1
|
Izadi N, Solár P, Hašanová K, Zamani A, Akbar MS, Mrázová K, Bartošík M, Kazda T, Hrstka R, Joukal M. Breaking boundaries: role of the brain barriers in metastatic process. Fluids Barriers CNS 2025; 22:3. [PMID: 39780275 PMCID: PMC11708195 DOI: 10.1186/s12987-025-00618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Brain metastases (BMs) are the most common intracranial tumors in adults and occur 3-10 times more frequently than primary brain tumors. Despite intensive multimodal therapies, including resection, radiotherapy, and chemotherapy, BMs are associated with poor prognosis and remain challenging to treat. BMs predominantly originate from primary lung (20-56%), breast (5-20%), and melanoma (7-16%) tumors, although they can arise from other cancer types less frequently. The metastatic cascade is a multistep process involving local invasion, intravasation into the bloodstream or lymphatic system, extravasation into normal tissue, and colonization of the distal site. After reaching the brain, circulating tumor cells (CTCs) breach the blood-brain barrier (BBB).The selective permeability of the BBB poses a significant challenge for therapeutic compounds, limiting the treatment efficacy of BMs. Understanding the mechanisms of tumor cell interactions with the BBB is crucial for the development of effective treatments. This review provides an in-depth analysis of the brain barriers, including the BBB, blood-spinal cord barrier, blood-meningeal barrier, blood-arachnoid barrier, and blood-cerebrospinal fluid barrier. It explores the molecular and cellular components of these barriers and their roles in brain metastasis, highlighting the importance of this knowledge for identifying druggable targets to prevent or limit BM formation.
Collapse
Affiliation(s)
- Nasim Izadi
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University, St Anne University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Klaudia Hašanová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Maryam Shahidian Akbar
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Klára Mrázová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Martin Bartošík
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Tomáš Kazda
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic.
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
2
|
Wang Y, Qu R, Du W, Li W, Wang A, Chen Z, Gao H, Wu D, Geng F, Scherman D, Wang X, Shi S, Zou L, Li H. In Situ Bioorthogonal Repair of the Vascular Endothelium Glycocalyx to Treat Acute Lung Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405092. [PMID: 39324256 DOI: 10.1002/smll.202405092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/11/2024] [Indexed: 09/27/2024]
Abstract
In acute lung injury, destruction of the lung endothelial glycocalyx leads to vessel permeabilization and contributes to pulmonary edema and inflammation. Heparan sulfate, which accounts for >70% of glycosaminoglycans in the endothelial glycocalyx, plays a crucial physiological anti-inflammatory role. To treat acute lung injury, it is explored whether a two-step in vivo bioorthogonal chemistry strategy can covalently link intravenously administered heparan sulfate to the lung vascular endothelium and the damaged glycocalyx. First, fusogenic liposomes (EBP-Tz-FLs) carrying the reactive group tetrazine (Tz), and an E-selectin-binding peptide (EBP) to target the lung inflammatory endothelium are administered intravenously. This step aimed to anchor the tetrazine group to the membrane of inflammatory endothelial cells. Second, heparan sulfate (HS-TCO) conjugated to the trans-cyclooctene (TCO) group, which spontaneously reacts with Tz, is injected intravenously, leading to covalent heparan sulfate addition to the vascular endothelium. In a mouse model of acute lung injury, this approach substantially reduced vascular permeability and attenuated lung tissue infiltration. The EBP-Tz-FLs and HS-TCO showed favorable biocompatibility and safety both in vitro and in vivo. The proposed strategy shows good promise in acute lung injury therapy and covalently anchoring functional molecules onto the membrane of target cells.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Rui Qu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Wenxuan Du
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Wei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Anqi Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhoujiang Chen
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research, Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Di Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Daniel Scherman
- Université Paris Cité, CNRS, Inserm, UTCBS, Paris, 75006, France
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Hanmei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
3
|
Diniz-Lima I, Gomes A, Medeiros M, Guimarães-de-Oliveira JC, Ferreira-dos-Santos IM, Barbosa da Silva-Junior E, Morrot A, Nascimento DO, Freire-de-Lima L, de Brito-Gitirana L, Cruz FF, Decote-Ricardo D, Leonel de Matos Guedes H, Freire-de-Lima CG. IL-22 and IL-23 regulate the anticryptococcal response during Cryptococcus deuterogattii infection. iScience 2024; 27:111054. [PMID: 39635124 PMCID: PMC11615251 DOI: 10.1016/j.isci.2024.111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 12/07/2024] Open
Abstract
Cryptococcosis is a neglected fungal disease that causes many deaths annually, is primarily caused by Cryptococcus neoformans and Cryptococcus gattii species. They are environmental fungus that engages lung pneumonia and a severe systemic infection. The rising incidence of affected immunocompetent hosts, particularly by the aggressive Cryptococcus deuterogattii (R265), underscores the urgency to understand factors influencing its dissemination. The immunopathogenesis of R265 infection is incompletely understood. Therefore, we investigate the role of IL-22 and IL-23 cytokines during R265 cryptocococcosis. Our findings highlight the crucial role of IL-22 and IL-23 cytokines in lung barrier homeostasis, preventing excessive lung damage. IL-22 not only prevents neutrophil infiltration and IL-17A production but also facilitates eosinophil lung infiltration. Ultimately, this study contributes vital insights into the selective role of IL-22 and IL-23 cytokines in immune activation and tissue regulation during the aggressive R265 lung and systemic infection.
Collapse
Affiliation(s)
- Israel Diniz-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - Ariel Gomes
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21045-900, Brazil
| | - Mayck Medeiros
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | | | | | - Elias Barbosa da Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - Alexandre Morrot
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21045-900, Brazil
- School of Medicine, Tuberculosis Research Center, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | | | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - Lycia de Brito-Gitirana
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - Fernanda Ferreira Cruz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21045-900, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| |
Collapse
|
4
|
Peterson JM, Smith TA, Rock EP, Magnani JL. Selectins in Biology and Human Disease: Opportunity in E-selectin Antagonism. Cureus 2024; 16:e61996. [PMID: 38983984 PMCID: PMC11232095 DOI: 10.7759/cureus.61996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/11/2024] Open
Abstract
Selectins are cell adhesion proteins discovered in the 1980s. As C-type lectins, selectins contain an essential calcium ion in the ligand-binding pocket and recognize the isomeric tetrasaccharides sialyl Lewisx (sLex) and sialyl Lewisa (sLea). Three selectins, E-selectin, P-selectin, and L-selectin, play distinct, complementary roles in inflammation, hematopoiesis, and tumor biology. They have been implicated in the pathology of diverse inflammatory disorders, and several selectin antagonists have been tested clinically. E-selectin plays a unique role in leukocyte activation, making it an attractive target for intervention, for example, in sickle cell disease (SCD). This review summarizes selectin biology and pathology, structure and ligand binding, and selectin antagonists that have reached clinical testing with an emphasis on E-selectin.
Collapse
Affiliation(s)
| | | | - Edwin P Rock
- Development, GlycoMimetics, Inc., Rockville, USA
| | - John L Magnani
- Research and Development, GlycoTech Corporation, Rockville, USA
| |
Collapse
|
5
|
Wang M, Chen S, He X, Yuan Y, Wei X. Targeting inflammation as cancer therapy. J Hematol Oncol 2024; 17:13. [PMID: 38520006 PMCID: PMC10960486 DOI: 10.1186/s13045-024-01528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
Inflammation has accompanied human beings since the emergence of wounds and infections. In the past decades, numerous efforts have been undertaken to explore the potential role of inflammation in cancer, from tumor development, invasion, and metastasis to the resistance of tumors to treatment. Inflammation-targeted agents not only demonstrate the potential to suppress cancer development, but also to improve the efficacy of other therapeutic modalities. In this review, we describe the highly dynamic and complex inflammatory tumor microenvironment, with discussion on key inflammation mediators in cancer including inflammatory cells, inflammatory cytokines, and their downstream intracellular pathways. In addition, we especially address the role of inflammation in cancer development and highlight the action mechanisms of inflammation-targeted therapies in antitumor response. Finally, we summarize the results from both preclinical and clinical studies up to date to illustrate the translation potential of inflammation-targeted therapies.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
6
|
Rodrigues DB, Reis RL, Pirraco RP. Modelling the complex nature of the tumor microenvironment: 3D tumor spheroids as an evolving tool. J Biomed Sci 2024; 31:13. [PMID: 38254117 PMCID: PMC10804490 DOI: 10.1186/s12929-024-00997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer remains a serious burden in society and while the pace in the development of novel and more effective therapeutics is increasing, testing platforms that faithfully mimic the tumor microenvironment are lacking. With a clear shift from animal models to more complex in vitro 3D systems, spheroids emerge as strong options in this regard. Years of development have allowed spheroid-based models to better reproduce the biomechanical cues that are observed in the tumor-associated extracellular matrix (ECM) and cellular interactions that occur in both a cell-cell and cell-ECM manner. Here, we summarize some of the key cellular interactions that drive tumor development, progression and invasion, and how successfully are these interactions recapitulated in 3D spheroid models currently in use in the field. We finish by speculating on future advancements in the field and on how these can shape the relevance of spherical 3D models for tumor modelling.
