1
|
Xuan Z, Zhang Y, Li D, Wang K, Huang P, Shi J. PLXNB1/SEMA4D signals mediate interactions between malignant epithelial and immune cells to promote colorectal cancer liver metastasis. J Cell Mol Med 2024; 28:e70142. [PMID: 39443302 PMCID: PMC11499074 DOI: 10.1111/jcmm.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Distal metastases result from metastatic microenvironment and tumour epithelial cell interactions, the cellular heterogeneity of primary colorectal cancer (CRC) and liver metastases (LM) was evaluated by integrating single-cell sequencing data, and the collected gene expression data from metastatic epithelial cell subsets was used to construct a prognostic model and to identify intercellular receptor-ligand interactions between epithelial and immune cells in CRC and LM. Multiplex immunofluorescence staining, and in vitro wound healing, cell migration and cell apoptosis assays were performed to further explore the biological relevance of identified potential regulatory molecules. In this study, approximately 17 epithelial cell subtypes were detected, with Epi-11 cells being highly expressed in LM tissues compared with CRC samples. Furthermore, patients with high expression of the metastasis-related genetic profile of Epi-11 had a poorer prognosis. By predicting receptor-ligand interactions, Epi-11 cells were found to interact more with myeloid and T/natural killer cells in LM tissues when compared to primary CRC samples, which was mediated by the PLXNB1/SEMA4D axis. In addition, high SEMA4D expression was correlated with decreased overall survival of patients with CRC, whereas PLXNB1 was not. SEMA4D knockdown prevented the migration and promoted the apoptosis of HCT116 cells in vitro. In summary, Epi-11 cells, an important subset of epithelial cells, may drive the LM of CRC and act by crosstalk with immune cells through the PLXNB1/SEMA4D signalling axis.
Collapse
Affiliation(s)
- Zixue Xuan
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeZhejiangHangzhouChina
- Department of PharmacyZhejiang Provincial People's Hospital Bijie HospitalBijieGuizhouChina
| | - Yuan Zhang
- Department of PharmacyZhejiang Provincial People's Hospital Bijie HospitalBijieGuizhouChina
| | - Dan Li
- Department of PharmacyZhejiang Provincial People's Hospital Bijie HospitalBijieGuizhouChina
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeZhejiangHangzhouChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeZhejiangHangzhouChina
| | - Jiana Shi
- Center for Clinical Pharmacy, Cancer Center, Department of PharmacyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeZhejiangHangzhouChina
| |
Collapse
|
2
|
Ochman B, Limanówka P, Mielcarska S, Kula A, Dawidowicz M, Wagner W, Hudy D, Szrot M, Piecuch JZ, Piecuch J, Czuba Z, Świętochowska E. Associations of SEMA7A, SEMA4D, ADAMTS10, and ADAM8 with KRAS, NRAS, BRAF, PIK3CA, and AKT Gene Mutations, Microsatellite Instability Status, and Cytokine Expression in Colorectal Cancer Tissue. Curr Issues Mol Biol 2024; 46:10218-10248. [PMID: 39329961 PMCID: PMC11431007 DOI: 10.3390/cimb46090609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Semaphorins (SEMAs), ADAM, and ADAMTS family members are implicated in various cancer progression events within the tumor microenvironment across different cancers. In this study, we aimed to evaluate the expression of SEMA7A, SEMA4D, ADAM8, and ADAMTS10 in colorectal cancer (CRC) in relation to the mutational landscape of KRAS, NRAS, BRAF, PIK3CA, and AKT genes, microsatellite instability (MSI) status, and clinicopathological features. We also examined the associations between the expression of these proteins and selected cytokines, chemokines, and growth factors, assessed using a multiplex assay. Protein concentrations were quantified using ELISA in CRC tumors and tumor-free surgical margin tissue homogenates. Gene mutations were evaluated via RT-PCR, and MSI status was determined using immunohistochemistry (IHC). GSEA and statistical analyses were performed using R Studio. We observed a significantly elevated expression of SEMA7A in BRAF-mutant CRC tumors and an overexpression of ADAM8 in KRAS 12/13-mutant tumors. The expression of ADAMTS10 was decreased in PIK3CA-mutant CRC tumors. No significant differences in the expression of the examined proteins were observed based on MSI status. The SEMA7A and SEMA4D expressions were correlated with the expression of numerous cytokines associated with various immune processes. The potential immunomodulatory functions of these molecules and their suitability as therapeutic targets require further investigation.
