1
|
Berk L. The effects of high-dose radiation therapy on bone: a scoping review. Radiat Oncol J 2024; 42:95-103. [PMID: 38946071 PMCID: PMC11215508 DOI: 10.3857/roj.2023.00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 07/02/2024] Open
Abstract
PURPOSE This scoping review presents the preclinical and clinical data on the effects of high-dose radiation therapy (RT) on bone structure and function. MATERIALS AND METHODS An extensive PubMed search was performed for the relevant questions. The data were then synthesized into a comprehensive summary of the available relevant in-vitro, preclinical and clinical literature. RESULTS In-vitro studies of high-dose RT on cell cultures show considerable damage in the viability and functional capacity of the primary cells of the bones; the osteoclasts, the osteoblasts, and the osteocytes. In-vivo animal models show that high-dose RT induces significant morphological changes to the bone, inhibits the ability of bone to repair damage, and increases the fragility of the bone. Clinical data show that there is an increasing risk over time of damage to the bone, such as fractures, after high-dose RT. CONCLUSION These findings suggest that there may be a limit to the safe dose for single-fraction RT, and the long-term consequences of high-dose RT for the patients must be considered.
Collapse
Affiliation(s)
- Lawrence Berk
- Winter Haven Hospital, Baycare Health System, Winter Haven, FL, USA
| |
Collapse
|
2
|
Malikova H, Nadova K, Reginacova K, Kremenova K, Rob L. Radiation-Related Fractures after Radical Radiotherapy for Cervical and Endometrial Cancers: Are There Any Differences? Diagnostics (Basel) 2024; 14:810. [PMID: 38667456 PMCID: PMC11049002 DOI: 10.3390/diagnostics14080810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, we reviewed CT/MRI scans and studied the rates of radiation-related fractures in subjects treated for cervical cancer (CC, 63 subjects) by radical radiotherapy (RT) and in subjects treated for endometrial cancer (EC, 64 subjects) by radical surgery and RT. The differences between bone density measured in L1 on pretreatment CT, age and body mass index (BMI) were evaluated. Despite significant differences in RT total dose, age, BMI, etc., between both groups, the rate of radiation-related fractures was similar: 28.6% of CC versus 26.6% of EC subjects. CC subjects with fractures were significantly older (62.4 ± 10.1 vs. 49.0 ± 12.4 years; p < 0.001), and their bone densities were significantly lower (106.3 ± 40.0 vs. 168.2 ± 49.5 HU; p < 0.001); no difference in BMI was found. EC subjects with fractures were without significant difference in age but had significantly lower bone densities (103.8 ± 29.0 vs. 133.8 ± 42.3 HU; p = 0.009) and BMIs (26.1 ± 4.9 vs. 31.8 ± 6.9 kg/m2; p = 0.003). Bone density strongly correlated with age (r = -0.755) only in CC subjects. Subjects with fractures from both groups had similarly low bone densities (106.3 ± 40.0 vs. 103.8 ± 29.0 HU; p = 0.829); however, no correlation between bone density and BMI was found. The rate of radiation-related fractures in both groups was clearly associated only with low pretreatment bone density, reflecting osteoporosis.
Collapse
Affiliation(s)
- Hana Malikova
- Department of Radiology and Nuclear Medicine, Third Faculty of Medicine, Charles University, Faculty Hospital Kralovske Vinohrady, 11000 Prague, Czech Republic; (K.N.); (K.K.)
- Institute of Anatomy, Second Faculty of Medicine, Charles University, 11000 Prague, Czech Republic
| | - Katarina Nadova
- Department of Radiology and Nuclear Medicine, Third Faculty of Medicine, Charles University, Faculty Hospital Kralovske Vinohrady, 11000 Prague, Czech Republic; (K.N.); (K.K.)