Collapse
Affiliation(s)
- Daniel B Rodrigues
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal.
| |
Collapse
|
7
|
Lopez-Cavestany M, Wright OA, Cassidy AM, Carter AT, King MR. Dual Affinity Nanoparticles for the Transport of Therapeutics from Carrier Cells to Target Cells under Physiological Flow Conditions. ACS OMEGA 2023; 8:42748-42761. [PMID: 38024679 PMCID: PMC10652824 DOI: 10.1021/acsomega.3c05605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
In this study, a novel two-stage nanoparticle delivery platform was developed based on the dual functionalization of a liposome with moieties that have fundamentally different strengths of adhesion and binding kinetics. The essential concept of this system is that the nanoparticles are designed to loosely bind to the carrier cell until they come into contact with the target cell, to which they bind with greater strength. This allows the nanoparticle to be transferred from one cell to another, circulating for longer periods of time in the blood and delivering the therapeutic agent to the target circulating tumor cell. Liposomes were prepared using the lipid cake and extrusion technique, then functionalized with E-selectin (ES), anti-cell surface vimentin antibody fragments, and TRAIL via click chemistry. The binding of dual affinity (DA) liposomes was confirmed with the neutrophil-like cell line PLB985, the colorectal cancer cell line HCT116, and healthy granulocytes isolated from peripheral whole blood under physiologically relevant fluid shear stress (FSS) in a cone-and-plate viscometer. Transfer of the DA liposomes from PLB985 to HCT116 cells under FSS was greater compared to all of the control liposome formulations. Additionally, DA liposomes demonstrated enhanced apoptotic effects on HCT116 cells in whole blood under FSS, surpassing the efficacy of the ES/TRAIL liposomes previously developed by the King Lab.
Collapse
Affiliation(s)
- Maria Lopez-Cavestany
- Department of Biomedical
Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Olivia A. Wright
- Department of Biomedical
Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ava M. Cassidy
- Department of Biomedical
Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Alexandria T. Carter
- Department of Biomedical
Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Michael R. King
- Department of Biomedical
Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
8
|
Liang C, Zhang B, Li R, Guo S, Fan X. Network pharmacology -based study on the mechanism of traditional Chinese medicine in the treatment of glioblastoma multiforme. BMC Complement Med Ther 2023; 23:342. [PMID: 37759283 PMCID: PMC10523639 DOI: 10.1186/s12906-023-04174-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is one of the most common primary malignant brain tumors. Yi Qi Qu Yu Jie Du Fang (YYQQJDF) is a traditional Chinese medicine (TCM) prescription for GBM. The present study aimed to use a network pharmacology method to analyze the underlying mechanism of YQQYJDF in treating GBM. METHODS GBM sample data, active ingredients and potential targets of YQQYJDF were obtained from databases. R language was used to screen differentially expressed genes (DEGs) between GBM tissues and normal tissues, and to perform enrichment analysis and weighted gene coexpression network analysis (WGCNA). The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was used to perform a protein‒protein interaction (PPI) analysis. A Venn diagram was used to obtain the core target genes of YQQYJDF for GBM treatment. Molecular docking was used to verify the binding between the active ingredient molecules and the proteins corresponding to the core target genes. Cell proliferation assays and invasion assays were used to verify the effect of active ingredients on the proliferation and invasion of glioma cells. RESULTS A total of 73 potential targets of YQQYJDF in the treatment of GBM were obtained. Enrichment analyses showed that the biological processes and molecular functions involved in these target genes were related to the activation of the G protein-coupled receptor (GPCR) signaling pathway and the regulation of hypoxia. The neuroactive ligand‒receptor pathway, the cellular senescence pathway, the calcium signaling pathway, the cell cycle pathway and the p53 signaling pathway might play important roles. Combining the results of WGCNA and PPI analysis, five core target genes and their corresponding four core active ingredients were screened. Molecular docking indicated that the core active ingredient molecules and the proteins corresponding to the core target genes had strong binding affinities. Cell proliferation and invasion assays showed that the core active ingredients of YQQYJDF significantly inhibited the proliferation and invasion of glioma cells (P < 0.01). CONCLUSIONS The present study predicted the possible active ingredients and targets of YQQYJDF in treating GBM, and analyzed its possible mechanism. These results may provide a basis and ideas for further research.
Collapse
Affiliation(s)
- Chen Liang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79108, Freiburg, Germany.
| | - Binbin Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruichun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shiwen Guo
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoxuan Fan
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China.
| |
Collapse
|
9
|
Kwiatkowska K, Rhone P, Koziorzemska P, Formanowicz D, Ruszkowska-Ciastek B. Complex Analysis of Endothelial Markers as Potential Prognostic Indicators in Luminal Invasive Breast Carcinoma Patients: Outcomes of a Six-Year Observational Study. Biomedicines 2023; 11:2246. [PMID: 37626742 PMCID: PMC10452676 DOI: 10.3390/biomedicines11082246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Metastasis is a complex process in which the primary cancer cells spread to a distant organ or organs, creating a secondary tumor location, which in many patients leads to treatment failure and death. The aim of the present study was to assess the association of endothelial markers (i.e., sP-selectin, sE-selectin and von Willebrand factor) with the leptin-to-adiponectin ratio (LAR) and to perform an analysis of the predictive value on the survival of patients with luminal A and B invasive breast cancer (IBrC). (2) Methods: The trial included 70 treatment-naïve early-stage IBrC patients with a median age of 54.5 years and a median tumor diameter of 1.5 cm. The median duration of follow-up was 5.7 years, with a relapse rate of 15.71%. Specific immunoenzymatic kits were used to determine pre- and post-treatment concentrations of analyzed factors. (3) Results: Regardless of the treatment pattern, endothelial marker concentrations and the LAR increased after adjuvant treatment. The follow-up showed a significantly higher relapse rate in patients with IBrC who had higher pre-treatment sP-selectin and post-treatment LAR levels. According to receiver operating characteristic (ROC) analysis, a post-treatment LAR with a sensitivity of 88.9% and specificity of 57.9% discriminating cases with or without disease relapse. Additionally, a higher risk of breast cancer relapse was associated with a lower post-treatment sP-selectin concentration. (4) Conclusions: Our results showed mainly that pre-treatment sP-selectin levels and post-treatment LAR may have value as prognostic indicators and may contribute to predicting the future outcomes in patients with early-stage IBrC.
Collapse
Affiliation(s)
- Katarzyna Kwiatkowska
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland;
| | - Piotr Rhone
- Clinical Ward of Breast Cancer and Reconstructive Surgery, Oncology Centre Prof. F. Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
| | - Paulina Koziorzemska
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland;
| | - Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants-National Research, 62-064 Plewiska, Poland
| | - Barbara Ruszkowska-Ciastek
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
10
|
Sergeeva E, Ruksha T, Fefelova Y. Effects of Obesity and Calorie Restriction on Cancer Development. Int J Mol Sci 2023; 24:ijms24119601. [PMID: 37298551 DOI: 10.3390/ijms24119601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The risk of malignant tumor development is increasing in the world. Obesity is an established risk factor for various malignancies. There are many metabolic alterations associated with obesity which promote cancerogenesis. Excessive body weight leads to increased levels of estrogens, chronic inflammation and hypoxia, which can play an important role in the development of malignancies. It is proved that calorie restriction can improve the state of patients with various diseases. Decreased calorie uptake influences lipid, carbohydrate and protein metabolism, hormone levels and cell processes. Many investigations have been devoted to the effects of calorie restriction on cancer development in vitro and in vivo. It was revealed that fasting can regulate the activity of the signal cascades including AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), p53, mTOR, insulin/ insulin-like growth factor 1 (IGF1) and JAK-STAT. Up- or down-regulation of the pathways results in the decrease of cancer cell proliferation, migration and survival and the increase of apoptosis and effects of chemotherapy. The aim of this review is to discuss the connection between obesity and cancer development and the mechanisms of calorie restriction influence on cancerogenesis that stress the importance of further research of calorie restriction effects for the inclusion of this approach in clinical practice.