Collapse
Affiliation(s)
- Błażej Ochman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (P.L.); (S.M.); (W.W.); (D.H.)
| | - Piotr Limanówka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (P.L.); (S.M.); (W.W.); (D.H.)
| | - Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (P.L.); (S.M.); (W.W.); (D.H.)
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.)
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (A.K.); (M.D.)
| | - Wiktor Wagner
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (P.L.); (S.M.); (W.W.); (D.H.)
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (P.L.); (S.M.); (W.W.); (D.H.)
| | - Monika Szrot
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10 Marii Curie-Skłodowskiej, 41-800 Zabrze, Poland; (M.S.); (J.P.)
| | - Jerzy Zbigniew Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10 Marii Curie-Skłodowskiej, 41-800 Zabrze, Poland; (M.S.); (J.P.)
| | - Jerzy Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10 Marii Curie-Skłodowskiej, 41-800 Zabrze, Poland; (M.S.); (J.P.)
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland;
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland; (B.O.); (P.L.); (S.M.); (W.W.); (D.H.)
| |
Collapse
|
3
|
Bica C, Tirpe A, Nutu A, Ciocan C, Chira S, Gurzau ES, Braicu C, Berindan-Neagoe I. Emerging roles and mechanisms of semaphorins activity in cancer. Life Sci 2023; 318:121499. [PMID: 36775114 DOI: 10.1016/j.lfs.2023.121499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Semaphorins are regulatory molecules that are linked to the modulation of several cancer processes, such as angiogenesis, cancer cell invasiveness and metastasis, tumor growth, as well as cancer cell survival. Semaphorin (SEMA) activity depends on the cancer histotypes and their particularities. In broad terms, the effects of SEMAs result from their interaction with specific receptors/co-receptors - Plexins, Neuropilins and Integrins - and the subsequent effects upon the downstream effectors (e.g. PI3K/AKT, MAPK/ERK). The present article serves as an integrative review work, discussing the broad implications of semaphorins in cancer, focusing on cell proliferation/survival, angiogenesis, invasion, metastasis, stemness, and chemo-resistance/response whilst highlighting their heterogeneity as a family. Herein, we emphasized that semaphorins are largely implicated in cancer progression, interacting with the tumor microenvironment components. Whilst some SEMAs (e.g. SEMA3A, SEMA3B) function widely as tumor suppressors, others (e.g. SEMA3C) act as pro-tumor semaphorins. The differences observed in terms of the biological structure of SEMAs and the particularities of each cancer histotypes require that each semaphorin be viewed as a unique entity, and its roles must be researched accordingly. A more in-depth and comprehensive view of the molecular mechanisms that promote and sustain the malignant behavior of cancer cells is of utmost importance.
Collapse
Affiliation(s)
- Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Eugen S Gurzau
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania; Environmental Health Center, 58 Busuiocului Street, 400240 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| |
Collapse
|
4
|
Nojima S. Class IV semaphorins in disease pathogenesis. Pathol Int 2022; 72:471-487. [PMID: 36066011 DOI: 10.1111/pin.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
Semaphorins are a large family of secreted and/or transmembrane proteins, originally identified as proteins that function in axon guidance during neuronal development. However, semaphorins play crucial roles in other physiological and pathological processes, including immune responses, angiogenesis, maintenance of tissue homeostasis, and cancer progression. Class IV semaphorins may be present as transmembrane and soluble forms and are implicated in the pathogenesis of various diseases. This review discusses recent progress on the roles of class IV semaphorins determined by clinical and experimental pathology studies.
