1
|
Kamiya T, Tessandier N, Elie B, Bernat C, Boué V, Grasset S, Groc S, Rahmoun M, Selinger C, Humphrys MS, Bonneau M, Graf C, Foulongne V, Reynes J, Tribout V, Segondy M, Boulle N, Ravel J, Lía Murall C, Alizon S. Factors shaping vaginal microbiota long-term community dynamics in young adult women. PEER COMMUNITY JOURNAL 2025; 5:pcjournal.527. [PMID: 40098898 PMCID: PMC7617500 DOI: 10.24072/pcjournal.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The vaginal microbiota is known to affect women's health. Yet, there is a notable paucity of high-resolution follow-up studies lasting several months, which would be required to interrogate the long-term dynamics and associations with demographic and behavioural covariates. Here, we present a high-resolution longitudinal cohort study of 125 women, followed for a median duration of 8.6 months, with a median of 11 samples collected per woman. Using a hierarchical Bayesian Markov model, we characterised the patterns of vaginal microbiota community persistence and transition, simultaneously estimated the impact of 16 covariates and quantified individual variability among women. We showed that "optimal" (Community State Type (CST) I, II, and V) and "sub-optimal" (CST III) communities are more stable over time than "non-optimal" (CST IV) ones. Furthermore, we found that some covariates - most notably alcohol consumption - impacted the probability of shifting from one CST to another. We performed counterfactual simulations to confirm that alterations of key covariates, such as alcohol consumption, could shape the prevalence of different microbiota communities in the population. Finally, our analyses indicated that there is a relatively canalised pathway leading to the deterioration of vaginal microbiota communities, whereas the paths to recovery can be highly individualised among women. In addition to providing one of the first insights into vaginal microbiota dynamics over a year, our study showcases a novel application of a hierarchical Bayesian Markov model to clinical cohort data with many covariates. Our findings pave the way for an improved mechanistic understanding of microbial dynamics in the vaginal environment and the development of novel preventative and therapeutic strategies to improve vaginal health.
Collapse
Affiliation(s)
- Tsukushi Kamiya
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Nicolas Tessandier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Baptiste Elie
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
| | - Claire Bernat
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Vanina Boué
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
| | | | - Soraya Groc
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
- PCCEI, Univ. Montpellier, Inserm, EFS, Montpellier, France
| | | | | | | | - Marine Bonneau
- Department of Obstetrics and Gynaecology, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Christelle Graf
- Department of Obstetrics and Gynaecology, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Jacques Reynes
- Department of Infectious and Tropical Diseases, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Vincent Tribout
- Department of Infectious and Tropical Diseases, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Michel Segondy
- PCCEI, Univ. Montpellier, Inserm, EFS, Montpellier, France
| | | | - Jacques Ravel
- Institute for Genomic Sciences, University of Baltimore, USA
| | - Carmen Lía Murall
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
- National Microbiology Laboratory (NML), Montreal Public Health Agency of Canada (PHAC), Canada
| | - Samuel Alizon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
2
|
Gulliver EL, Di Simone SK, Chonwerawong M, Forster SC. Unlocking the potential for microbiome-based therapeutics to address the sustainable development goal of good health and wellbeing. Microb Biotechnol 2024; 17:e70041. [PMID: 39487814 PMCID: PMC11531172 DOI: 10.1111/1751-7915.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Recent years have witnessed major advances and an ever-growing list of healthcare applications for microbiome-based therapeutics. However, these advances have disproportionately targeted diseases common in high-income countries (HICs). Within low- to middle-income countries (LMIC), opportunities for microbiome-based therapeutics include sexual health epidemics, maternal health, early life mortality, malnutrition, vaccine response and infectious diseases. In this review we detail the advances that have been achieved in microbiome-based therapeutics for these areas of healthcare and identify where further work is required. Current efforts to characterise microbiomes from LMICs will aid in targeting and optimisation of therapeutics and preventative strategies specifically suited to the unmet needs within these populations. Once achieved, opportunities from disease treatment and improved treatment efficacy through to disease prevention and vector control can be effectively addressed using probiotics and live biotherapeutics. Together these strategies have the potential to increase individual health, overcome logistical challenges and reduce overall medical, individual, societal and economic costs.