Collapse
Affiliation(s)
- Ekaterina Sergeeva
- Department of Pathological Physiology, Krasnoyarsk State Medical University, No. 1 P. Zheleznyaka Str., 660022 Krasnoyarsk, Russia
| | - Tatiana Ruksha
- Department of Pathological Physiology, Krasnoyarsk State Medical University, No. 1 P. Zheleznyaka Str., 660022 Krasnoyarsk, Russia
| | - Yulia Fefelova
- Department of Pathological Physiology, Krasnoyarsk State Medical University, No. 1 P. Zheleznyaka Str., 660022 Krasnoyarsk, Russia
| |
Collapse
|
11
|
Sakibuzzaman M, Mahmud S, Afroze T, Fathma S, Zakia UB, Afroz S, Zafar F, Hossain M, Barua A, Akter S, Chowdhury HI, Ahsan E, Eshan SH, Fariza TT. Pathology of breast cancer metastasis and a view of metastasis to the brain. Int J Neurosci 2023; 133:544-554. [PMID: 34044732 DOI: 10.1080/00207454.2021.1935929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Despite the advances in diagnosis and management of breast cancer, metastasis has been responsible for the staggering percentage of breast cancer-related death. Mortality threat can be explained mostly by the lack of proper understanding of the diversity of pathological features and underlying mechanism of breast cancer metastasis and effective targeted therapy. Breast cancer stem cells (BCSCs) are the potential source of tumor cells spread to distant organs. BCSCs targeted therapy can suppress the breast cancer progression to metastasis. Spreading of tumor cells to the bone, lung, liver, and brain occurs through a distinct non-random process; called metastasis organotropism. Recently, brain metastasis in breast cancer patients has been detected more frequently, causing a significant clinical burden. BRCA1 and BRCA2 associated breast cancers carry a remarkably higher propensity of CNS metastasis. BRCA1 and BRCA2 associated breast cancers commonly have the propensity to be the triple-negative (TN) and hormone receptors (HR)-positive/human epidermal growth factor receptor 2 (HER2)-negative molecular subtypes, respectively. Regardless of molecular subtypes, metastasis is most commonly evident at the bone. Heterogeneity is a critical pathological feature, leads to therapeutic resistance. BCSCs, biomarkers expression patterns, and mutations contribute to heterogeneity. In this paper, we discuss crucial pathological features of breast cancer metastasis, emphasizing metastasis organotropism and heterogeneity; and mechanisms of breast cancer metastasis, highlighting the pathways of metastasis to the brain. We consider that this paper reinforces future research areas and benefits the general readers, physicians, and researchers to identify potential areas to develop targeted therapies.
Collapse
Affiliation(s)
- Md Sakibuzzaman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Shahriar Mahmud
- Sher-E-Bangla Medical College and Hospital, Barisal, Bangladesh
| | | | - Sawsan Fathma
- Bangladesh Medical College and Hospital, Dhaka, Bangladesh
| | | | - Sabrina Afroz
- Faridpur Medical College and Hospital, Faridpur, Bangladesh
| | - Farzina Zafar
- Shaheed Suhrawardy Medical College and Hospital, Dhaka, Bangladesh
| | - Maksuda Hossain
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Amit Barua
- Institute of Applied Health Sciences, Chattogram, Bangladesh
| | - Sabiha Akter
- Sher-E-Bangla Medical College and Hospital, Barisal, Bangladesh
| | | | - Eram Ahsan
- Medical College for Women and Hospital, Dhaka, Bangladesh
| | - Shayet Hossain Eshan
- Department of Internal Medicine, Amita Health Saint Joseph Hospital Chicago, Chicago, IL, USA
| | | |
Collapse
|
12
|
Yang B, Yin S, Zhou Z, Huang L, Xi M. Inflammation Control and Tumor Growth Inhibition of Ovarian Cancer by Targeting Adhesion Molecules of E-Selectin. Cancers (Basel) 2023; 15:cancers15072136. [PMID: 37046797 PMCID: PMC10093113 DOI: 10.3390/cancers15072136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Objective: The aim is to use E-selectin-binding peptide (ESBP) to actively recognize E-selectin, so allowing a drug delivery system to actively recognize the cells and inhibit the tumor growth of ovarian cancer by targeting adhesion molecules of E-selectin. An ovarian-cancer-directed drug delivery system was designed based on the high affinity of E-selectin-binding peptide (ESBP) to E-selectin. The effects and mechanisms of ESBP-bovine serum albumin (BSA) polymerized nanoparticles were investigated. Methods: BSA polymerized nanoparticles (BSANPs) and ESBP-BSANPs-paclitaxel (PTX) were prepared and their characteristics were measured. The in vitro targetability and cytotoxicity of ESBP-BSANPs-PTX were evaluated through in vitro drug uptake and MTT experiments. The mechanisms of ESBP-BSANPs-PTX were investigated via apoptosis, wound healing and immunohistochemistry assays. The in vivo targeting properties and drug effects were observed in a mouse tumor-bearing model. Results: In vitro experiments revealed an increase in the uptake of ESBP-BSANPs-FITC. The cytotoxicity of ESBP-BSANPs-PTX in A2780/CP70, HUVEC, RAW264.7 and ID8 cells was higher than that of PTX alone. ESBP-BSANPs-PTX increased cell apoptosis in a dose-dependent manner and exhibited a greater ability to inhibit cell migration than BSANPs-PTX. In vivo experiments demonstrated the targetability and good effects of ESBP-BSANPs. Conclusions: ESBP-BSANPs-PTX improve PTX targetability, provide tumor-specific and potent therapeutic activities, and show promise for the development of agents in preclinical epithelial ovarian cancer.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Shanmei Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zishuo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Luyao Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Mingrong Xi
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| |
Collapse
|
13
|
Jia Y, Chen S, Wang C, Sun T, Yang L. Hyaluronic acid-based nano drug delivery systems for breast cancer treatment: Recent advances. Front Bioeng Biotechnol 2022; 10:990145. [PMID: 36091467 PMCID: PMC9449492 DOI: 10.3389/fbioe.2022.990145] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy among females worldwide, and high resistance to drugs and metastasis rates are the leading causes of death in BC patients. Releasing anti-cancer drugs precisely to the tumor site can improve the efficacy and reduce the side effects on the body. Natural polymers are attracting extensive interest as drug carriers in treating breast cancer. Hyaluronic acid (HA) is a natural polysaccharide with excellent biocompatibility, biodegradability, and non-immunogenicity and is a significant component of the extracellular matrix. The CD44 receptor of HA is overexpressed in breast cancer cells and can be targeted to breast tumors. Therefore, many researchers have developed nano drug delivery systems (NDDS) based on the CD44 receptor tumor-targeting properties of HA. This review examines the application of HA in NDDSs for breast cancer in recent years. Based on the structural composition of NDDSs, they are divided into HA NDDSs, Modified HA NDDSs, and HA hybrid NDDSs.
Collapse
Affiliation(s)
- Yufeng Jia
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Siwen Chen
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, China
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Chenyu Wang
- Department of Information Management, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Tao Sun
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
- *Correspondence: Tao Sun, ; Liqun Yang,
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
- *Correspondence: Tao Sun, ; Liqun Yang,
| |
Collapse
|
14
|
Serum and Pleural Soluble Cell Adhesion Molecules in Mesothelioma Patients: A Retrospective Cohort Study. Cancers (Basel) 2022; 14:cancers14122825. [PMID: 35740491 PMCID: PMC9221497 DOI: 10.3390/cancers14122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
Mesothelioma, a malignant neoplasm of mesothelial cells, has overall poor prognosis. Cell adhesion molecules (CAMs) are proteins that contribute to the immune response. In this study the clinical utility and prognostic significance of serum and pleural fluid soluble CAM (sCAM) levels were assessed in patients with mesothelioma. Mesothelioma patients were retrospectively recruited (2016-2020). Clinical characteristics, serum and pleural sCAM levels (sE-cadherin, sE-selectin, intercellular adhesion molecule 1 (sICAM-1) and vascular cell adhesion molecule 1 (sVCAM-1)) and histopathological characteristics were gathered. A total of 51 healthy controls were also recruited for a secondary cross-sectional analysis. 92 mesothelioma patients were analyzed (mean age 64.5 years, 87% males, performance status 0-2). Patients with increased pleural sE-cadherin had higher risk for disease progression (adjusted HR 1.11 (1.02, 1.20), p = 0.013). Serum and pleural sE-selectin were decreased in patients with high-grade mesothelioma. Patients with increased serum or pleural sE-selectin levels had lower risk for death (adjusted HR 0.88 (0.81, 0.96), p = 0.003; 0.90 (0.82, 0.99), p = 0.039, respectively). Serum sE-cadherin, sE-selectin and sICAM-1 levels were significantly increased in mesothelioma patients compared to healthy controls. Further studies are needed to indicate the clinical utility of serum and pleural sCAMs in mesothelioma patients.