Collapse
Affiliation(s)
- Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Liu L, Yang L, Liu X, Liu M, Liu J, Feng X, Nie Z, Luo J. SEMA4D/PlexinB1 promotes AML progression via activation of PI3K/Akt signaling. Lab Invest 2022; 20:304. [PMID: 35794581 PMCID: PMC9258142 DOI: 10.1186/s12967-022-03500-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. SEMA4D is a 150 kDa transmembrane protein that belongs to the IV class of the subfamily of semaphorin family. Previous studies have reported that SEMA4D is a multifunctional target in many solid tumors, involving multiple physiological systems, and there are emerging therapies to target these pathways. The role of SEMA4D in AML has not yet been explored.
Methods
The SEMA4D expression prolile, clinical data and potential prognostic analysis were acquired via the cBioPortal and GEPIA databases. SEMA4D expression was measured using real-time quantitative PCR and western blot. Cell counting kit-8 (CCK8) and flow cytometry were used to evaluate the malignant biological characteristics.
Results
We observed that SEMA4D was increased in AML patients and correlated with risk stratification and prognosis. Moreover, SEMA4D promotes the proliferation and inhibits apoptosis of AML cells by binding to its receptor, PlexinB1, and reduces the sensitivity of AML cells to daunorubicin. In addition, SEMA4D/PlexinB1 promotes the proliferation and survival of AML cells by activating the PI3K/Akt signaling pathway. VX15/2503, an anti-SEMA4D antibody, can inhibit the proliferation of AML cells in xenograft mouse models, thereby inhibiting the development of AML.
Conclusion
SEMA4D will serve as a unique predictive biomarker and a possible therapeutic target in AML.
Collapse
|
6
|
Soluble Sema4D Level Is Positively Correlated with Sema4D Expression in PBMCs and Peripheral Blast Number in Acute Leukemia. DISEASE MARKERS 2022; 2022:1384471. [PMID: 35401878 PMCID: PMC8988092 DOI: 10.1155/2022/1384471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022]
Abstract
Semaphorin 4D (Sema4D) is highly expressed in various cancers and leukemia. It is involved in the development of acute leukemia. A high level of soluble Sema4D is also present in the plasma of acute leukemia patients. However, it remains unknown whether Sema4D is associated with the clinical characteristics of acute leukemia. In this study, Sema4D expression was examined in peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMMCs) of patients with acute leukemia, and it was highly expressed in the PBMCs of B-acute lymphoblastic leukemia (ALL), T-ALL, and acute myeloid leukemia (AML) patients and in the BMMCs of B-ALL and AML patients but not in the BMMCs of T-ALL patients. Sema4D expression was higher in the PBMCs of T-ALL patients than in the PBMCs of B-ALL or AML patients. In addition, Sema4D expression in BMMCs was reduced in B-ALL patients during the chemotherapy process. It was lower in remission patients than in newly diagnosed and patients without remission. In acute leukemia, soluble Sema4D level in serum is positively correlated with Sema4D expression in PBMCs, leukocyte number, and peripheral blast number. Those results suggest that the levels of Sema4D and its soluble form are associated with acute leukemia development and may be regarded as a potential biomarker in pediatric acute leukemia.
