1
|
Guo J, Bullock G, O’Brien DP, Johnson GS, Katz ML. An RB1CC1 Missense Variant in Nova Scotia Duck Tolling Retrievers with Degenerative Encephalopathy. Genes (Basel) 2025; 16:269. [PMID: 40149422 PMCID: PMC11941761 DOI: 10.3390/genes16030269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES A slowly progressive hereditary neurological disorder classified as degenerative encephalopathy (DE) occurs in Nova Scotia Duck Tolling Retrievers. The disease is characterized by frequent episodes of pronounced involuntary movements during sleep, cognitive impairment, anxiety, heightened sensitivity to sensory stimuli, and compulsive behaviors. The clinical signs are accompanied by the degeneration of several brain regions. A study was undertaken to identify the molecular genetic basis of this disorder. METHODS Whole genome sequences (WGSs) from the DNA of affected and unaffected Nova Scotia Duck Tolling Retrievers were aligned to the Dog10K_Boxer_Tasha reference genome assembly and to the WGSs of 334 additional control dogs generated by this laboratory. RESULTS A missense C>T variant was identified in RB1CC1 exon 22 chromosome 29:4891014 that was uniquely homozygous in the affected dog. This variant predicts a p.G1503R change in the amino acid sequence of RB1CC1. Genotyping of 2950 Nova Scotia Duck Tolling Retrievers at the variant locus found complete concordance between the disease phenotype and RB1CC1 genotype. CONCLUSIONS RBCC1 is an essential component of a protein complex that mediates the initiation of autophagosome formation. Therefore, it appears likely that the disease results, at least in part, from impaired autophagy. Consistent with this possibility, brain neurons of an affected dog were found to contain abnormal lysosomal storage body-like inclusions. This disorder could serve as a valuable model to elucidate the mechanisms underlying human diseases associated with impaired autophagy. Identification of the disease-causing DNA sequence variant will enable owners of Nova Scotia Duck Tolling Retrievers to screen their dogs for the RB1CC1 risk variant.
Collapse
Affiliation(s)
- Juyuan Guo
- Canine Genetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (J.G.); (G.B.)
| | - Garrett Bullock
- Canine Genetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (J.G.); (G.B.)
| | - Dennis P. O’Brien
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (D.P.O.)
| | - Gary S. Johnson
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (D.P.O.)
| | - Martin L. Katz
- Canine Genetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (J.G.); (G.B.)
- Neurodegenerative Diseases Research Laboratory, Department of Ophthalmology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
2
|
Al-Hassnan Z, AlDosary M, AlHargan A, AlQudairy H, Almass R, Alahmadi KO, AlShahrani S, AlBakheet A, Almuhaizea MA, Taylor RW, Colak D, Kaya N. A novel missense mutation in ISCA2 causes aberrant splicing and leads to multiple mitochondrial dysfunctions syndrome 4. Front Psychiatry 2024; 15:1428175. [PMID: 39544370 PMCID: PMC11561297 DOI: 10.3389/fpsyt.2024.1428175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/26/2024] [Indexed: 11/17/2024] Open
Abstract
Background Iron-sulfur cluster assembly 2 (ISCA2) deficiency is linked to an autosomal recessive disorder known as multiple mitochondrial dysfunctions syndrome 4 (MMDS4). This disorder is characterized by leukodystrophy and neuroregression. Currently, most of the reported patients are from Saudi Arabia. All these patients carry a homozygous founder variant (NM_194279.2:c.229G>A:p.Gly77Ser) in ISCA2. Methods We describe a patient who underwent full clinical evaluation, including metabolic, neurological, and radiological examinations. Standard genetic testing, including whole exome sequencing coupled with autozygome analysis, was undertaken, as were assessments of mitochondrial DNA (mtDNA) copy number and mtDNA sequencing on DNA extracted from blood and cultured fibroblasts. Functional workup consisted of splicing assessment of ISCA2 using RT-PCR, biochemical assessment of complex I status using dipstick assays, and mitochondrial respiration measurements using a Seahorse XFp analyzer. Results We present the clinical and functional characterization of a novel homozygous ISCA2 missense variant (NM_194279.3:c.70A>G:p.Arg24Gly), leading to aberrant splicing in a patient presenting with neuroregression, generalized spasticity with exaggerated deep tendon reflexes and head lag, and progressive loss of acquired milestones. The novel variant was fully segregated in a wider family and was absent in a large control cohort, ethnically matching in-house exomes, local databases such as CGMdb and Saudi Human Genome Program, and ClinVar. Conclusions Our analyses revealed that the variant is pathogenic, disrupting normal ISCA2 splicing and presumably leading to a truncated protein that disturbs metabolic pathways in patient-derived cells.