- Institute of Anatomy, Second Faculty of Medicine, Charles University, 11000 Prague, Czech Republic
| | - Klaudia Reginacova
- Department of Oncology, Third Faculty of Medicine, Charles University, Faculty Hospital Kralovske Vinohrady, 11000 Prague, Czech Republic;
| | - Karin Kremenova
- Department of Radiology and Nuclear Medicine, Third Faculty of Medicine, Charles University, Faculty Hospital Kralovske Vinohrady, 11000 Prague, Czech Republic; (K.N.); (K.K.)
| | - Lukas Rob
- Department of Obstetrics and Gynaecology, Third Faculty of Medicine, Charles University, Faculty Hospital Kralovske Vinohrady, 11000 Prague, Czech Republic;
| |
Collapse
|
3
|
Sarkar A, Chakrabarti B, Manna A, Mitra D. A prospective study of changes in bone health in adult cancer patients treated with pelvic radiotherapy. Rep Pract Oncol Radiother 2024; 29:55-61. [PMID: 39165595 PMCID: PMC11333075 DOI: 10.5603/rpor.99099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/16/2024] [Indexed: 08/22/2024] Open
Abstract
Background Cancer is a major health problem in today's world. Many patients of pelvic malignancies need treatment by radiation therapy. Post-treatment morbidity due to loss of bone health is less commonly studied. Our study aims at studying the impact of pelvic radiation therapy on bone health including bone mineral density and blood parameters and time of maximum change in Indian patients after pelvic radiotherapy. Materials and methods Patients suffering from histologically confirmed pelvic malignancies were included. Patients having metastasis, primary bone tumor or uncontrolled co-morbid conditions were excluded. Patients were treated with concomitant chemoradiation using conventional fractionation of external beam radiotherapy followed by brachytherapy where indicated. T score and Z score of bone mineral density, serum alkaline phosphatase, vitamin D3, phosphorus and calcium were measured before radiation therapy and 6 weeks, three months, and six months after completion of radiation therapy. A p-value ≤ 0.05 was considered statistically significant. Results We found that there was a significant decrease in mean Z score and a significant rise of mean serum alkaline phosphatase at three months post radiation therapy. This was associated with an insignificant changes of mean T score, vitamin D3, phosphorus and calcium after radiation therapy. No pelvic insufficiency fractures were detected. Conclusion In Indian patients, alkaline phosphatase rises, and Z score falls significantly after radiation therapy at three months after treatment. This suggests maximum bone turnover at three months after treatment. Pharmacological intervention, when necessary, may be considered by careful monitoring of patients by this time.
Collapse
Affiliation(s)
- Arpita Sarkar
- Department of Radiotherapy, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Bikramjit Chakrabarti
- Department of Radiotherapy, Bankura Sammilani Medical College, Kenduadihi, Bankura, India
| | - Amitava Manna
- Department of Radiotherapy, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Debabrata Mitra
- Department of Radiotherapy, Institute of Postgraduate Medical Education and Research, Kolkata, India
| |
Collapse
|
4
|
Guo W, Hoque J, Garcia CJG, Spiller KV, Leinroth AP, Puviindran V, Potnis CK, Gunn KA, Newman H, Ishikawa K, Fujimoto TN, Neill DW, Delahoussaye AM, Williams NT, Kirsch DG, Hilton MJ, Varghese S, Taniguchi CM, Wu C. Radiation-induced bone loss in mice is ameliorated by inhibition of HIF-2α in skeletal progenitor cells. Sci Transl Med 2023; 15:eabo5217. [PMID: 38019933 PMCID: PMC10804914 DOI: 10.1126/scitranslmed.abo5217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Radiotherapy remains a common treatment modality for cancer despite skeletal complications. However, there are currently no effective treatments for radiation-induced bone loss, and the consequences of radiotherapy on skeletal progenitor cell (SPC) survival and function remain unclear. After radiation, leptin receptor-expressing cells, which include a population of SPCs, become localized to hypoxic regions of the bone and stabilize the transcription factor hypoxia-inducible factor-2α (HIF-2α), thus suggesting a role for HIF-2α in the skeletal response to radiation. Here, we conditionally knocked out HIF-2α in leptin receptor-expressing cells and their descendants in mice. Radiation therapy in littermate control mice reduced bone mass; however, HIF-2α conditional knockout mice maintained bone mass comparable to nonirradiated control animals. HIF-2α negatively regulated the number of SPCs, bone formation, and bone mineralization. To test whether blocking HIF-2α pharmacologically could reduce bone loss during radiation, we administered a selective HIF-2α inhibitor called PT2399 (a structural analog of which was recently FDA-approved) to wild-type mice before radiation exposure. Pharmacological inhibition of HIF-2α was sufficient to prevent radiation-induced bone loss in a single-limb irradiation mouse model. Given that ~90% of patients who receive a HIF-2α inhibitor develop anemia because of off-target effects, we developed a bone-targeting nanocarrier formulation to deliver the HIF-2α inhibitor to mouse bone, to increase on-target efficacy and reduce off-target toxicities. Nanocarrier-loaded PT2399 prevented radiation-induced bone loss in mice while reducing drug accumulation in the kidney. Targeted inhibition of HIF-2α may represent a therapeutic approach for protecting bone during radiation therapy.