Collapse
|
15
|
Al-Lamki RS, Wang J, Pober JS, Bradley JR. Co-Expression and Functional Interactions of Death Receptor 3 and E-Selectin in Clear Cell Renal Cell Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:722-736. [PMID: 35063404 DOI: 10.1016/j.ajpath.2021.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Similar to the behavior of inflamed tubular epithelial cells, clear cell renal cell carcinoma (ccRCC) cells express death receptor 3 (DR3 or TNFSFR25) in situ, and expression increases with tumor grade. Surprisingly, E-selectin, which can be induced in endothelial cells by DR3 signaling, is also expressed by ccRCC cells and increases with tumor grade. In ccRCC organ cultures, addition of tumor necrosis factor-like 1A (TL1A or TNFSF15), the ligand for DR3, activates NF-κB and mitogen-activated protein kinases, induces both DR3 and E-selectin expression in an NF-κB-dependent manner, and promotes cell cycle entry. DR3 immunoprecipitated from ccRCC tissue contains sialyl Lewis X moieties (the ligand recognized by E-selectin), proximity ligation assays reveal DR3, and E-selectin interacts on ccRCC cells. Similar to that with the addition of TL1A, the addition of soluble E-selectin to ccRCC organ cultures activates NF-κB and mitogen-activated protein kinases in ccRCC cells and increases both DR3 and E-selectin expression and cell-cycle entry. In contrast, normal renal tubular epithelium, which poorly expresses DR3, is minimally responsive to either of these ligands. These data suggest a functional role for autocrine/paracrine DR3/E-selectin interactions in ccRCC and its progression, revealing a potential new target for therapeutic intervention.
Collapse
Affiliation(s)
- Rafia S Al-Lamki
- Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom.
| | - Jun Wang
- Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Jordan S Pober
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - John R Bradley
- Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Ruan Y, Chen L, Xie D, Luo T, Xu Y, Ye T, Chen X, Feng X, Wu X. Mechanisms of Cell Adhesion Molecules in Endocrine-Related Cancers: A Concise Outlook. Front Endocrinol (Lausanne) 2022; 13:865436. [PMID: 35464064 PMCID: PMC9021432 DOI: 10.3389/fendo.2022.865436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy is a critical treatment for endocrine-related cancers; however, chemoresistance and disease recurrence remain a challenge. The interplay between cancer cells and the tumor microenvironment via cell adhesion molecules (CAMs) promotes drug resistance, known as cell adhesion-mediated drug resistance (CAM-DR). CAMs are cell surface molecules that facilitate cell-to-cell or cell-to-extracellular matrix binding. CAMs exert an adhesion effect and trigger intracellular signaling that regulates cancer cell stemness maintenance, survival, proliferation, metastasis, epithelial-mesenchymal transition, and drug resistance. To understand these mechanisms, this review focuses on the role of CD44, cadherins, selectins, and integrins in CAM-DR in endocrine-related cancers.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yongsheng Ruan, ; Xuedong Wu,
| | - Libai Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danfeng Xie
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Luo
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiqi Xu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Ye
- Department of Endocrinology, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, China
| | - Xiaona Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yongsheng Ruan, ; Xuedong Wu,
| |
Collapse
|
17
|
Lung-Derived Selectins Enhance Metastatic Behavior of Triple Negative Breast Cancer Cells. Biomedicines 2021; 9:biomedicines9111580. [PMID: 34829810 PMCID: PMC8615792 DOI: 10.3390/biomedicines9111580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022] Open
Abstract
The lung is one of the deadliest sites of breast cancer metastasis, particularly for triple negative breast cancer (TNBC). We have previously shown that the lung produces several soluble factors that may enhance the metastatic behavior of TNBC, including E-, L-, and P-selectin. In this paper, we hypothesize that lung-derived selectins promote TNBC metastatic behavior and may serve as a potential therapeutic target. Lungs were isolated from mice and used to generate lung-conditioned media (CM). Lung-derived selectins were immunodepleted and TNBC migration and proliferation were assessed in response to native or selectin-depleted lung-CM. A 3D ex vivo pulmonary metastasis assay (PuMA) was used to assess the metastatic progression of TNBC in the lungs of wild-type versus triple-selectin (ELP-/-) knockout mice. We observed that individual lung-derived selectins enhance in vitro migration (p ≤ 0.05), but not the proliferation of TNBC cells, and that ex vivo metastatic progression is reduced in the lungs of ELP-/- mice compared to wild-type mice (p ≤ 0.05). Treatment with the pan-selectin inhibitor bimosiamose reduced in vitro lung-specific TNBC migration and proliferation (p ≤ 0.05). Taken together, these results suggest that lung-derived selectins may present a potential therapeutic target against TNBC metastasis. Future studies are aimed at elucidating the pro-metastatic mechanisms of lung-derived selectins and developing a lung-directed therapeutic approach.
Collapse
|
18
|
Broholm M, Degett TH, Furbo S, Fiehn AMK, Bulut M, Litman T, Eriksen JO, Troelsen JT, Gjerdrum LMR, Gögenur I. Colonic Stent as Bridge to Surgery for Malignant Obstruction Induces Gene Expressional Changes Associated with a More Aggressive Tumor Phenotype. Ann Surg Oncol 2021; 28:8519-8531. [PMID: 34467497 DOI: 10.1245/s10434-021-10226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/25/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Colonic stent is recommended as a bridge to elective surgery for malignant obstruction to improve short-term clinical outcomes for patients with colorectal cancer. However, since the oncological outcomes remain controversial, this study aimed to investigate the impact of self-expandable metallic stent (SEMS) on the tumor microenvironment. METHODS Patients treated with colonic stent as a bridge to surgery from 2010 to 2015 were identified from hospital records. Tumor biopsies and resected tumor samples of the eligible patients were retrieved retrospectively. Gene expression analysis was performed using the NanoString nCounter PanCancer IO 360 gene expression panel. RESULTS Of the 164 patients identified, this study included 21 who underwent colonic stent placement as a bridge to elective surgery. Gene expression analysis revealed 82 differentially expressed genes between pre- and post-intervention specimens, of which 72 were upregulated and 10 downregulated. Among the significantly upregulated genes, 46 are known to have protumor functions, of which 26 are specifically known to induce tumorigenic mechanisms such as proliferation, migration, invasion, angiogenesis, and inflammation. In addition, ten differentially expressed genes were identified that are known to promote antitumor functions. CONCLUSION SEMS induces gene expressional changes in the tumor microenvironment that are associated with tumor progression in colorectal cancer and may potentiate a more aggressive phenotype. Future studies are warranted to establish optimal timing of surgery after SEMS insertion in patients with obstructive colorectal cancer.
Collapse
Affiliation(s)
- Malene Broholm
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark. .,Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Thea Helene Degett
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark
| | - Sara Furbo
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark
| | - Anne-Marie Kanstrup Fiehn
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark.,Department of Pathology, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mustafa Bulut
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Litman
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Ole Eriksen
- Department of Pathology, Zealand University Hospital, Køge, Denmark
| | - Jesper T Troelsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Lise Mette Rahbek Gjerdrum
- Department of Pathology, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Rhone P, Zarychta E, Bielawski K, Ruszkowska-Ciastek B. Pre-surgical level of von Willebrand factor as an evident indicator of breast cancer recurrence. Cancer Biomark 2021; 29:359-372. [PMID: 32716345 DOI: 10.3233/cbm-191096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Endothelial and platelet activation as well as a disruption of haemostatic balance are crucial in cancer-dependent venous thromboembolism development. OBJECTIVE The aim of this study was to investigate the influence of von Willebrand factor (VWF), sE-selectin, sP-selectin as well as VWF/sE-selectin and sP-selectin/sE-selectin ratios on the probability of disease relapse in invasive breast carcinoma (IBrC) cases. METHODS Eighty-four patients with IA-IIB stage of IBrC who passed a comprehensive clinicopathologic evaluation were included in the study. Follow-up was completed in all patients with a 15.48 % recurrence rate. An immunoassay of VWF antigen, sE-selectin, sP-selectin, as well as an immunohistochemistry of oestrogen and progesterone receptors, human epidermal growth factor receptor 2 (HER2) and Ki67 was performed in all cases. RESULTS The VWF/sE-selectin ratio was significantly higher in patients with poorly differentiated tumours than in those with high-differentiated tumours. A positive correlation between VWF concentration and tumour grade was noted. Eleven of 13 events happened in patients with VWF value below 600 mU/mL with recurrence rate of 25%, but only two events occurred in subject with VWF values above the 600 mU/mL (5%; P= 0.0028). CONCLUSIONS Our study show that VWF could be considered as a suitable biomarker of breast cancer relapse.