Collapse
|
7
|
SEMA4D Knockdown Attenuates β-Catenin-Dependent Tumor Progression in Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8507373. [PMID: 34337054 PMCID: PMC8321723 DOI: 10.1155/2021/8507373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 01/06/2023]
Abstract
Semaphorin 4D (SEMA4D), a protein originally demonstrated to regulate the immune system and axonal growth cone collapse in the developing central nervous system, is overexpressed in various human malignancies, including colorectal cancer (CRC). This investigation was undertaken to examine the effects of SEMA4D silencing on the biological properties of the CRC cell line. SW48 cells were transfected with a siRNA-targeting SEMA4D. The mRNA expression of underlying pro- and antiapoptotic proteins including Bax, Bcl-2, P53, and caspase-3, cancer stem cell (CSC) markers, epithelial-mesenchymal transition (EMT) markers, MMP-2, and MMP-9 was examined using qRT-PCR. Further, the protein expression of E-cadherin and β-catenin was confirmed by Western blot. SW48 cell migration and MMP activity were detected using scratch and zymography analysis, respectively. Finally, the apoptosis rate was assessed via the flowcytometry test. SEMA4D knock-down was associated with a considerable suppression of in vitro cell viability, EMT-related genes, CSC markers, β-catenin signaling pathway, sphere-forming, cell migration, and MMP-2 activity as well as induction of apoptosis. This study identifies the inhibitory effects of SEMA4D gene silencing on tumor progression. Thereby, this might conclude a possible alternative to cancer therapy by targeting several prominent pathways involved in cancer through SEMA4D suppression.
Collapse
|
8
|
Mastrantonio R, You H, Tamagnone L. Semaphorins as emerging clinical biomarkers and therapeutic targets in cancer. Theranostics 2021; 11:3262-3277. [PMID: 33537086 PMCID: PMC7847692 DOI: 10.7150/thno.54023] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022] Open
Abstract
Semaphorins are a large family of developmental regulatory signals, characterized by aberrant expression in human cancers. These molecules crucially control cell-cell communication, cell migration, invasion and metastasis, tumor angiogenesis, inflammatory and anti-cancer immune responses. Semaphorins comprise secreted and cell surface-exposed molecules and their receptors are mainly found in the Plexin and Neuropilin families, which are further implicated in a signaling network controlling the tumor microenvironment. Accumulating evidence indicates that semaphorins may be considered as novel clinical biomarkers for cancer, especially for the prediction of patient survival and responsiveness to therapy. Moreover, preclinical experimental studies have demonstrated that targeting semaphorin signaling can interfere with tumor growth and/or metastatic dissemination, suggesting their relevance as novel therapeutic targets in cancer; this has also prompted the development of semaphorin-interfering molecules for application in the clinic. Here we will survey, in diverse human cancers, the current knowledge about the relevance of semaphorin family members, and conceptualize potential lines of future research development in this field.
Collapse
|
9
|
Rashidi G, Rezaeepoor M, Mohammadi C, Solgi G, Najafi R. Inhibition of semaphorin 4D enhances chemosensitivity by increasing 5-fluorouracile-induced apoptosis in colorectal cancer cells. Mol Biol Rep 2020; 47:7017-7027. [PMID: 32888127 DOI: 10.1007/s11033-020-05761-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/28/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Overexpression of semaphorin 4D (SEMA4D), an immune semaphorin, is found in various human malignancies, including colorectal cancer (CRC). In this study, we explored the relationship between silencing SEMA4D expression and 5-fluorouracil (5-FU) response in the colorectal cancer cell line. SW48 cells were transfected with a short interfering RNA (siRNA) in order to silence SEMA4D gene expression and then exposed to 5-FU for 48 h. The down-regulation of SEMA4D expression was confirmed by qRT-PCR and the particular concentration of 5-FU was acquired using MTT assay. Flow cytometry and western blot were used to evaluate apoptosis rate and pro- and anti-apoptotic expression levels of proteins involved in apoptosis including Bax, Bcl-2, P53, and caspase-3. Other oncogenic activities including epithelial-mesenchymal transition (EMT) process, cancer stem cell (CSC) markers, and β-catenin pathway were investigated using qRT-PCR, and western blot. The proliferation was analyzed via colony formation test and cell invasion was assessed by transwell assay. Our data demonstrate that SEMA4D silencing results in strikingly elevated apoptosis in response to 5-FU treatment and leads to down-regulation of Bcl-2 and overexpression of Bax, P53, and caspase-3 in protein levels. Furthermore, the mRNA and protein expression levels of β-catenin, as well as transcript expressions of CSCs and EMT markers, were remarkably diminished. However, mRNA expression of E-cadherin as an epithelial marker was significantly increased in 5-FU treatment combined with siRNA SEMA4D. This study implicates that the silencing of SEMA4D by siRNA promotes the chemosensitivity of SW48 cells to 5-FU and it may be a potential therapeutic agent for colon cancer therapy.