Collapse
Affiliation(s)
- Wendi Guo
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine; Durham, NC 27705, USA
| | - Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
| | - Carolina J. Garcia Garcia
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Kassandra V. Spiller
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27705, USA
| | - Abigail P. Leinroth
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Vijitha Puviindran
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
| | - Cahil K. Potnis
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
| | - Kiana A. Gunn
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine; Durham, NC 27705, USA
| | - Hunter Newman
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Mechanical Engineering and Materials Science, Duke University; Durham, NC 27705, USA
| | - Koji Ishikawa
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, 142-8666, JP
| | - Tara N. Fujimoto
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Denae W. Neill
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Abagail M. Delahoussaye
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Nerissa T. Williams
- Department of Radiation Oncology, Duke University School of Medicine; Durham, NC 27705, USA
| | - David G. Kirsch
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Radiation Oncology, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Biomedical Biophysics, University of Toronto, Toronto, ON, M5S 1A8, CA
- Department of Radiation Oncology, University of Toronto, Toronto, ON, M5T 1O5, CA
- Princess Margarat Cancer Centre, University Health Network, Toronto, ON, M5G 2C1, CA
| | - Matthew J. Hilton
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Cell Biology, Duke University School of Medicine; Durham, NC 27705, USA
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Mechanical Engineering and Materials Science, Duke University; Durham, NC 27705, USA
- Department of Biomedical Engineering, Duke University School of Medicine; Durham, NC 27705, USA
| | - Cullen M. Taniguchi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
- Department of GI Radiation Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Colleen Wu
- Department of Orthopaedic Surgery, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine; Durham, NC 27705, USA
- Department of Radiation Oncology, University of Toronto, Toronto, ON, M5T 1O5, CA
| |
Collapse
|
5
|
Wu XQ, Zhang TY, Yang F, Feng XY, Feng YL, Wang LL, Chen TW, Li CP, Li R. Association of radiotherapy with thoracic vertebral fractures in esophageal squamous cell carcinoma: A retrospective cohort study. Medicine (Baltimore) 2023; 102:e35304. [PMID: 37773852 PMCID: PMC10545250 DOI: 10.1097/md.0000000000035304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
To investigate the association between radiotherapy (RT) and thoracic vertebral fractures in esophageal squamous cell carcinoma (ESCC) and explore the risk factors of thoracic vertebral fracture in ESCC who underwent RT. This retrospective cohort study including 602 consecutive ESCC patients examined the association between RT and thoracic vertebral fractures using multivariable Cox proportional hazard models and relevant risk factors of thoracic vertebral fractures based on clinical and RT parameters in patients with ESCC. Followed for a median follow-up of 24 months, 54 patients had thoracic vertebral fractures. The multivariable analysis revealed RT as an independent risk factor after adjusting for clinical risk factors. Univariable analyses associated a 5-Gy increase in vertebral dose to single vertebrae and a 1-time increase in RT fraction with higher risk of vertebral fracture. Adding RT factors (vertebral dose and fraction) and mean vertebral hounsfield unit to the Cox models containing conventional clinical risk factors significantly improved the χ2 value for predicting vertebral fractures (all P < .001). This study revealed RT, as well as increased vertebral dose and RT fractions, as a significant, consistent, and strong vertebral fracture predictor in ESCC. Combined vertebral dose, RT fractions, and vertebral hounsfield unit provided optimal risk stratification for ESCC patients.