Collapse
Affiliation(s)
- Emily L. Gulliver
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| | - Sara K. Di Simone
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Ritchie Centre, HudsonInstitute of Medical ResearchMelbourneVictoriaAustralia
- Department of PaediatricsMonash UniversityMelbourneVictoriaAustralia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| | - Samuel C. Forster
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
3
|
Saleh RO, Salahdin OD, Ahmad I, Bansal P, Kaur H, Deorari M, Hjazi A, Abosaoda MK, Mohammed IH, Jawad MA. An updated study of the relationship between bacterial infections and women's immune system, focusing on bacterial compositions with successful pregnancy. J Reprod Immunol 2024; 165:104283. [PMID: 38991487 DOI: 10.1016/j.jri.2024.104283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/19/2024] [Accepted: 06/16/2024] [Indexed: 07/13/2024]
Abstract
Genital tract infections can cause a variety of harmful health outcomes, including endometritis, bacterial vaginosis, and pelvic inflammatory disease, in addition to infertility. Anaerobic bacteria, such as Gardnerella vaginalis, Megasphaera spp., and Atopobium vaginae, are more commonly identified in cases of bacterial vaginosis than lactobacilli. It is unknown how the microorganisms that cause pelvic inflammatory diseases and endometritis enter the uterus. Both prospective and retrospective research have connected pelvic inflammatory disorders, chronic endometritis, and bacterial vaginosis to infertility. Similar to bacterial vaginosis, endometritis-related infertility is probably caused by a variety of factors, such as inflammation, immune system recognition of sperm antigens, bacterial toxins, and a higher risk of STDs. Preconception care for symptomatic women may include diagnosing and treating pelvic inflammatory disease, chronic endometritis, and bacterial vaginosis before conception to optimize the results of both natural and assisted reproduction.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq; College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Pharmacy, the Islamic University of Babylon, Al Diwaniyah, Iraq
| | | | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| |
Collapse
|
4
|
Malloy E, Kates AE, Dixon J, Riley C, Safdar N, Hanson L. Vaginal and Rectal microbiome changes following administration of a multi-species antenatal probiotic: A randomized control trial. GUT MICROBES REPORTS 2024; 1:1-10. [PMID: 38708373 PMCID: PMC11065196 DOI: 10.1080/29933935.2024.2334311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024]
Abstract
The gut and vaginal microbiome undergo changes during pregnancy which may be protective or harmful to the birthing person. Probiotics have been found to cause protective changes to the gut and vaginal microbiomes, with the potential to improve perinatal outcomes. This randomized control trial compares the vaginal and rectal microbiomes before and after an antenatal probiotic or placebo intervention, with a diverse group of pregnant people and a special focus on racial disparities. The vaginal and rectal microbiomes reveal non-significant increased Lactobacillus in the probiotics group, with a greater increase in participants who identified as Black. Potential implications and future study are discussed.
Collapse
Affiliation(s)
- Emily Malloy
- Aurora UW Medical Group Midwifery & Wellness, Advocate Aurora Healthcare Milwaukee, USA
- College of Nursing, Marquette University, Milwaukee, USA
| | - Ashley E. Kates
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, Madison, USA
- William S. Middleton Memorial Veterans Hospital, Madison, USA
| | - Jonah Dixon
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, Madison, USA
- William S. Middleton Memorial Veterans Hospital, Madison, USA
| | - Colleen Riley
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, Madison, USA
- William S. Middleton Memorial Veterans Hospital, Madison, USA
| | - Nasia Safdar
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, Madison, USA
- William S. Middleton Memorial Veterans Hospital, Madison, USA
| | - Lisa Hanson
- College of Nursing, Marquette University, Milwaukee, USA
| |
Collapse
|
5
|
Li KT, Li F, Jaspan H, Nyemba D, Myer L, Aldrovandi G, Joseph-Davey D. Changes in the Vaginal Microbiome During Pregnancy and the Postpartum Period in South African Women: a Longitudinal Study. Reprod Sci 2024; 31:275-287. [PMID: 37721699 PMCID: PMC10784382 DOI: 10.1007/s43032-023-01351-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Pregnant women in sub-Saharan Africa have high rates of maternal morbidity. There is interest in the impact of the vaginal microbiome on maternal health, including HIV and sexually transmitted infection (STI) acquisition. We characterized the vaginal microbiota of South African women ≥ 18 years with and without HIV in a longitudinal cohort over two visits during pregnancy and one visit postpartum. At each visit, we obtained HIV testing and self-collected vaginal swabs for point-of-care testing for STIs and microbiota sequencing. We categorized microbial communities and evaluated changes over pregnancy and associations with HIV status and STI diagnosis. Across 242 women (mean age 29, 44% living with HIV, 33% diagnosed with STIs), we identified four main community state types (CSTs): two lactobacillus-dominant CSTs (dominated by Lactobacillus crispatus and Lactobacillus iners respectively) and two diverse, non-lactobacillus-dominant CSTs (one dominated by Gardnerella vaginalis and one by diverse facultative anaerobes). From the first antenatal visit to the third trimester (24-36 weeks gestation), 60% of women in the Gardnerella-dominant CST shifted to lactobacillus-dominant CSTs. From the third trimester to postpartum (mean 17 days post-delivery), 80% of women in lactobacillus-dominant CSTs shifted to non-lactobacillus-dominant CSTs with a large proportion in the facultative anaerobe-dominant CST. Microbial composition differed by STI diagnosis (PERMANOVA R2 = 0.002, p = 0.004), and women diagnosed with an STI were more likely to be categorized as L. iners-dominant or Gardnerella-dominant CSTs. Overall, we found a shift toward lactobacillus dominance during pregnancy and the emergence of a distinct, highly diverse anaerobe-dominant microbiota profile in the postpartum period.