Collapse
Affiliation(s)
- Golnaz Rashidi
- Department of Immunology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Rezaeepoor
- Department of Immunology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Chiman Mohammadi
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Solgi
- Department of Immunology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
10
|
Rajabinejad M, Asadi G, Ranjbar S, Afshar Hezarkhani L, Salari F, Gorgin Karaji A, Rezaiemanesh A. Semaphorin 4A, 4C, and 4D: Function comparison in the autoimmunity, allergy, and cancer. Gene 2020; 746:144637. [PMID: 32244055 DOI: 10.1016/j.gene.2020.144637] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 01/02/2023]
Abstract
Semaphorins are a group of proteins that are divided into eight subclasses and identified by a conserved Sema domain on their carboxyl terminus. Sema4A, 4C, and 4D are the members of the fourth class of semaphorin family, which are known as membrane semaphorins; however, these molecules can be altered to soluble semaphorins by proteolytic cleavage. Semaphorins have various roles in the immune, nervous, and metabolic systems. In the immune system, these molecules contribute to the formation of cellular, humoral, and innate immune responses, such as inflammation, leukocyte migration, immunological synapse formation, and germinal center events. Given the diverse roles of semaphorins in the immune system, in this review, we have tried to give a comprehensive look at the role of these molecules in autoimmunity, allergy, and cancer. Sema4D and 4A seem to play a critical role in the pathogenesis of some autoimmune diseases, such as multiple sclerosis. In contrast, it has been shown that Sema4A and 4C have beneficial effects on allergies, and their absence can exacerbate the severity of the disease. In the case of cancer, an increase in all three of these molecules has been reported. Sema4D and 4C can contribute to tumor progression in human patients or experimental models, while the role of Sema4A has not yet been fully understood. In conclusion, semaphorins seem to be a favorable therapeutic target for autoimmune diseases and allergies. However, in cancer, studies have not yet been able to identify the exact role of semaphorins, and further studies are needed.
Collapse
Affiliation(s)
- Misagh Rajabinejad
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelayol Asadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Ranjbar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Afshar Hezarkhani
- Department of Neurology, Farabi Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
11
|
Zuazo-Gaztelu I, Pàez-Ribes M, Carrasco P, Martín L, Soler A, Martínez-Lozano M, Pons R, Llena J, Palomero L, Graupera M, Casanovas O. Antitumor Effects of Anti-Semaphorin 4D Antibody Unravel a Novel Proinvasive Mechanism of Vascular-Targeting Agents. Cancer Res 2019; 79:5328-5341. [PMID: 31239269 PMCID: PMC7611261 DOI: 10.1158/0008-5472.can-18-3436] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/08/2019] [Accepted: 06/21/2019] [Indexed: 01/15/2023]
Abstract
One of the main consequences of inhibition of neovessel growth and vessel pruning produced by angiogenesis inhibitors is increased intratumor hypoxia. Growing evidence indicates that tumor cells escape from this hypoxic environment to better nourished locations, presenting hypoxia as a positive stimulus for invasion. In particular, anti-VEGF/R therapies produce hypoxia-induced invasion and metastasis in a spontaneous mouse model of pancreatic neuroendocrine cancer (PanNET), RIP1-Tag2. Here, a novel vascular-targeting agent targeting semaphorin 4D (Sema4D) demonstrated impaired tumor growth and extended survival in the RIP1-Tag2 model. Surprisingly, although there was no induction of intratumor hypoxia by anti-Sema4D therapy, the increase in local invasion and distant metastases was comparable with the one produced by VEGFR inhibition. Mechanistically, the antitumor effect was due