Collapse
Affiliation(s)
- Xing-Qiang Wu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, and Sichuan Key Laboratory of Medical Imaging, Sichuan, China
- Department of Radiology, The second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian-Yue Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, and Sichuan Key Laboratory of Medical Imaging, Sichuan, China
| | - Fan Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, and Sichuan Key Laboratory of Medical Imaging, Sichuan, China
| | - Xin-Yi Feng
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, and Sichuan Key Laboratory of Medical Imaging, Sichuan, China
| | - Yu-Ling Feng
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, and Sichuan Key Laboratory of Medical Imaging, Sichuan, China
| | - Ling-Li Wang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, and Sichuan Key Laboratory of Medical Imaging, Sichuan, China
| | - Tian-Wu Chen
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, and Sichuan Key Laboratory of Medical Imaging, Sichuan, China
| | - Chun-Ping Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, and Sichuan Key Laboratory of Medical Imaging, Sichuan, China
| | - Rui Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, and Sichuan Key Laboratory of Medical Imaging, Sichuan, China
| |
Collapse
|
6
|
Emerzian SR, Wu T, Vaidya R, Tang SY, Abergel RJ, Keaveny TM. Relative Effects of Radiation-Induced Changes in Bone Mass, Structure, and Tissue Material on Vertebral Strength in a Rat Model. J Bone Miner Res 2023; 38:1032-1042. [PMID: 37191221 PMCID: PMC10524463 DOI: 10.1002/jbmr.4828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/06/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
The observed increased risk of fracture after cancer radiation therapy is presumably due to a radiation-induced reduction in whole-bone strength. However, the mechanisms for impaired strength remain unclear, as the increased fracture risk is not fully explained by changes in bone mass. To provide insight, a small animal model was used to determine how much of this whole-bone weakening effect for the spine is attributable to changes in bone mass, structure, and material properties of the bone tissue and their relative effects. Further, because women have a greater risk of fracture after radiation therapy than men, we investigated if sex had a significant influence on bone's response to irradiation. Fractionated in vivo irradiation (10 × 3 Gy) or sham irradiation (0 Gy) was administered daily to the lumbar spine in twenty-seven 17-week-old Sprague-Dawley rats (n = 6-7/sex/group). Twelve weeks after final treatment, animals were euthanized, and lumbar vertebrae (L4 and L5 ) were isolated. Using a combination of biomechanical testing, micro-CT-based finite element analysis, and statistical regression analysis, we separated out the effect of mass, structural, and tissue material changes on vertebral strength. Compared with the sham group (mean ± SD strength = 420 ± 88 N), the mean strength of the irradiated group was lower by 28% (117 N/420 N, p < 0.0001). Overall, the response of treatment did not differ with sex. By combining results from both general linear regression and finite element analyses, we calculated that mean changes in bone mass, structure, and material properties of the bone tissue accounted for 56% (66 N/117 N), 20% (23 N/117 N), and 24% (28 N/117 N), respectively, of the overall change in strength. As such, these results provide insight into why an elevated clinical fracture risk for patients undergoing radiation therapy is not well explained by changes in bone mass alone. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Shannon R. Emerzian
- Department of Mechanical Engineering, University of
California, Berkeley, California, USA
| | - Tongge Wu
- Department of Mechanical Engineering, University of
California, Berkeley, California, USA
| | - Rachana Vaidya
- Department of Orthopaedic Surgery, Washington University,
St. Louis, Missouri, USA
| | - Simon Y. Tang
- Department of Orthopaedic Surgery, Washington University,
St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington
University, St. Louis, Missouri, USA
- Department of Material Science & Mechanical
Engineering, Washington University, St. Louis, Missouri, USA
| | - Rebecca J. Abergel
- Department of Nuclear Engineering, University of