Collapse
Affiliation(s)
- Katherine T Li
- Division of Infectious Disease, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Fan Li
- Division of Pediatric Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Heather Jaspan
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Departments of Pediatrics and Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Dorothy Nyemba
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
| | - Landon Myer
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
| | - Grace Aldrovandi
- Division of Pediatric Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Dvora Joseph-Davey
- Division of Infectious Disease, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa.
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Li K, Li F, Jaspan H, Nyemba D, Myer L, Aldrovandi G, Joseph-Davey D. Changes in the vaginal microbiome during pregnancy and the postpartum period in South African women: a longitudinal study. RESEARCH SQUARE 2023:rs.3.rs-2617869. [PMID: 37131718 PMCID: PMC10153297 DOI: 10.21203/rs.3.rs-2617869/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
African women have more diverse vaginal microbiota than women of European descent, and there is interest in the impact of this diversity on maternal health, including HIV and STI acquisition. We characterized the vaginal microbiota in a cohort of women ≥ 18 years with and without HIV in a longitudinal cohort over two visits during pregnancy and one visit postpartum. At each visit we obtained HIV testing and self-collected vaginal swabs for point of care testing for STIs and microbiome sequencing. We categorized microbial communities and evaluated changes over pregnancy and associations with HIV status and STI diagnosis. Across 242 women (mean age 29, 44% living with HIV, 33% diagnosed with STIs), we identified four main community state types (CSTs): two lactobacillus-dominant CSTs (dominated by Lactobacillus crispatus and Lactobacillus iners respectively) and two diverse, non-lactobacillus-dominant CSTs (one dominated by Gardnerella vaginalis and one by other facultative anaerobes). From first antenatal visit to third trimester (24-36 weeks gestation), 60% of women in the Gardnerella -dominant CST shifted to L actobacillus -dominant CSTs. From third trimester to postpartum (mean 17 days post-delivery), 80% of women in Lactobacillus -dominant CSTs shifted to non-lactobacillus-dominant CSTs with a large proportion in the facultative anaerobe-dominant CST. Microbial composition differed by STI diagnosis (PERMANOVA R 2 = 0.002, p = 0.004), and women diagnosed with an STI were more likely to be categorized with L. iners -dominant or Gardnerella -dominant CSTs. Overall we found a shift toward lactobacillus dominance during pregnancy, and the emergence of a distinct, highly diverse anaerobe-dominant microbiome population in the postpartum period.