Collapse
Affiliation(s)
- Zuhair Al-Hassnan
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mazhor AlDosary
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Aljouhra AlHargan
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hanan AlQudairy
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Rawan Almass
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Omar Alahmadi
- Department of Radiology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Saif AlShahrani
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Albandary AlBakheet
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammad A. Almuhaizea
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Robert W. Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Health Service (NHS) Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Dilek Colak
- Molecular Oncology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Namik Kaya
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Kamble N, Holla VV, Katragadda PK, Muthusamy B, Pal PK. Dystonia in a Patient with Genetically Proven Salih Ataxia Due to a Novel Truncating Variant: Expanding the Genotypic and Phenotypic Spectrum. Mov Disord Clin Pract 2024; 11:1295-1297. [PMID: 38934208 PMCID: PMC11489611 DOI: 10.1002/mdc3.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Affiliation(s)
- Nitish Kamble
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| | - Vikram V. Holla
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| | - Pavan Kumar Katragadda
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| | | | - Pramod Kumar Pal
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| |
Collapse
|
4
|
Marafi D. Founder mutations and rare disease in the Arab world. Dis Model Mech 2024; 17:dmm050715. [PMID: 38922202 PMCID: PMC11225585 DOI: 10.1242/dmm.050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Founder mutations are disease-causing variants that occur frequently in geographically or culturally isolated groups whose shared ancestor(s) carried the pathogenic variant. While some disease alleles may vanish from the genetic pool due to natural selection, variants with weaker effects may survive for a long time, thereby enhancing the prevalence of some rare diseases. These are predominantly autosomal recessive diseases but can also be autosomal dominant traits with late-onset or mild phenotypes. Cultural practices, such as endogamy and consanguinity, in these isolated groups lead to higher prevalence of such rare diseases compared to the rest of the population and worldwide. In this Perspective, we define population isolates and the underlying genetic mechanisms for accumulating founder mutations. We also discuss the current and potential scientific, clinical and public-health implications of studying founder mutations in population isolates around the world, with a particular focus on the Arab population.
Collapse
Affiliation(s)
- Dana Marafi
- Department of Pediatrics, College of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
- Section of Child Neurology, Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya 52700, Kuwait
- Kuwait Medical Genetics Centre, Ministry of Health, Sulaibikhat 80901, Kuwait
| |
Collapse
|
5
|
Tanzer MC. You are what you eat and how you digest it! A discussion on inflammatory efferocytosis. Front Cell Dev Biol 2023; 11:1132696. [PMID: 36846584 PMCID: PMC9947526 DOI: 10.3389/fcell.2023.1132696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Efferocytosis is a process by which phagocytes remove dead or dying cells. It is considered anti-inflammatory, as the removal process reduces potential inflammatory molecules originating from dead cells and results in the reprogramming of macrophages to an anti-inflammatory state. However, engulfment of infected dead cells, deregulated phagocytosis and perturbed digestion of apoptotic bodies induce inflammatory signalling pathways during efferocytosis. The affected inflammatory signalling molecules and the mechanism of activation are largely unknown. I discuss how the choice of dead cell cargo, the type of ingestion, and the digestion efficiency can influence phagocyte programming in the context of disease. I also present the latest findings, highlight knowledge gaps, and propose selected experimental approaches to fill them.