California, Berkeley, California, USA
| | - Tony M. Keaveny
- Department of Mechanical Engineering, University of
California, Berkeley, California, USA
- Department of Bioengineering, University of California,
Berkeley, California, USA
| |
Collapse
|
7
|
Obrador E, Salvador-Palmer R, Villaescusa JI, Gallego E, Pellicer B, Estrela JM, Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants (Basel) 2022; 11:1098. [PMID: 35739995 PMCID: PMC9219873 DOI: 10.3390/antiox11061098] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Eduardo Gallego
- Energy Engineering Department, School of Industrial Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Blanca Pellicer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
8
|
Richardson KK, Ling W, Krager K, Fu Q, Byrum SD, Pathak R, Aykin-Burns N, Kim HN. Ionizing Radiation Activates Mitochondrial Function in Osteoclasts and Causes Bone Loss in Young Adult Male Mice. Int J Mol Sci 2022; 23:675. [PMID: 35054859 PMCID: PMC8775597 DOI: 10.3390/ijms23020675] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
The damaging effects of ionizing radiation (IR) on bone mass are well-documented in mice and humans and are most likely due to increased osteoclast number and function. However, the mechanisms leading to inappropriate increases in osteoclastic bone resorption are only partially understood. Here, we show that exposure to multiple fractions of low-doses (10 fractions of 0.4 Gy total body irradiation [TBI]/week, i.e., fractionated exposure) and/or a single exposure to the same total dose of 4 Gy TBI causes a decrease in trabecular, but not cortical, bone mass in young adult male mice. This damaging effect was associated with highly activated bone resorption. Both osteoclast differentiation and maturation increased in cultures of bone marrow-derived macrophages from mice exposed to either fractionated or singular TBI. IR also increased the expression and enzymatic activity of mitochondrial deacetylase Sirtuin-3 (Sirt3)-an essential protein for osteoclast mitochondrial activity and bone resorption in the development of osteoporosis. Osteoclast progenitors lacking Sirt3 exposed to IR exhibited impaired resorptive activity. Taken together, targeting impairment of osteoclast mitochondrial activity could be a novel therapeutic strategy for IR-induced bone loss, and Sirt3 is likely a major mediator of this effect.
Collapse
Affiliation(s)
- Kimberly K. Richardson
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.R.); (W.L.); (Q.F.)
| | - Wen Ling
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.R.); (W.L.); (Q.F.)
| | - Kimberly Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.); (R.P.); (N.A.-B.)
| | - Qiang Fu
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.R.); (W.L.); (Q.F.)
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.); (R.P.); (N.A.-B.)
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.); (R.P.); (N.A.-B.)
| | - Ha-Neui Kim
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.R.); (W.L.); (Q.F.)
| |
Collapse
|
9
|
Doolittle ML, Monroe DG, Farr JN, Khosla S. The role of senolytics in osteoporosis and other skeletal pathologies. Mech Ageing Dev 2021; 199:111565. [PMID: 34499959 DOI: 10.1016/j.mad.2021.111565] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
Abstract
The skeletal system undergoes irreversible structural deterioration with aging, leading to increased fracture risk and detrimental changes in mobility, posture, and gait. This state of low bone mass and microarchitectural changes, diagnosed as osteoporosis, affects millions of individuals worldwide and has high clinical and economic burdens. Recently, pre-clinical studies have linked the onset of age-related bone loss with an accumulation of senescent cells in the bone microenvironment. These senescent cells appear to be causal to age-related bone loss, as targeted clearance of these cells leads to improved bone mass and microarchitecture in old mice. Additionally, other pathologies leading to bone loss that result from DNA damage, such as cancer treatments, have shown improvements after clearance of senescent cells. The development of new therapies that clear senescent cells, termed "senolytics", is currently underway and may allow for the modulation of bone loss that results from states of high senescent cell burden, such as aging.