Collapse
Affiliation(s)
- Katherine Li
- UCLA Health System: University of California Los Angeles Health System
| | - Fan Li
- UCLA Medical School: University of California Los Angeles David Geffen School of Medicine
| | | | | | - Landon Myer
- University of Cape Town Faculty of Health Sciences
| | - Grace Aldrovandi
- UCLA Medical School: University of California Los Angeles David Geffen School of Medicine
| | | |
Collapse
|
7
|
Compositional Changes in the Vaginal Bacterial Microbiome of Healthy Pregnant Women across the Three Gestational Trimesters in Ismailia, Egypt. Microorganisms 2023; 11:microorganisms11010139. [PMID: 36677431 PMCID: PMC9862816 DOI: 10.3390/microorganisms11010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
The composition of the vaginal microbiome may lead to adverse pregnancy outcomes. Normal pregnancy is associated with changes in the vaginal bacterial community composition, which tend to be more enriched with one or two Lactobacillus species promoting a healthy vagina and favorable birth outcomes. The aim of the current study was to determine compositional changes in the healthy vaginal microbiome composition during the three trimesters of pregnancy in Ismailia, Egypt using Illumina MiSeq sequencing of the V3-V4 region of the 16S rRNA. The phylum Firmicutes and the genus Lactobacillus dominated across the three trimesters of pregnancy. L. iners was the most abundant species. However, L. coleohominis and L. reuteri represented the least dominant vaginal lactobacilli. Core microbiome analyses showed the Lactobacillus genus and L. iners species to have the highest prevalence in all the samples of our study groups. The phylum Firmicutes was found to be negatively correlated with almost all other vaginal phyla during pregnancy. Likewise, a negative correlation between Lactobacillus and almost all other genera was detected, including significant negative correlations with Dialister and Prevotella. Furthermore, negative correlations of L. iners were detected with almost all other species, including a significant negative correlation with L. helveticus, G. vaginalis, S. anginosus, and S. agalactiae.
Collapse
|
8
|
Shabayek S, Abdellah AM, Salah M, Ramadan M, Fahmy N. Alterations of the vaginal microbiome in healthy pregnant women positive for group B Streptococcus colonization during the third trimester. BMC Microbiol 2022; 22:313. [PMID: 36544085 PMCID: PMC9769055 DOI: 10.1186/s12866-022-02730-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Streptococcus agalactiae or group B Streptococcus (GBS) asymptomatically colonizes the genitourinary tracts of up to 30% of pregnant women. Globally, GBS is an important cause of neonatal morbidity and mortality. GBS has recently been linked to adverse pregnancy outcomes. The potential interactions between GBS and the vaginal microbiome composition remain poorly understood. In addition, little is known about the vaginal microbiota of pregnant Egyptian women. RESULTS Using V3-V4 16S rRNA next-generation sequencing, we examined the vaginal microbiome in GBS culture-positive pregnant women (22) and GBS culture-negative pregnant women (22) during the third trimester in Ismailia, Egypt. According to the alpha-diversity indices, the vaginal microbiome of pregnant GBS culture-positive women was significantly more diverse and less homogenous. The composition of the vaginal microbiome differed significantly based on beta-diversity between GBS culture-positive and culture-negative women. The phylum Firmicutes and the family Lactobacillaceae were significantly more abundant in GBS-negative colonizers. In contrast, the phyla Actinobacteria, Tenericutes, and Proteobacteria and the families Bifidobacteriaceae, Mycoplasmataceae, Streptococcaceae, Corynebacteriaceae, Staphylococcaceae, and Peptostreptococcaceae were significantly more abundant in GBS culture-positive colonizers. On the genus and species levels, Lactobacillus was the only genus detected with significantly higher relative abundance in GBS culture-negative status (88%), and L. iners was the significantly most abundant species. Conversely, GBS-positive carriers exhibited a significant decrease in Lactobacillus abundance (56%). In GBS-positive colonizers, the relative abundance of the genera Ureaplasma, Gardnerella, Streptococcus, Corynebacterium, Staphylococcus, and Peptostreptococcus and the species Peptostreptococcus anaerobius was significantly higher. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to the metabolism of cofactors and vitamins, phosphatidylinositol signaling system, peroxisome, host immune system pathways, and host endocrine system were exclusively enriched among GBS culture-positive microbial communities. However, lipid metabolism KEGG pathways, nucleotide metabolism, xenobiotics biodegradation and metabolism, genetic information processing pathways associated with translation, replication, and repair, and human diseases (Staphylococcus aureus infection) were exclusively enriched in GBS culture-negative communities. CONCLUSIONS Understanding how perturbations of the vaginal microbiome contribute to pregnancy complications may result in the development of alternative, targeted prevention strategies to prevent maternal GBS colonization. We hypothesized associations between inferred microbial function and GBS status that would need to be confirmed in larger cohorts.