to an alteration in vascular function by modification of pericyte coverage involving platelet-derived growth factor B. On the other hand, the aggressive phenotype involved a macrophage-derived Sema4D signaling engagement, which induced their recruitment to the tumor invasive fronts and secretion of stromal cell-derived factor 1 (SDF1) that triggered tumor cell invasive behavior via CXCR4. A comprehensive clinical validation of the targets in different stages of PanNETs demonstrated the implication of both Sema4D and CXCR4 in tumor progression. Taken together, we demonstrate beneficial antitumor and prosurvival effects of anti-Sema4D antibody but also unravel a novel mechanism of tumor aggressivity. This mechanism implicates recruitment of Sema4D-positive macrophages to invasive fronts and their secretion of proinvasive molecules that ultimately induce local tumor invasion and distant metastasis in PanNETs. SIGNIFICANCE: An anti-semaphorin-4D vascular targeting agent demonstrates antitumor and prosurvival effects but also unravels a novel promalignant effect involving macrophage-derived SDF1 that promotes tumor invasion and metastasis, both in animal models and patients.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5328/F1.large.jpg.See related commentary by Tamagnone and Franzolin, p. 5146.
Collapse
Affiliation(s)
- Iratxe Zuazo-Gaztelu
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Marta Pàez-Ribes
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Patricia Carrasco
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Laura Martín
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Adriana Soler
- Vascular Signaling Group, ProCURE Research Program, IDIBELL, Barcelona, Spain
| | - Mar Martínez-Lozano
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Roser Pons
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Judith Llena
- Vascular Signaling Group, ProCURE Research Program, IDIBELL, Barcelona, Spain
| | - Luis Palomero
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Mariona Graupera
- Vascular Signaling Group, ProCURE Research Program, IDIBELL, Barcelona, Spain
| | - Oriol Casanovas
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain.
| |
Collapse
|
12
|
Vermeer PD. Exosomal Induction of Tumor Innervation. Cancer Res 2019; 79:3529-3535. [PMID: 31088834 DOI: 10.1158/0008-5472.can-18-3995] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/22/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022]
Abstract
The naïve view of tumors as isolated islands of rogue cells has given way to a deeper understanding of cancer as being closer to a foreign organ. This "organ" contains immunologic, vascular, and neural connections to its host that provide not only mechanisms for disease progression but also opportunities for therapeutic intervention. The presence of nerves within tumor tissues has long been appreciated. However, a mechanistic understanding of how tumors recruit nerves has been slower to emerge. Tumor release of neurotrophic factors and axonal guidance molecules likely directs axons toward the tumor bed. Newly emerging data support a contribution of tumor-released exosomes in the induction of axonogenesis toward the tumor. Exosomes, small membrane-bound vesicles that carry a complex cargo (DNA, RNA, miRNA, lipids, and proteins), protect their cargo from the low pH of the tumor microenvironment. They also represent an efficient means of local and distal communication between the tumor and potentially innervating nerves. Likely, a combination of neurotrophins, guidance molecules, and exosomes work in concert to promote tumor innervation. As such, defining the critical components driving tumor innervation will identify new targets for intervention. Moreover, with a deepening understanding, tumor innervation may emerge as a new hallmark of cancer.
Collapse
Affiliation(s)
- Paola D Vermeer
- Cancer Biology and Immunotherapy Group, Sanford Research, Sioux Falls, South Dakota.