Collapse
Affiliation(s)
- Madison L Doolittle
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States
| | - David G Monroe
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States
| | - Joshua N Farr
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States.
| |
Collapse
|
10
|
Xu L, Wang Y, Wang J, Zhai J, Ren L, Zhu G. Radiation-Induced Osteocyte Senescence Alters Bone Marrow Mesenchymal Stem Cell Differentiation Potential via Paracrine Signaling. Int J Mol Sci 2021; 22:ijms22179323. [PMID: 34502232 PMCID: PMC8430495 DOI: 10.3390/ijms22179323] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence and its senescence-associated secretory phenotype (SASP) are widely regarded as promising therapeutic targets for aging-related diseases, such as osteoporosis. However, the expression pattern of cellular senescence and multiple SASP secretion remains unclear, thus leaving a large gap in the knowledge for a desirable intervention targeting cellular senescence. Therefore, there is a critical need to understand the molecular mechanism of SASP secretion in the bone microenvironment that can ameliorate aging-related degenerative pathologies including osteoporosis. In this study, osteocyte-like cells (MLO-Y4) were induced to cellular senescence by 2 Gy γ-rays; then, senescence phenotype changes and adverse effects of SASP on bone marrow mesenchymal stem cell (BMSC) differentiation potential were investigated. The results revealed that 2 Gy irradiation could hinder cell viability, shorten cell dendrites, and induce cellular senescence, as evidenced by the higher expression of senescence markers p16 and p21 and the elevated formation of senescence-associated heterochromatin foci (SAHF), which was accompanied by the enhanced secretion of SASP markers such as IL-1α, IL-6, MMP-3, IGFBP-6, resistin, and adiponectin. When 0.8 μM JAK1 inhibitors were added to block SASP secretion, the higher expression of SASP was blunted, but the inhibition in osteogenic and adipogenic differentiation potential of BMSCs co-cultured with irradiated MLO-Y4 cell conditioned medium (CM- 2 Gy) was alleviated. These results suggest that senescent osteocytes can perturb BMSCs’ differential potential via the paracrine signaling of SASP, which was also demonstrated by in vivo experiments. In conclusion, we identified the SASP factor partially responsible for the degenerative differentiation of BMSCs, which allowed us to hypothesize that senescent osteocytes and their SASPs may contribute to radiation-induced bone loss.
Collapse
|
11
|
Farshad M, Burkhard MD, Spirig JM. Occipitopexy as a Fusionless Solution for Dropped Head Syndrome: A Case Report. JBJS Case Connect 2021; 11:01709767-202109000-00080. [PMID: 34398850 DOI: 10.2106/jbjs.cc.21.00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CASE A 68-year-old woman suffered from an irradiation-induced dropped head syndrome (DHS). Fusion surgery was vehemently rejected by the patient. A new surgical method, avoiding fusion, was invented and performed to treat her DHS. This novel surgical technique of "occipitopexy"-a ligamentous fixation of the occiput to the upper thoracic spine-is described in detail. One year postoperatively, the patient was very satisfied, able to maintain a horizontal gaze, and rotate her head 20° to each side. CONCLUSION This is the first report describing "occipitopexy" as an alternative to cervicothoracic fusion for patients with flexible DHS.
Collapse
Affiliation(s)
- Mazda Farshad
- Department of Orthopaedic Surgery, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
12
|
Alam W, Ullah H, Santarcangelo C, Di Minno A, Khan H, Daglia M, Arciola CR. Micronutrient Food Supplements in Patients with Gastro-Intestinal and Hepatic Cancers. Int J Mol Sci 2021; 22:8014. [PMID: 34360782 PMCID: PMC8347237 DOI: 10.3390/ijms22158014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/05/2023] Open
Abstract
Colorectal carcinogenesis is the second most common cause of mortality across all types of malignancies, followed by hepatic and stomach cancers. Chemotherapy and radiotherapy are key approaches to treating cancer patients, but these carry major concerns, such as a high risk of side effects, poor accessibility, and the non-selective nature of chemotherapeutics. A number of natural products have been identified as countering various forms of cancer with fewer side effects. The potential impact of vitamins and minerals on long-term health, cognition, healthy development, bone formation, and aging has been supported by experimental and epidemiological studies. Successful treatment may thus be highly influenced by the nutritional status of patients. An insufficient diet could lead to detrimental effects on immune status and tolerance to treatment, affecting the ability of chemotherapy to destroy cancerous cells. In recent decades, most cancer patients have been taking vitamins and minerals to improve standard therapy and/or to decrease the undesirable side effects of the treatment together with the underlying disease. On the other hand, taking dietary supplements during cancer therapy may affect the effectiveness of chemotherapy. Thus, micronutrients in complementary oncology must be selected appropriately and should be taken at the right time. Here, the potential impact of micronutrients on gastro-intestinal and hepatic cancers is explored and their molecular targets are laid down.