Collapse
Affiliation(s)
- Piotr Rhone
- Clinical Ward of Breast Cancer and Reconstructive Surgery, Oncology Centre Prof. F. Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Elżbieta Zarychta
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Kornel Bielawski
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Barbara Ruszkowska-Ciastek
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| |
Collapse
|
20
|
Godinho-Pereira J, Garcia AR, Figueira I, Malhó R, Brito MA. Behind Brain Metastases Formation: Cellular and Molecular Alterations and Blood-Brain Barrier Disruption. Int J Mol Sci 2021; 22:7057. [PMID: 34209088 PMCID: PMC8268492 DOI: 10.3390/ijms22137057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) brain metastases is a life-threatening condition to which accounts the poor understanding of BC cells' (BCCs) extravasation into the brain, precluding the development of preventive strategies. Thus, we aimed to unravel the players involved in the interaction between BCCs and blood-brain barrier (BBB) endothelial cells underlying BBB alterations and the transendothelial migration of malignant cells. We used brain microvascular endothelial cells (BMECs) as a BBB in vitro model, under conditions mimicking shear stress to improve in vivo-like BBB features. Mixed cultures were performed by the addition of fluorescently labelled BCCs to distinguish individual cell populations. BCC-BMEC interaction compromised BBB integrity, as revealed by junctional proteins (β-catenin and zonula occludens-1) disruption and caveolae (caveolin-1) increase, reflecting paracellular and transcellular hyperpermeability, respectively. Both BMECs and BCCs presented alterations in the expression pattern of connexin 43, suggesting the involvement of the gap junction protein. Myosin light chain kinase and phosphorylated myosin light chain were upregulated, revealing the involvement of the endothelial cytoskeleton in the extravasation process. β4-Integrin and focal adhesion kinase were colocalised in malignant cells, reflecting molecular interaction. Moreover, BCCs exhibited invadopodia, attesting migratory properties. Collectively, hub players involved in BC brain metastases formation were unveiled, disclosing possible therapeutic targets for metastases prevention.
Collapse
Affiliation(s)
- Joana Godinho-Pereira
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.G.-P.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana Rita Garcia
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.G.-P.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Inês Figueira
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.G.-P.); (A.R.G.); (I.F.)
- Farm-ID—Faculty of Pharmacy Association for Research and Development, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rui Malhó
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Campo Grande 016, 1749-016 Lisbon, Portugal;
| | - Maria Alexandra Brito
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.G.-P.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
21
|
Liu Q, Liu L, Mo C, Zhou X, Chen D, He Y, He H, Kang W, Zhao Y, Jin G. Polyethylene glycol-coated ultrasmall superparamagnetic iron oxide nanoparticles-coupled sialyl Lewis X nanotheranostic platform for nasopharyngeal carcinoma imaging and photothermal therapy. J Nanobiotechnology 2021; 19:171. [PMID: 34103070 PMCID: PMC8186191 DOI: 10.1186/s12951-021-00918-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a type of head and neck malignant tumor with a high incidence in specific regional distribution, and its traditional therapies face some challenges. It has become an urgent need to seek new therapeutic strategies without or with low toxicity and side effects. At present, more and more researchers has been attracting attention by nanotheranostic platform. Therefore, our team synthesized the polyethylene glycol-coated ultrasmall superparamagnetic iron oxide nanoparticles-coupled sialyl Lewis X (USPIO-PEG-sLex) nanotheranostic platform with high temperature pyrolysis. Results The USPIO-PEG-sLex nanoparticles had excellent photothermal conversion property, and the temperature of USPIO-PEG-sLex nanoparticles solution increased with its concentration and power density of near-infrared (NIR) on 808 nm wavelengths. Five USPIO-PEG-sLex nanoparticles with different concentrations of 0 mg/ml, 0.025 mg/ml, 0.05 mg/ml, 0.1 mg/ml and 0.2 mg/ml were prepared. The biological toxicity results showed that the viability of NPC 5-8F cells is related to the concentration of USPIO-PEG-sLex nanoparticles and the culture time (P < 0.001). The results of photothermal therapy (PTT) in vitro indicated that the viability of 5-8F cells decreased significantly with the concentration of USPIO-PEG-sLex nanoparticles increases (P < 0.001), and the viability of NPC 5-8F cells were 91.04% ± 5.20%, 77.83% ± 3.01%, 73.48% ± 5.55%, 59.50% ± 10.98%, 17.11% ± 3.14%, respectively. The USPIO-PEG-sLex nanoparticles could target the tumor area, and reduce the T2* value of tumor tissue. The T2* values of tumor pre- and post-injection were 30.870 ± 5.604 and 18.335 ± 4.351, respectively (P < 0.001). In addition, USPIO-PEG-sLex nanoparticles as a photothermal agent for PTT could effectively inhibit tumor progression. The ratio of volume change between tail vein injection group, control group, nanoparticles without laser irradiation group and blank group after 5 treatments were 3.04 ± 0.57, 5.80 ± 1.06, 8.09 ± 1.96, 7.89 ± 2.20, respectively (P < 0.001). Conclusions Our synthesized USPIO-PEG-sLex nanotheranostic platform, and it may be become a new strategy for the treatment of NPC. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Qinmin Liu
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Lijuan Liu
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Chunwei Mo
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Xiao Zhou
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Dongming Chen
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Yu He
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Hailu He
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Wei Kang
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Yongfeng Zhao
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, 39217, USA
| | - Guanqiao Jin
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China.
| |
Collapse
|
22
|
Control of Tumor Progression by Angiocrine Factors. Cancers (Basel) 2021; 13:cancers13112610. [PMID: 34073394 PMCID: PMC8198241 DOI: 10.3390/cancers13112610] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor progression, therapy resistance and metastasis are profoundly controlled by the tumor microenvironment. The contribution of endothelial cells to tumor progression was initially only attributed to the formation of new blood vessels (angiogenesis). Research in the last decade has revealed however that endothelial cells control their microenvironment through the expression of membrane-bound and secreted factors. Such angiocrine functions are frequently hijacked by cancer cells, which deregulate the signaling pathways controlling the expression of angiocrine factors. Here, we review the crosstalk between cancer cells and endothelial cells and how this contributes to the cancer stem cell phenotype, epithelial to mesenchymal transition, immunosuppression, remodeling of the extracellular matrix and intravasation of cancer cells into the bloodstream. We also address the long-distance crosstalk of a primary tumor with endothelial cells at the pre-metastatic niche and how this contributes to metastasis.
Collapse
|
23
|
Yan D, Chen Y. Tumor mutation burden (TMB)-associated signature constructed to predict survival of lung squamous cell carcinoma patients. Sci Rep 2021; 11:9020. [PMID: 33907270 PMCID: PMC8079676 DOI: 10.1038/s41598-021-88694-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Lung squamous cell carcinoma (LUSC) is a common type of lung cancer with high incidence and mortality rate. Tumor mutational burden (TMB) is an emerging biomarker for selecting patients with non-small cell lung cancer (NSCLC) for immunotherapy. This study aimed to reveal TMB involved in the mechanisms of LUSC and develop a model to predict the overall survival of LUSC patients. The information of patients with LUSC were obtained from the cancer genome atlas database (TCGA). Differentially expressed genes (DEGs) between low- and the high-TMB groups were identified and taken as nodes for the protein-protein interaction (PPI) network construction. Gene oncology (GO) enrichment analysis and gene set enrichment analysis (GSEA) were used to investigate the potential molecular mechanism. Then, we identified the factors affecting the prognosis of LUSC through cox analysis, and developed a risk score signature. Kaplan-Meier method was conducted to analyze the difference in survival between the high- and low-risk groups. We constructed a nomogram based on the risk score model and clinical characteristics to predict the overall survival of patients with LUSC. Finally, the signature and nomogram were further validated by using the gene expression data downloaded from the Gene Expression Omnibus (GEO) database. 30 DEGs between high- and low-TMB groups were identified. PPI analysis identified CD22, TLR10, PIGR and SELE as the hub genes. Cox analysis indicated that FAM107A, IGLL1, SELE and T stage were independent prognostic factors of LUSC. Low-risk scores group lived longer than that of patients with high-risk scores in LUSC. Finally, we built a nomogram that integrated the clinical characteristics (TMN stage, age, gender) with the three-gene signature to predict the survival probability of LUSC patients. Further verification in the GEO dataset. TMB might contribute to the pathogenesis of LUSC. TMB-associated genes can be used to develope a model to predict the OS of lung squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Dan Yan
- Department of Respiratory, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, No. 365, East Renmin Road, Jinhua, 321000, Zhejiang Province, People's Republic of China.
| | - Yi Chen
- Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| |
Collapse
|
24
|
Adeshakin FO, Adeshakin AO, Afolabi LO, Yan D, Zhang G, Wan X. Mechanisms for Modulating Anoikis Resistance in Cancer and the Relevance of Metabolic Reprogramming. Front Oncol 2021; 11:626577. [PMID: 33854965 PMCID: PMC8039382 DOI: 10.3389/fonc.2021.626577] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
The attachment of cells to the extracellular matrix (ECM) is the hallmark of structure–function stability and well-being. ECM detachment in localized tumors precedes abnormal dissemination of tumor cells culminating in metastasis. Programmed cell death (PCD) is activated during tumorigenesis to clear off ECM-detached cells through “anoikis.” However, cancer cells develop several mechanisms for abrogating anoikis, thus promoting their invasiveness and metastasis. Specific factors, such as growth proteins, pH, transcriptional signaling pathways, and oxidative stress, have been reported as drivers of anoikis resistance, thus enhancing cancer proliferation and metastasis. Recent studies highlighted the key contributions of metabolic pathways, enabling the cells to bypass anoikis. Therefore, understanding the mechanisms driving anoikis resistance could help to counteract tumor progression and prevent metastasis. This review elucidates the dynamics employed by cancer cells to impede anoikis, thus promoting proliferation, invasion, and metastasis. In addition, the authors have discussed other metabolic intermediates (especially amino acids and nucleotides) that are less explored, which could be crucial for anoikis resistance and metastasis.