| |
Collapse
|
13
|
Zhang L, Chen Y, Li F, Bao L, Liu W. Atezolizumab and Bevacizumab Attenuate Cisplatin Resistant Ovarian Cancer Cells Progression Synergistically via Suppressing Epithelial-Mesenchymal Transition. Front Immunol 2019; 10:867. [PMID: 31105696 PMCID: PMC6498972 DOI: 10.3389/fimmu.2019.00867] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
The AURELIA trial demonstrated that adding Bevacizumab to chemotherapy significantly improved progression-free survival (PFS) for platinum resistant recurrent ovarian cancer. Recently, immunotherapy also presented potential anti-tumor effects in several malignant solid tumors. This study aimed to investigate whether combining anti-PD-L1 Atezolizumab with BEV may have a synergistic effect and enhance the efficacy of both treatments in cisplatin resistant epithelial ovarian cancer (CREOC). We retrospectively analyzed 124 epithelial ovarian cancer (EOC) patients from Gynecologic Oncology Department of Tianjin Cancer Hospital between January 2013 and June 2018, who all were diagnosed with cisplatin resistance due to progressing <6 months after completing platinum-based therapy. Based on responding to at least 2 cycles of Bevacizumab-containing chemotherapy (BC), these Patients were divided into BC response group and BC non-response group. Immunohistochemistry was used to detect that PD-L1 expression and tumor angiogenesis-related proteins (VEGF and Semaphorin4D) in tissues from 124 patients with CREOC. The positive expressions of PD-L1, VEGF, and Semaphorin4D (SEMA4D) were found in 58.73, 50.79, and 71.43% of the 63 cases CREOC tissues with BC response, respectively, which were significantly higher than that in the 61 cases BC non-response group (P < 0.05). PD-L1 expression correlated with SEMA4D and VEGF positively (r = 0.344 and 0.363, P < 0.001). Over-expressions of PD-L1, VEGF and SEMA4D are associated with more malignant clinicopathologic characteristics of CREOC Patients. In survival analysis, patients' response to BC was the independent factor for evaluation of PFS and overall survival (OS). Cell functional assays showed that Atezolizumab in combination with Bevacizumab inhibited the proliferation, migration, and invasion of cisplatin resistant ovarian cancer cell line A2780cis in vitro synergistically, which maybe associate with Bevacizumab suppressing the epithelial-mesenchymal transition (EMT) and PD-L1 expression by targeting STAT3. Furthermore, Bevacizumab and Atezolizumab induced synergistic anti-tumor effect in vivo. These findings suggest a novel therapeutic strategy for cisplatin resistant recurrent EOC and its mechanism warrants further study.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ying Chen
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,National Clinical Research Centre of Cancer, Tianjin, China
| | - Fangxuan Li
- Department of Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lewen Bao
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenxin Liu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
14
|
Yang Y, Wang J, Li H, Liu L, Yao M, Xiao T. Association between prognosis and SEMA4D/Plexin-B1 expression in various malignancies: A meta-analysis. Medicine (Baltimore) 2019; 98:e13298. [PMID: 30762724 PMCID: PMC6407964 DOI: 10.1097/md.0000000000013298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION SEMA4D and its high affinity receptor Plexin-B1 showed a promising prognosis prediction for carcinoma patients in recent studies, we performed a meta-analysis to evaluate the prognostic role of them in various malignancies. METHODS A systematic literature search was performed in PubMed, Embase, Web of Science, and CNKI from inception till July 2017. Eligible studies were identified by different reviewers. Hazard ratios (HRs)/related ratios (RRs) and their corresponding 95% confidence intervals (CIs) were extracted to investigate the relevance between malignancies prognosis and SEMA4D/Plexin-B1. RESULTS Around 2638 patients from 14 studies were included in this meta-analysis. High expression of SEMA4D was significantly associated with overall survival (OS) and disease-free survival/progression-free survival/recurrence-free survival (DFS/PFS/RFS) in tumors (respectively, HRos = 2.05, 95%CI: 1.68-2.50, P < .001; HRdfs/pfs/rfs = 1.59, 95%CI = 1.27-1.98, P < .001). However, the relationship between SEMA4D expression and prognosis of breast cancer patients was failed to find (HR = 0.76, 95%CI = 0.32-1.82, P = .539). Plexin-B1 level showed a significant positive correlation both with OS and DFS of Caucasian breast cancer patients (respectively, HRos = 0.56, 95%CI: 0.39-0.79, P = .001; HRdfs = 0.68, 95%CI = 0.51-0.90, P = .008) CONCLUSIONS:: SEMA4D could be a prospective biomarker for prognostic prediction of various malignancies except breast cancer. For Caucasian breast cancer patients, SEMA4D's high affinity receptor Plexin-B1 showed a significant positive correlation with survival.