Collapse
Affiliation(s)
- Sarah Shabayek
- grid.33003.330000 0000 9889 5690Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Asmaa M. Abdellah
- grid.33003.330000 0000 9889 5690Department of Obstetrics and Gynecology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohammed Salah
- grid.440879.60000 0004 0578 4430Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Mohammed Ramadan
- grid.411303.40000 0001 2155 6022Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Nora Fahmy
- grid.33003.330000 0000 9889 5690Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
9
|
Gulavi E, Mwendwa F, Atandi DO, Okiro PO, Hall M, Beiko RG, Adam RD. Vaginal microbiota in women with spontaneous preterm labor versus those with term labor in Kenya: a case control study. BMC Microbiol 2022; 22:270. [DOI: 10.1186/s12866-022-02681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Preterm birth is a global problem with about 12% of births in sub-Saharan Africa occurring before 37 weeks of gestation. Several studies have explored a potential association between vaginal microbiota and preterm birth, and some have found an association while others have not. We performed a study designed to determine whether there is an association with vaginal microbiota and/or placental microbiota and preterm birth in an African setting.
Methods
Women presenting to the study hospital in labor with a gestational age of 26 to 36 weeks plus six days were prospectively enrolled in a study of the microbiota in preterm labor along with controls matched for age and parity. A vaginal sample was collected at the time of presentation to the hospital in active labor. In addition, a placental sample was collected when available. Libraries were constructed using PCR primers to amplify the V6/V7/V8 variable regions of the 16S rRNA gene, followed by sequencing with an Illumina MiSeq machine and analysis using QIIME2 2022.2.
Results
Forty-nine women presenting with preterm labor and their controls were enrolled in the study of which 23 matched case–control pairs had sufficient sequence data for comparison. Lactobacillus was identified in all subjects, ranging in abundance from < 1% to > 99%, with Lactobacillus iners and Lactobacillus crispatus the most common species. Over half of the vaginal samples contained Gardnerella and/or Prevotella; both species were associated with preterm birth in previous studies. However, we found no significant difference in composition between mothers with preterm and those with full-term deliveries, with both groups showing roughly equal representation of different Lactobacillus species and dysbiosis-associated genera. Placental samples generally had poor DNA recovery, with a mix of probable sequencing artifacts, contamination, and bacteria acquired during passage through the birth canal. However, several placental samples showed strong evidence for the presence of Streptococcus species, which are known to infect the placenta.
Conclusions
The current study showed no association of preterm birth with composition of the vaginal community. It does provide important information on the range of sequence types in African women and supports other data suggesting that women of African ancestry have an increased frequency of non-Lactobacillus types, but without evidence of associated adverse outcomes.
Collapse
|
10
|
Geldenhuys J, Redelinghuys MJ, Lombaard HA, Ehlers MM, Cowan D, Kock MM. Diversity of the gut, vaginal and oral microbiome among pregnant women in South Africa with and without pre-eclampsia. Front Glob Womens Health 2022; 3:810673. [PMID: 36188424 PMCID: PMC9525020 DOI: 10.3389/fgwh.2022.810673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Changes in microbial communities are a known characteristic of various inflammatory diseases and have been linked to adverse pregnancy outcomes, such as preterm birth. However, there is a paucity of information regarding the taxonomic composition and/or diversity of microbial communities in pre-eclampsia. The aim of this study was to determine the diversity of the gut, vaginal and oral microbiome in a cohort of South African pregnant women with and without pre-eclampsia. The diversity of the gut, vaginal and oral microbiome was determined by targeted next generation sequencing (NGS) of the V3 and V4 region of the 16S rRNA gene on the Illumina MiSeq platform. Results In this study population, pre-eclampsia was associated with a significantly higher alpha diversity (P = 0.0472; indicated by the Shannon index) in the vaginal microbiome accompanied with a significant reduction in Lactobacillus spp. (P = 0.0275), compared to normotensive pregnant women. Lactobacillus iners was identified as the predominant species of the vaginal microbiome in both cohorts. High inter-individual variation in alpha diversity was observed in the gut and oral microbiome in both cohorts. Although differences in the relative abundance of bacteria at all phylogenetic levels were observed, overall microbial composition of the gut, oral and vaginal microbiome was not significantly different in the pre-eclampsia cohort compared to the normotensive cohort. Conclusion Collectively, a reduction of Lactobacillus spp., and predominance of L. iners in pregnant women with pre-eclampsia could suggest an unstable vaginal microbiome that might predispose pregnant women to develop pre-eclampsia. The lack of significant structural changes in the gut, oral and vaginal microbiome does not suggest that the characterized communities play a role in pre-eclampsia, but could indicate a characteristic unique to the study population. The current study provided novel information on the diversity of the gut, oral and vaginal microbiome among pregnant women in South Africa with and without pre-eclampsia. The current study provides a baseline for further investigations on the potential role of microbial communities in pre-eclampsia.