Collapse
|
6
|
Younger DS. Neurogenetic motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:183-250. [PMID: 37562870 DOI: 10.1016/b978-0-323-98818-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Advances in the field of neurogenetics have practical applications in rapid diagnosis on blood and body fluids to extract DNA, obviating the need for invasive investigations. The ability to obtain a presymptomatic diagnosis through genetic screening and biomarkers can be a guide to life-saving disease-modifying therapy or enzyme replacement therapy to compensate for the deficient disease-causing enzyme. The benefits of a comprehensive neurogenetic evaluation extend to family members in whom identification of the causal gene defect ensures carrier detection and at-risk counseling for future generations. This chapter explores the many facets of the neurogenetic evaluation in adult and pediatric motor disorders as a primer for later chapters in this volume and a roadmap for the future applications of genetics in neurology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
7
|
Lee M, Joehanes R, McCartney DL, Kho M, Hüls A, Wyss AB, Liu C, Walker RM, R Kardia SL, Wingo TS, Burkholder A, Ma J, Campbell A, Wingo AP, Huan T, Sikdar S, Keshawarz A, Bennett DA, Smith JA, Evans KL, Levy D, London SJ. Opioid medication use and blood DNA methylation: epigenome-wide association meta-analysis. Epigenomics 2022; 14:1479-1492. [PMID: 36700736 PMCID: PMC9979153 DOI: 10.2217/epi-2022-0353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Aim: To identify differential methylation related to prescribed opioid use. Methods: This study examined whether blood DNA methylation, measured using Illumina arrays, differs by recent opioid medication use in four population-based cohorts. We meta-analyzed results (282 users; 10,560 nonusers) using inverse-variance weighting. Results: Differential methylation (false discovery rate <0.05) was observed at six CpGs annotated to the following genes: KIAA0226, CPLX2, TDRP, RNF38, TTC23 and GPR179. Integrative epigenomic analyses linked implicated loci to regulatory elements in blood and/or brain. Additionally, 74 CpGs were differentially methylated in males or females. Methylation at significant CpGs correlated with gene expression in blood and/or brain. Conclusion: This study identified DNA methylation related to opioid medication use in general populations. The results could inform the development of blood methylation biomarkers of opioid use.
Collapse
Affiliation(s)
- Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Roby Joehanes
- Department of Health and Human Services, Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA 01702, USA
| | - Daniel L McCartney
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Minjung Kho
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anke Hüls
- Department of Epidemiology & Gangarosa, Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Annah B Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Chunyu Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02215, USA
- Framingham Heart Study, Boston University, Framingham, MA 01702, USA
| | - Rosie M Walker
- Centre for Clinical Brain Science, Chancellor's Building, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, UK
- School of Psychology, University of Exeter, Exeter, UK
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas S Wingo
- Department of Neurology & Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Adam Burkholder
- Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jiantao Ma
- Department of Health and Human Services, Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA 01702, USA
| | - Archie Campbell
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Aliza P Wingo
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30322, USA
| | - Tianxiao Huan
- Department of Health and Human Services, Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA 01702, USA
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Sinjini Sikdar
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Department of Mathematics & Statistics, Old Dominion University, Norfolk, VA 23529, USA
| | - Amena Keshawarz
- Framingham Heart Study, Framingham, MA 01702, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathryn L Evans
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Daniel Levy
- Department of Health and Human Services, Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA 01702, USA
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
8
|
Aldosary M, Alsagob M, AlQudairy H, González-Álvarez AC, Arold ST, Dababo MA, Alharbi OA, Almass R, AlBakheet A, AlSarar D, Qari A, Al-Ansari MM, Oláhová M, Al-Shahrani SA, AlSayed M, Colak D, Taylor RW, AlOwain M, Kaya N. A Novel Homozygous Founder Variant of RTN4IP1 in Two Consanguineous Saudi Families. Cells 2022; 11:3154. [PMID: 36231115 PMCID: PMC9563936 DOI: 10.3390/cells11193154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022] Open
Abstract
The genetic architecture of mitochondrial disease continues to expand and currently exceeds more than 350 disease-causing genes. Bi-allelic variants in RTN4IP1, also known as Optic Atrophy-10 (OPA10), lead to early-onset recessive optic neuropathy, atrophy, and encephalopathy in the afflicted patients. The gene is known to encode a mitochondrial ubiquinol oxidoreductase that interacts with reticulon 4 and is thought to be a mitochondrial antioxidant NADPH oxidoreductase. Here, we describe two unrelated consanguineous families from the northern region of Saudi Arabia harboring a missense variant (RTN4IP1:NM_032730.5; c.475G
Collapse
Affiliation(s)
- Mazhor Aldosary
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Maysoon Alsagob
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
- Center of Excellence for Biomedicine, Joint Centers for Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Hanan AlQudairy
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Ana C. González-Álvarez
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Stefan T. Arold
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université de Montpellier, F-34090 Montpellier, France
| | - Mohammad Anas Dababo
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Omar A. Alharbi
- Radiology Department, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Rawan Almass
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - AlBandary AlBakheet
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Dalia AlSarar
