness of different treatment options for the causative disease. In addition to reviewing recent clinical studies, we provide insight into potential new targets for the treatment of nephrotic syndrome from recent basic science publications.
Collapse
|
50
|
Available and incoming therapies for idiopathic focal and segmental glomerulosclerosis in adults. J Nephrol 2017; 31:37-45. [DOI: 10.1007/s40620-017-0402-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/10/2017] [Indexed: 01/30/2023]
|