Collapse
Affiliation(s)
- Funmilayo O Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Adeleye O Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lukman O Afolabi
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guizhong Zhang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Riehl BD, Kim E, Bouzid T, Lim JY. The Role of Microenvironmental Cues and Mechanical Loading Milieus in Breast Cancer Cell Progression and Metastasis. Front Bioeng Biotechnol 2021; 8:608526. [PMID: 33585411 PMCID: PMC7874074 DOI: 10.3389/fbioe.2020.608526] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Cancer can disrupt the microenvironments and mechanical homeostatic actions in multiple scales from large tissue modification to altered cellular signaling pathway in mechanotransduction. In this review, we highlight recent progresses in breast cancer cell mechanobiology focusing on cell-microenvironment interaction and mechanical loading regulation of cells. First, the effects of microenvironmental cues on breast cancer cell progression and metastasis will be reviewed with respect to substrate stiffness, chemical/topographic substrate patterning, and 2D vs. 3D cultures. Then, the role of mechanical loading situations such as tensile stretch, compression, and flow-induced shear will be discussed in relation to breast cancer cell mechanobiology and metastasis prevention. Ultimately, the substrate microenvironment and mechanical signal will work together to control cancer cell progression and metastasis. The discussions on breast cancer cell responsiveness to mechanical signals, from static substrate and dynamic loading, and the mechanotransduction pathways involved will facilitate interdisciplinary knowledge transfer, enabling further insights into prognostic markers, mechanically mediated metastasis pathways for therapeutic targets, and model systems required to advance cancer mechanobiology.
Collapse
Affiliation(s)
- Brandon D Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Tasneem Bouzid
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
26
|
Samimi S, Ardestani MS, Dorkoosh FA. Preparation of carbon quantum dots- quinic acid for drug delivery of gemcitabine to breast cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Wang Q, Zhang L, Ji D, Qu J, Wang J, Zhang H, Li Y. CMTM3 overexpression promotes cell apoptosis while DHT promotes cell proliferation in hair follicle stem cells (HFSCs). Genomics 2021; 113:463-473. [PMID: 33358944 DOI: 10.1016/j.ygeno.2020.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022]
Abstract
In Yangtze River Delta white goat, hypermethylation of CMTM3 leads to a decreased expression level in high quality brush hair. However, the regulation of CMTM3 expression and its function in hair follicle stem cells (HFSCs) remains largely unknown. In this study, we investigated the regulation of CMTM3 expression, function, and molecular mechanism in HFSCs. The re-expression of CMTM3 significantly suppressed the proliferation of HFSCs by inducing G1 cell cycle arrest and promoting apoptosis. Moreover, the downregulation of CMTM3 promoted HFSC proliferation. Treatment with sh_CMTM3 and incubation in a DHT culture medium had the most significant growth-promoting effect. It was hypothesized that transcriptome analysis using RNA sequencing (RNA-seq) in samples would enable the identification of unique protein-coding and non-coding genes that may help uncover the role of CMTM3. Multiple genes and pathways were involved in this process, including 168 common DEGs, such as CXCL8 and E-selectin, which is reportedly involved in multiple regulatory pathways. These results indicated that CMTM3 can function as HFSCs through the induction of a G1 cell cycle arrest and promoted apoptosis by mediating crosstalk between several pathways and transcription factors. Our data is available in the National Center for Biotechnology Information (NCBI) database with the accession number PRJNA657430.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Liuming Zhang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Dejun Ji
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jingwen Qu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jian Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hao Zhang
- State-operated Haimen Breeding Goat Farm, Jiangsu 226000, China
| | - Yongjun Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
28
|
Muz B, Abdelghafer A, Markovic M, Yavner J, Melam A, Salama NN, Azab AK. Targeting E-selectin to Tackle Cancer Using Uproleselan. Cancers (Basel) 2021; 13:335. [PMID: 33477563 PMCID: PMC7831123 DOI: 10.3390/cancers13020335] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
E-selectin is a vascular adhesion molecule expressed mainly on endothelium, and its primary role is to facilitate leukocyte cell trafficking by recognizing ligand surface proteins. E-selectin gained a new role since it was demonstrated to be involved in cancer cell trafficking, stem-like properties and therapy resistance. Therefore, being expressed in the tumor microenvironment, E-selectin can potentially be used to eradicate cancer. Uproleselan (also known as GMI-1271), a specific E-selectin antagonist, has been tested on leukemia, myeloma, pancreatic, colon and breast cancer cells, most of which involve the bone marrow as a primary or as a metastatic tumor site. This novel therapy disrupts the tumor microenvironment by affecting the two main steps of metastasis-extravasation and adhesion-thus blocking E-selectin reduces tumor dissemination. Additionally, uproleselan mobilized cancer cells from the protective vascular niche into the circulation, making them more susceptible to chemotherapy. Several preclinical and clinical studies summarized herein demonstrate that uproleselan has favorable safety and pharmacokinetics and is a tumor microenvironment-disrupting agent that improves the efficacy of chemotherapy, reduces side effects such as neutropenia, intestinal mucositis and infections, and extends overall survival. This review highlights the critical contribution of E-selectin and its specific antagonist, uproleselan, in the regulation of cancer growth, dissemination, and drug resistance in the context of the bone marrow microenvironment.
Collapse
Affiliation(s)
- Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (B.M.); (A.A.); (M.M.); (J.Y.); (A.M.)
| | - Anas Abdelghafer
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (B.M.); (A.A.); (M.M.); (J.Y.); (A.M.)
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO 63110, USA;
| | - Matea Markovic
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (B.M.); (A.A.); (M.M.); (J.Y.); (A.M.)
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO 63110, USA;
| | - Jessica Yavner
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (B.M.); (A.A.); (M.M.); (J.Y.); (A.M.)
| | - Anupama Melam
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (B.M.); (A.A.); (M.M.); (J.Y.); (A.M.)
| | - Noha Nabil Salama
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO 63110, USA;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (B.M.); (A.A.); (M.M.); (J.Y.); (A.M.)
| |
Collapse
|
29
|
Mitchell R, Copland M. Defining niche interactions to target chronic myeloid leukemia stem cells. Haematologica 2020; 105:2-4. [PMID: 31894093 DOI: 10.3324/haematol.2019.234898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Rebecca Mitchell
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
30
|
Bandyopadhayaya S, Ford B, Mandal CC. Cold-hearted: A case for cold stress in cancer risk. J Therm Biol 2020; 91:102608. [PMID: 32716858 DOI: 10.1016/j.jtherbio.2020.102608] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
A negative correlation exists between environmental temperature and cancer risk based on both epidemiological and statistical analyses. Previously, cold stress was reported to be an effective cause of tumorigenesis. Several studies have demonstrated that cold temperature serves as a potential risk factor in cancer development. Most recently, a link was demonstrated between the effects of extreme cold climate on cancer incidence, pinpointing its impact on tumour suppressor genes by causing mutation. The underlying mechanism behind cold stress and its association with tumorigenesis is not well understood. Hence, this review intends to shed light on the role of associated factors, genetic and/or non-genetic, which are modulated by cold temperature, and eventually influence tumorigenic potential. While scrutinizing the effect of cold exposure on the body, the expression of certain genes, e.g. uncoupled proteins and heat-shock proteins, were elevated. Biological chemicals such as norepinephrine, thyroxine, and cholesterol were also elevated. Brown adipose tissue, which plays an essential role in thermogenesis, displayed enhanced activity upon cold exposure. Adaptive measures are utilized by the body to tolerate the cold, and in doing so, invites both epigenetic and genetic changes. Unknowingly, these adaptive strategies give rise to a lethal outcome i.e., genesis of cancer. Concisely, this review attempts to draw a link between cold stress, genetic and epigenetic changes, and tumorigenesis and aspires to ascertain the mechanism behind cold temperature-mediated cancer risk.