Collapse
Affiliation(s)
- Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; (W.A.); (H.K.)
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.D.M.)
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.D.M.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.D.M.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; (W.A.); (H.K.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.D.M.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Carla Renata Arciola
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40136 Bologna, Italy
| |
Collapse
|
13
|
Li Z, MacDougald OA. Preclinical models for investigating how bone marrow adipocytes influence bone and hematopoietic cellularity. Best Pract Res Clin Endocrinol Metab 2021; 35:101547. [PMID: 34016532 PMCID: PMC8458229 DOI: 10.1016/j.beem.2021.101547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Laboratory mice are a crucial preclinical model system for investigating bone marrow adipocyte (BMAd)-bone and BMAd-hematopoiesis interactions. In this review, we evaluate the suitability of mice to model common human diseases related to osteopenia or hematopoietic disorders, point out consistencies and discrepancies among different studies, and provide insights into model selection. Species, age, sex, skeletal site, and treatment protocol should all be considered when designing future studies.
Collapse
Affiliation(s)
- Ziru Li
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Kumar D, Miriyala R, Rai B, Bansal P, Oinam AS, Singh T, Ghoshal S. Impact of three-dimensional chemoradiation on pelvic bone mineral density, low back pain, and disability in cervical cancer: a prospective study. Int J Gynecol Cancer 2021; 31:835-839. [PMID: 33975860 DOI: 10.1136/ijgc-2020-002290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE To prospectively analyze the effect of three-dimensional chemoradiation on the bone mineral density of pelvic bones and its association with low back pain and disability in patients with locally advanced cervical cancer. METHODS In biopsy proven locally advanced cervical cancer patients, bone mineral density and T scores for lumbar vertebrae 5, dorsal thoracic vertebrae 12, and T scores for the femoral neck were analyzed. Low back pain was scored using the visual analog scale while disability scoring was done using the Oswestry low back pain disability scale. Furthermore, a subgroup analysis for patients (classified according to menopausal status) was performed. RESULTS In total, 106 patients were analyzed. A statistically significant decline in mean bone mineral density was observed at all three sites (vertebrae 5 and 12, and the femoral neck) post-chemoradiation therapy compared with pretreatment bone mineral density (0.671 vs 0.828, -2.083 vs -1.531, -2.503 vs -1.626; all p<0.001). Similarly, in subgroup analyses, at all three sites, pre-menopausal patients showed a statistically significant association (0.876 vs 0.697, -1.203 vs -0.2.761, -1.403 vs -2.232; all p<0.001) while a non-significant association was observed for post-menopausal patients at vertebrae 12 (-1.707 vs -1.719; p=0.09) with a statistically significant association at vertebrae 5 and the femoral neck (0.803 vs 0.656, -1.746 vs -2.648; p<0.01). Although statistically significant low back pain and disability scores were observed overall and irrespective of menopausal status, no correlation between bone mineral density and low back pain and disability was observed. CONCLUSION Pelvic bone mineral density decreases significantly after chemoradiation, irrespective of menopausal status. However, no correlation with low back pain and disability was observed. Pelvic bone mineral density analysis should be considered before chemoradiation in cervical cancer.