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alya Qari
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Mysoon M. Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Monika Oláhová
- Welcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Saif A. Al-Shahrani
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Moeenaldeen AlSayed
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Dilek Colak
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Robert W. Taylor
- Welcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialized Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Mohammed AlOwain
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Namik Kaya
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), P.O. Box 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
9
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
10
|
Al-Muhaizea MA, Aldeeb H, Almass R, Jaber H, Binhumaid F, Alquait L, Abukhalid M, Aldhalaan H, Alsagob M, Al-Bakheet A, Aldosary M, Alkofide H, Alrasheed MM, Colak D, Kaya N. Genetics of ataxia telangiectasia in a highly consanguineous population. Ann Hum Genet 2021; 86:34-44. [PMID: 34582042 DOI: 10.1111/ahg.12445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
Ataxia telangiectasia (AT) is a rare autosomal recessive multisystemic disorder. It usually presents in toddler years with progressive ataxia and oculomotor apraxia, or less commonly, in the late-first or early-second decade of life with mixed movement disorders. Biallelic mutations in ataxia telangiectasia mutated gene (ATM) cause AT phenotype, a disease not well documented in Saudi Arabia, a highly consanguineous society. We studied several Saudi AT patients, identified ATM variants, and investigated associated clinical features. We included 17 patients from 12 consanguineous families. All patients had comprehensive clinical and radiological assessment, and most were examined through whole-exome sequencing (WES). Selected individuals were analyzed using various genetic approaches. We identified five different ATM variants in our patients: three previously reported mutations, and two novel variants. Nearly all patients had classical AT presentation except for two patients with a milder phenotype. Among the three known variants, a deletion causing truncation (c.381delA resulting in p.(Val128Ter)) was identified in 13 patients. Two patients harboured the other two truncating variants, (c.9001_9002delAG resulting in p.Ser3001Phefs*6) and (c.9066delA resulting in p.Glu3023Alafs*10) and two patients had novel compound heterozygous variants (NM_000051.3:Paternal Allele:c.8762C > G;p.Thr2921Arg and Maternal Allele:c.1057T > C;p.Cys353Arg). We speculate that c.381delA is a founder mutation in our population. This study provides a genotype-phenotype relationship in a previously unstudied consanguineous population. Our findings contribute to improve local clinical care, therapy, and genetic counseling.
Collapse
Affiliation(s)
- Mohammed A Al-Muhaizea
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Hanouf Aldeeb
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Rawan Almass
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Hadeel Jaber
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Felwa Binhumaid
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Laila Alquait
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Musaad Abukhalid
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Hesham Aldhalaan
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Maysoon Alsagob
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia
| | - Albandary Al-Bakheet
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Mazhor Aldosary
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Hadeel Alkofide
- College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Maha M Alrasheed
- College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Namik Kaya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Al-Bakheet A, Tohary M, Khan S, Chedrawi A, Edrees A, Tous E, Al-Mousa H, Al-Otaibi L, AlShahrani S, Alsagob M, Al-Quait L, Almass R, Al-Joudi H, Monies D, Al-Semari A, Aldosary M, Daghestani M, Colak D, Kaya N, Al-Owain M. Hematological findings associated with tubulin-folding cofactors D-related encephalopathy: Expanding the phenotype. Clin Genet 2021; 99:724-731. [PMID: 33506509 DOI: 10.1111/cge.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 11/30/2022]
Abstract
The dysfunction of microtubules (α/β-tubulin polymers) underlies a wide range of nervous system genetic abnormalities. Defects in TBCD, a tubulin-folding cofactor, cause diseases highlighted with early-onset encephalopathy with or without neurodegeneration, intellectual disability, seizures, microcephaly and tetraparaperesis. Utilizing various molecular methods, we describe nine patients from four unrelated families with two novel exon 18 variants in TBCD exhibiting the typical neurological phenotype of the disease. Interestingly, all the investigated patients had previously unreported hematological findings in the form of neutropenia and mild degree of anemia and thrombocytopenia. In addition to delineating the neurological phenotype in several patients with TBCD variants, our study stresses on the new association of neutropenia, in particular, with the disease.
Collapse
Affiliation(s)
- Albandary Al-Bakheet
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohamed Tohary
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sameena Khan
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Aziza Chedrawi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Alaa Edrees
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ehab Tous
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hamoud Al-Mousa
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Lefian Al-Otaibi
- Department of Radiology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saif AlShahrani
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maysoon Alsagob
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Laila Al-Quait
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rawan Almass
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Haya Al-Joudi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdulaziz Al-Semari
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mazhor Aldosary
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maha Daghestani
- Division of Genetics, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|