Collapse
Affiliation(s)
| | - Bridget Ford
- Department of Biology, University of the Incarnate Word, San Antonio, TX, 78209, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, 305817, India.
| |
Collapse
|
31
|
Morita Y, Leslie M, Kameyama H, Lokesh GLR, Ichimura N, Davis R, Hills N, Hasan N, Zhang R, Kondo Y, Gorenstein DG, Volk DE, Chervoneva I, Rui H, Tanaka T. Functional Blockade of E-Selectin in Tumor-Associated Vessels Enhances Anti-Tumor Effect of Doxorubicin in Breast Cancer. Cancers (Basel) 2020; 12:cancers12030725. [PMID: 32204492 PMCID: PMC7140021 DOI: 10.3390/cancers12030725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/26/2022] Open
Abstract
Chemotherapy is a mainstay of treatment for solid tumors. However, little is known about how therapy-induced immune cell infiltration may affect therapy response. We found substantial CD45+ immune cell density adjacent to E-selectin expressing inflamed vessels in doxorubicin (DOX)-treated residual human breast tumors. While CD45 level was significantly elevated in DOX-treated wildtype mice, it remained unchanged in DOX-treated tumors from E-selectin null mice. Similarly, intravenous administration of anti-E-selectin aptamer (ESTA) resulted in a significant reduction in CD45+ immune cell density in DOX-treated residual tumors, which coincided with a delay in tumor growth and lung metastasis in MMTV-pyMT mice. Additionally, both tumor infiltrating T-lymphocytes and tumor associated-macrophages were skewed towards TH2 in DOX-treated residual breast tumors; however, ESTA suppressed these changes. This study suggests that DOX treatment instigates de novo intratumoral infiltration of immune cells through E-selectin, and functional blockade of E-selectin may reduce residual tumor burden as well as metastasis through suppression of TH2 shift.
Collapse
Affiliation(s)
- Yoshihiro Morita
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK 73104, USA; (Y.M.); (M.L.); (H.K.); (N.I.)
| | - Macall Leslie
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK 73104, USA; (Y.M.); (M.L.); (H.K.); (N.I.)
| | - Hiroyasu Kameyama
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK 73104, USA; (Y.M.); (M.L.); (H.K.); (N.I.)
| | - Ganesh L. R. Lokesh
- McGovern Medical School, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston, TX 77030, USA; (G.L.R.L.); (D.E.V.)
| | - Norihisa Ichimura
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK 73104, USA; (Y.M.); (M.L.); (H.K.); (N.I.)
| | - Rachel Davis
- School of Medicine, University of Oklahoma Health Sciences Center, 800 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA; (R.D.); (N.H.)
| | - Natalie Hills
- School of Medicine, University of Oklahoma Health Sciences Center, 800 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA; (R.D.); (N.H.)
| | - Nafis Hasan
- Department of Pharmaceutical Sciences, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA 19107, USA;
| | - Roy Zhang
- Department of Pathology, College of Medicine, University of Oklahoma Health Sciences Center, 940 SL Young Blvd, Oklahoma City, OK 73104, USA;
| | - Yuji Kondo
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 NE. 13th, Oklahoma City, OK 73104, USA;
| | | | - David E. Volk
- McGovern Medical School, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston, TX 77030, USA; (G.L.R.L.); (D.E.V.)
| | - Inna Chervoneva
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1015 Chestnut St., Philadelphia, PA 19107, USA;
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA;
| | - Takemi Tanaka
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK 73104, USA; (Y.M.); (M.L.); (H.K.); (N.I.)
- Department of Pathology, College of Medicine, University of Oklahoma Health Sciences Center, 940 SL Young Blvd, Oklahoma City, OK 73104, USA;
- Correspondence: ; Tel.: +1-(405)-271-8260
| |
Collapse
|
32
|
Targeting Tumor Endothelial Cells with Nanoparticles. Int J Mol Sci 2019; 20:ijms20235819. [PMID: 31756900 PMCID: PMC6928777 DOI: 10.3390/ijms20235819] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Because angiogenesis is a major contributor to cancer progression and metastasis, it is an attractive target for cancer therapy. Although a diverse number of small compounds for anti-angiogenic therapy have been developed, severe adverse effects commonly occur, since small compounds can affect not only tumor endothelial cells (TECs), but also normal endothelial cells. This low selectivity for TECs has motivated researchers to develop alternate types of drug delivery systems (DDSs). In this review, we summarize the current state of knowledge concerning the delivery of nano DDSs to TECs. Their payloads range from small compounds to nucleic acids. Perspectives regarding new therapeutic targets are also mentioned.
Collapse
|
33
|
Qi J, Wu Q, Zhu X, Zhang S, Chen X, Chen W, Sun Z, Zhu M, Miao C. Propofol attenuates the adhesion of tumor and endothelial cells through inhibiting glycolysis in human umbilical vein endothelial cells. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1114-1122. [PMID: 31650167 DOI: 10.1093/abbs/gmz105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Indexed: 12/19/2022] Open
Abstract
Propofol is one of the most commonly used intravenous anesthetics and plays an important role in tumor suppression. In the present study, we aimed to investigate the mechanism by which propofol attenuates tumor endothelial cells (TECs) and tumor cell adhesion to inhibit tumor metastasis in vitro. Human umbilical vein endothelial cells (HUVECs) cultured in Dulbecco's modified Eagle's medium were treated with tumor conditioned medium for 24 h, followed by 4 h of treatment with or without 25 μM of propofol, 10 μM of KN93, 500 μM of MK801, or 20 μM of rapastinel. It was found that propofol inhibited TEC adhesion and the glycolysis level of TECs. Consistently, propofol inhibited the expressions of adhesion molecules (E-selectin, ICAM-1, and VCAM-1) and glycolysis proteins (GLUT1, HK2, and LDHA) in TECs. Moreover, propofol attenuated the expression of HIF-1α, the phosphorylation of AKT and Ca2+/calmodulin-dependent protein kinase II (CaMKII), and the Ca2+ concentration in TECs. MK801, an inhibitor of NMDA receptor, and KN93, an inhibitor of CaMKII, both inhibited the expressions of adhesion molecules and glycolysis proteins, in a manner similar to propofol. Additionally, rapastine, an activator of NMDA receptor, could counteract the effects of propofol. Our results indicated that propofol attenuates intracellular Ca2+ concentration, CaMKII and AKT phosphorylation, and HIF-1α expression, probably via inhibiting the NMDA receptor, thus inhibiting glycolysis and adhesion of tumor and endothelial cells.
Collapse
Affiliation(s)
- Jie Qi
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Anaesthesiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qichao Wu
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Anaesthesiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xuqin Zhu
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shan Zhang
- Department of Anaesthesia, Critical Care and Pain Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiangyuan Chen
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Anaesthesiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wankun Chen
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhirong Sun
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Minmin Zhu
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Changhong Miao
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
34
|
Liu L, Liu L, Li Y, Huang X, Gu D, Wei B, Su D, Jin G. Ultrasmall superparamagnetic nanoparticles targeting E-selectin: synthesis and effects in mice in vitro and in vivo. Int J Nanomedicine 2019; 14:4517-4528. [PMID: 31354271 PMCID: PMC6590629 DOI: 10.2147/ijn.s199571] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/01/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose: We developed a contrast agent for targeting E-selectin expression. We detected the agent using magnetic resonance imaging (MRI) in vivo in nude mice that had undergone nasopharyngeal carcinoma (NPC) metastasis. Methods: Sialyl Lewis X (sLeX) was conjugated with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Hydrodynamic size, polydispersity index, and ζ-potential of USPIO–polyethylene glycol (PEG) nanoparticles and USPIO-PEG-sLeX nanoparticles were measured. Component changes in nanoparticles of USPIO, USPIO-PEG, and USPIO-PEG-sLeX were analyzed by thermogravimetric analysis and Fourier-transform infrared spectroscopy. A model of NPC metastasis to inguinal lymph nodes in nude mice was used to investigate characteristics of the USPIO-PEG-sLeX nanoparticles in vivo. We investigated the ability of the T2* value, change in T2* value (ΔT2* value), and enhancement rate (ER) to assess accumulation of USPIO-PEG-sLeX nanoparticles quantitatively in mice of a metastasis group and control group. Four MRI scans were undertaken for each mouse. The first scan (t0) was done before administration of USPIO-PEG-sLeX nanoparticles (0.1 mL) via the tail vein. The other scans were carried out at 0 (t1), 1 (t2), and 2 hours (t3) postinjection. The mean optical density was used to reflect E-selectin expression. Results: sLeX was labeled onto USPIO successfully. In vivo, there were significant interactions between the groups and time for T2* values after administration of USPIO-PEG-sLeX nanoparticles. Six parameters (T2* at t2, ΔT2* at t1, ΔT2* at t2, ER at t1, ER at t2, and ER at t3) were correlated with the mean optical density. Conclusion: USPIO-PEG-sLeX nanoparticles can be used to assess E-selectin expression quantitatively. Use of such molecular probes could enable detection of early metastasis of NPC, more accurate staging, and treatment monitoring.