Collapse
Affiliation(s)
- Yibo Yang
- Department of Sport Surgery and Sport Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)
| | - Jing Wang
- Department of Sport Surgery and Sport Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University)
| | - Hui Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Lihong Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Maojin Yao
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
15
|
Liang J, Wu J, Wang F, Zhang P, Zhang X. Semaphoring 4D is required for the induction of antioxidant stress and anti-inflammatory effects of dihydromyricetin in colon cancer. Int Immunopharmacol 2018; 67:220-230. [PMID: 30562683 DOI: 10.1016/j.intimp.2018.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022]
Abstract
Semaphorin 4D (Sema4D) has been involved in cancer progression, the expression of which is associated with the poor clinical outcomes of some cancer patients. Dihydromyricetin (DMY) has antitumor potentials for different types of human cancer cells. However, the pharmacological effects of DMY on colon cancer (CC) or the regulatory effects of Sema4D on this process remain largely unknown. In the present study, we aimed to evaluate the effects of DMY on CC, and to elucidate the role of Sema4D in DMY-induced antitumor effects. DMY inhibited the proliferation and growth of Colo-205 colon cancer cells significantly in vivo and in vitro. DMY inhibited reactive oxygen species (ROS) and malondialdehyde (MDA) levels, but increased glutathione (GSH) level. Moreover, the activities of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and heme oxygenase 1 (HO-1) were enhanced by DMY treatment in vitro, showing strong anti-oxidative stress effect. In addition, DMY inhibited the secretion of interleukin 1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor (TNF-α) in the supernatant of Colo-205 culture medium. Besides, the expressions of cyclooxygenase (COX-2) and inducible nitric oxide synthase (iNOS) were suppressed by DMY in dose-dependent manners in vivo, showing potent anti-inflammatory effect. Further investigations showed that DMY suppressed the expression and secretion of Sema4D in Colo-205 cells and tissues. Interestingly, overexpression of Sema4D significantly weakened the regulatory effects of DMY on oxidative stress. Furthermore, overexpression of Sema4D significantly attenuated the anti-inflammatory effects of DMY. Collectively, we drew a conclusion that the anti-colon cancer effect of DMY was attributed to its negative modulation on oxidative stress and inflammation via suppression of Sema4D. The findings broaden the width and depth of molecular mechanisms involved in the DMY action, facilitating the development of DMY in anti-colon cancer therapies.
Collapse
Affiliation(s)
- Jun Liang
- Oncology Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jing Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Fei Wang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Pengfei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xuemei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
16
|
Abstract
Several neuronal guidance proteins, known as semaphorin molecules, function in the immune system. This dual tissue performance has led to them being defined as "neuroimmune semaphorins". They have been shown to regulate T cell activation by serving as costimulatory molecules. Similar to classical costimulatory molecules, neuroimmune semaphorins are either constitutively or inducibly expressed on immune cells. In contrast to the classical costimulatory molecule function, the action of neuroimmune semaphorins requires the presence of two signals, the first one provided by TCR/MHC engagement, and the second one provided by B7/CD28 interaction. Thus, neuroimmune semaphorins serve as a "signal three" for immune cell activation and regulate the overall intensity of immune response. The current knowledge on their structures, multiple receptors, specific cell/tissue/organ expression, and distinct functions in different diseases are summarized and discussed in this review.
Collapse
Affiliation(s)
- Svetlana P Chapoval
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.
- Program in Oncology at the Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
- SemaPlex LLC, Ellicott City, MD, USA.
| |
Collapse
|