Collapse
Affiliation(s)
- Janri Geldenhuys
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Mathys J. Redelinghuys
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Hendrik A. Lombaard
- Obstetrics and Gynecology, Rahima Moosa Mother and Child Hospital, Wits Obstetrics and Gynecology Clinical Research Division, School of Clinical Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Marthie M. Ehlers
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| | - Don Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Marleen M. Kock
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
- *Correspondence: Marleen M. Kock
| |
Collapse
|
11
|
Yuan L, Zhang X, Luo B, Li X, Tian F, Yan W, Ni Y. Ethnic Specificity of Species and Strain Composition of Lactobacillus Populations From Mother–Infant Pairs, Uncovered by Multilocus Sequence Typing. Front Microbiol 2022; 13:814284. [PMID: 35387090 PMCID: PMC8979337 DOI: 10.3389/fmicb.2022.814284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
The maternal gut is thought to be the principal source of potential probiotic bacteria in the infant gut during the lactation stage. It is not clear whether facultative symbiont lactobacilli strictly follow vertical transmission from mother to infant and display the ethnic specificity in terms of species and strain composition in mother–infant cohorts. In the present study, a total of 16 former Lactobacillus species (365 strains) and 11 species (280 strains) were retrieved from 31 healthy mother–infant pairs of two ethnic groups, which have never intermarried, respectively. The result showed that the composition and number of Lactobacillus species between the two ethnic groups varied. Among 106 Lacticaseibacillus paracasei strains isolated, 64 representative strains were classified into 27 sequence types (ST) by means of multilocus sequence typing (MLST), of which 20 STs derived from 33 Uighur strains and 7 STs from 31 Li strains, and no homologous recombination event of genes was detected between strains of different ethnic groups. A go-EBURST analysis revealed that except for a few mother–infant pairs in which more than one STs were detected, L. paracasei isolates from the same mother–infant pair were found to be monophyletic in most cases, confirming vertical transfer of Lactobacillus at the strain level. More notably, L. paracasei isolates from the same ethnic group were more likely than strains from another to be incorporated into a specific phylogenetic clade or clonal complex (CC) with similar metabolic profile of glycan, supporting the hypothesis of ethnic specificity to a large degree. Our study provides evidence for the development of personalized probiotic tailored to very homogenous localized populations from the perspective of maternal and child health.
Collapse
Affiliation(s)
- Lixia Yuan
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Xueling Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Baolong Luo
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Xu Li
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Fengwei Tian
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenli Yan
- School of Food Science and Technology, Shihezi University, Shihezi, China
- *Correspondence: Wenli Yan,
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Yongqing Ni,
| |
Collapse
|
12
|
Zheng N, Guo R, Wang J, Zhou W, Ling Z. Contribution of Lactobacillus iners to Vaginal Health and Diseases: A Systematic Review. Front Cell Infect Microbiol 2021; 11:792787. [PMID: 34881196 PMCID: PMC8645935 DOI: 10.3389/fcimb.2021.792787] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Lactobacillus iners, first described in 1999, is a prevalent bacterial species of the vaginal microbiome. As L. iners does not easily grow on de Man-Rogosa-Sharpe agar, but can grow anaerobically on blood agar, it has been initially overlooked by traditional culture methods. It was not until the wide application of molecular biology techniques that the function of L. iners in the vaginal microbiome was carefully explored. L. iners has the smallest genome among known Lactobacilli and it has many probiotic characteristics, but is partly different from other major vaginal Lactobacillus species, such as L. crispatus, in contributing to the maintenance of a healthy vaginal microbiome. It is not only commonly present in the healthy vagina but quite often recovered in high numbers in bacterial vaginosis (BV). Increasing evidence suggests that L. iners is a transitional species that colonizes after the vaginal environment is disturbed and offers overall less protection against vaginal dysbiosis and, subsequently, leads to BV, sexually transmitted infections, and adverse pregnancy outcomes. Accordingly, under certain conditions, L. iners is a genuine vaginal symbiont, but it also seems to be an opportunistic pathogen. Further studies are necessary to identify the exact role of this intriguing species in vaginal health and diseases.
Collapse
Affiliation(s)
- Nengneng Zheng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Renyong Guo
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Jinxi Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Microbe & Host Health, Linyi University, Linyi, China
| |
Collapse
|