Collapse
Affiliation(s)
- Lijuan Liu
- Centre of Imaging Diagnosis, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Lu Liu
- Centre of Imaging Diagnosis, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yin Li
- Centre of Imaging Diagnosis, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiaoxin Huang
- Centre of Imaging Diagnosis, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Donglian Gu
- Centre of Imaging Diagnosis, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Bo Wei
- Centre of Imaging Diagnosis, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Danke Su
- Centre of Imaging Diagnosis, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Guanqiao Jin
- Centre of Imaging Diagnosis, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
35
|
van Keulen D, Pouwer MG, Pasterkamp G, van Gool AJ, Sollewijn Gelpke MD, Princen HMG, Tempel D. Inflammatory cytokine oncostatin M induces endothelial activation in macro- and microvascular endothelial cells and in APOE*3Leiden.CETP mice. PLoS One 2018; 13:e0204911. [PMID: 30273401 PMCID: PMC6166945 DOI: 10.1371/journal.pone.0204911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/17/2018] [Indexed: 01/08/2023] Open
Abstract
AIMS Endothelial activation is involved in many chronic inflammatory diseases, such as atherosclerosis, and is often initiated by cytokines. Oncostatin M (OSM) is a relatively unknown cytokine that has been suggested to play a role in both endothelial activation and atherosclerosis. We comprehensively investigated the effect of OSM on endothelial cell activation from different vascular beds and in APOE*3Leiden.CETP mice. METHODS AND RESULTS Human umbilical vein endothelial cells, human aortic endothelial cells and human microvascular endothelial cells cultured in the presence of OSM express elevated MCP-1, IL-6 and ICAM-1 mRNA levels. Human umbilical vein endothelial cells and human aortic endothelial cells additionally expressed increased VCAM-1 and E-selectin mRNA levels. Moreover, ICAM-1 membrane expression is increased as well as MCP-1, IL-6 and E-selectin protein release. A marked increase was observed in STAT1 and STAT3 phosphorylation indicating that the JAK/STAT pathway is involved in OSM signaling. OSM signals through the LIF receptor alfa (LIFR) and the OSM receptor (OSMR). siRNA knockdown of the LIFR and the OSMR revealed that simultaneous knockdown is necessary to significantly reduce MCP-1 and IL-6 secretion, VCAM-1 and E-selectin shedding and STAT1 and STAT3 phosphorylation after OSM stimulation. Moreover, OSM administration to APOE*3Leiden.CETP mice enhances plasma E-selectin levels and increases ICAM-1 expression and monocyte adhesion in the aortic root area. Furthermore, Il-6 mRNA expression was elevated in the aorta of OSM treated mice. CONCLUSION OSM induces endothelial activation in vitro in endothelial cells from different vascular beds through activation of the JAK/STAT cascade and in vivo in APOE*3Leiden.CETP mice. Since endothelial activation is an initial step in atherosclerosis development, OSM may play a role in the initiation of atherosclerotic lesion formation.
Collapse
Affiliation(s)
- Danielle van Keulen
- Laboratory of Experimental Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Laboratory of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Quorics B.V, Rotterdam, The Netherlands
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Marianne G. Pouwer
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerard Pasterkamp
- Laboratory of Experimental Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Laboratory of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Alain J. van Gool
- TNO- Microbiology & Systems Biology, Zeist, The Netherlands
- Radboudumc, Nijmegen, The Netherlands
| | | | - Hans M. G. Princen
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Dennie Tempel
- Laboratory of Experimental Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Laboratory of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Quorics B.V, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
36
|
Crosstalk between cancer cells and endothelial cells: implications for tumor progression and intervention. Arch Pharm Res 2018; 41:711-724. [DOI: 10.1007/s12272-018-1051-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
|
37
|
Morita Y, Leslie M, Kameyama H, Volk DE, Tanaka T. Aptamer Therapeutics in Cancer: Current and Future. Cancers (Basel) 2018; 10:cancers10030080. [PMID: 29562664 PMCID: PMC5876655 DOI: 10.3390/cancers10030080] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Aptamer-related technologies represent a revolutionary advancement in the capacity to rapidly develop new classes of targeting ligands. Structurally distinct RNA and DNA oligonucleotides, aptamers mimic small, protein-binding molecules and exhibit high binding affinity and selectivity. Although their molecular weight is relatively small—approximately one-tenth that of monoclonal antibodies—their complex tertiary folded structures create sufficient recognition surface area for tight interaction with target molecules. Additionally, unlike antibodies, aptamers can be readily chemically synthesized and modified. In addition, aptamers’ long storage period and low immunogenicity are favorable properties for clinical utility. Due to their flexibility of chemical modification, aptamers are conjugated to other chemical entities including chemotherapeutic agents, siRNA, nanoparticles, and solid phase surfaces for therapeutic and diagnostic applications. However, as relatively small sized oligonucleotides, aptamers present several challenges for successful clinical translation. Their short plasma half-lives due to nuclease degradation and rapid renal excretion necessitate further structural modification of aptamers for clinical application. Since the US Food and Drug Administration (FDA) approval of the first aptamer drug, Macugen® (pegaptanib), which treats wet-age-related macular degeneration, several aptamer therapeutics for oncology have followed and shown promise in pre-clinical models as well as clinical trials. This review discusses the advantages and challenges of aptamers and introduces therapeutic aptamers under investigation and in clinical trials for cancer treatments.
Collapse
Affiliation(s)
- Yoshihiro Morita
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
| | - Macall Leslie
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
| | - Hiroyasu Kameyama
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
| | - David E Volk
- McGovern Medical School, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston, TX 77030, USA.
| | - Takemi Tanaka
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
- Department of Pathology, College of Medicine, University of Oklahoma Health Sciences Center, 940 SL Young Blvd, Oklahoma City, OK 73104, USA.
| |
Collapse
|
38
|
Han X, Dong X, Li J, Wang M, Luo L, Li Z, Lu X, He R, Xu R, Gong M. Free paclitaxel-loaded E-selectin binding peptide modified micelle self-assembled from hyaluronic acid-paclitaxel conjugate inhibit breast cancer metastasis in a murine model. Int J Pharm 2017; 528:33-46. [DOI: 10.1016/j.ijpharm.2017.05.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/07/2017] [Accepted: 05/25/2017] [Indexed: 01/15/2023]
|
39
|
Zhao L, Zhao Y, He Y, Mao Y. miR-19b promotes breast cancer metastasis through targeting MYLIP and its related cell adhesion molecules. Oncotarget 2017; 8:64330-64343. [PMID: 28969074 PMCID: PMC5610006 DOI: 10.18632/oncotarget.19278] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/19/2017] [Indexed: 01/28/2023] Open
Abstract
miR-19b is a key molecule for cancer development, however its crucial roles in breast cancer metastasis are rarely studied right now. In this study, using several bioinformatics databases to predict the downstream targets for miR-19b, we verified that a novel target gene, myosin regulatory light chain interacting protein (MYLIP), could be directly down-regulated by miR-19b through its 3′-UTR region. MYLIP belongs to the cytoskeletal protein clusters and is involved in the regulation of cell movement and migration. We further explored that miR-19b was highly expressed and negatively correlated with MYLIP expression in breast cancer patient samples from the TCGA database. And the over-expression of miR-19b or inhibition of MYLIP facilitated the migration and metastasis of breast cancer cells, through conducting the wound healing assay and transwell invasion assay. Additionally, miR-19b could obviously promote breast tumor growth in mouse models and affect the expressions of cell adhesion molecules (including E-Cadherin, ICAM-1 and Integrin β1) by down-regulating E-Cadherin expression and up-regulating ICAM-1 and Integrin β1 expressions in vitro and in vivo. Meanwhile, miR-19b effectively activated the Integrin β downstream signaling pathways (such as the Ras-MAPK pathway and the PI3K-AKT pathway) and elevated the expression levels of essential genes in these two pathways. Taken together, these findings comprehensively illustrate the regulatory mechanisms ofmiR-19b in breast cancer metastasis, and provide us new insights for exploring MYLIP and its related cell adhesion molecules as promising therapeutic targets to interfere breast cancer development.
Collapse
Affiliation(s)
- Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yuelong Zhao
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yanong He
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
40
|
Kang SA, Blache CA, Bajana S, Hasan N, Kamal M, Morita Y, Gupta V, Tsolmon B, Suh KS, Gorenstein DG, Razaq W, Rui H, Tanaka T. Erratum to: The effect of soluble E-selectin on tumor progression and metastasis. BMC Cancer 2016; 16:370. [PMID: 27353033 PMCID: PMC4926296 DOI: 10.1186/s12885-016-2391-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 11/10/2022] Open
Affiliation(s)
- Shin-Ae Kang
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK, 73104, USA
| | - Celine A Blache
- Thomas Jefferson University, Pharmaceutical Sciences, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Sandra Bajana
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK, 73104, USA
| | - Nafis Hasan
- Thomas Jefferson University, Pharmaceutical Sciences, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Mohamed Kamal
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK, 73104, USA
| | - Yoshihiro Morita
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK, 73104, USA
| | - Vineet Gupta
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK, 73104, USA
| | - Bilegtsaikhan Tsolmon
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK, 73104, USA
| | - K Stephen Suh
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, 07601, USA
| | - David G Gorenstein
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston, TX, 77030, USA
| | - Wajeeha Razaq
- Department of Internal Medcine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th, Oklahoma City, OK, 73104, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin Cancer Center, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Takemi Tanaka
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th, Oklahoma City, OK, 73104, USA. .,Stephenson Cancer Center at the University of Oklahoma Health Sciences Center, 975 NE 10th, Oklahoma City, OK, 73104, USA.
| |
Collapse
|