Collapse
Affiliation(s)
- Divyesh Kumar
- Radiotherapy and Oncology, PGIMER, Chandigarh, India
| | | | - Bhavana Rai
- Radiotherapy and Oncology, PGIMER, Chandigarh, India
| | | | - Arun S Oinam
- Radiotherapy and Oncology, PGIMER, Chandigarh, India
| | | | | |
Collapse
|
15
|
Luxton JJ, McKenna MJ, Lewis AM, Taylor LE, Jhavar SG, Swanson GP, Bailey SM. Telomere Length Dynamics and Chromosomal Instability for Predicting Individual Radiosensitivity and Risk via Machine Learning. J Pers Med 2021; 11:188. [PMID: 33800260 PMCID: PMC8002073 DOI: 10.3390/jpm11030188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
The ability to predict a cancer patient's response to radiotherapy and risk of developing adverse late health effects would greatly improve personalized treatment regimens and individual outcomes. Telomeres represent a compelling biomarker of individual radiosensitivity and risk, as exposure can result in dysfunctional telomere pathologies that coincidentally overlap with many radiation-induced late effects, ranging from degenerative conditions like fibrosis and cardiovascular disease to proliferative pathologies like cancer. Here, telomere length was longitudinally assessed in a cohort of fifteen prostate cancer patients undergoing Intensity Modulated Radiation Therapy (IMRT) utilizing Telomere Fluorescence in situ Hybridization (Telo-FISH). To evaluate genome instability and enhance predictions for individual patient risk of secondary malignancy, chromosome aberrations were assessed utilizing directional Genomic Hybridization (dGH) for high-resolution inversion detection. We present the first implementation of individual telomere length data in a machine learning model, XGBoost, trained on pre-radiotherapy (baseline) and in vitro exposed (4 Gy γ-rays) telomere length measurements, to predict post radiotherapy telomeric outcomes, which together with chromosomal instability provide insight into individual radiosensitivity and risk for radiation-induced late effects.
Collapse
Affiliation(s)
- Jared J. Luxton
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; (J.J.L.); (M.J.M.); (A.M.L.); (L.E.T.)
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Miles J. McKenna
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; (J.J.L.); (M.J.M.); (A.M.L.); (L.E.T.)
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Aidan M. Lewis
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; (J.J.L.); (M.J.M.); (A.M.L.); (L.E.T.)
| | - Lynn E. Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; (J.J.L.); (M.J.M.); (A.M.L.); (L.E.T.)
| | - Sameer G. Jhavar
- Baylor Scott & White Medical Center, Temple, TX 76508, USA; (S.G.J.); (G.P.S.)
| | - Gregory P. Swanson
- Baylor Scott & White Medical Center, Temple, TX 76508, USA; (S.G.J.); (G.P.S.)
| | - Susan M. Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; (J.J.L.); (M.J.M.); (A.M.L.); (L.E.T.)
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
16
|
Fisher L, Fisher A, Smith PN. Helicobacter pylori Related Diseases and Osteoporotic Fractures (Narrative Review). J Clin Med 2020; 9:E3253. [PMID: 33053671 PMCID: PMC7600664 DOI: 10.3390/jcm9103253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis (OP) and osteoporotic fractures (OFs) are common multifactorial and heterogenic disorders of increasing incidence. Helicobacter pylori (H.p.) colonizes the stomach approximately in half of the world's population, causes gastroduodenal diseases and is prevalent in numerous extra-digestive diseases known to be associated with OP/OF. The studies regarding relationship between H.p. infection (HPI) and OP/OFs are inconsistent. The current review summarizes the relevant literature on the potential role of HPI in OP, falls and OFs and highlights the reasons for controversies in the publications. In the first section, after a brief overview of HPI biological features, we analyze the studies evaluating the association of HPI and bone status. The second part includes data on the prevalence of OP/OFs in HPI-induced gastroduodenal diseases (peptic ulcer, chronic/atrophic gastritis and cancer) and the effects of acid-suppressive drugs. In the next section, we discuss the possible contribution of HPI-associated extra-digestive diseases and medications to OP/OF, focusing on conditions affecting both bone homeostasis and predisposing to falls. In the last section, we describe clinical implications of accumulated data on HPI as a co-factor of OP/OF and present a feasible five-step algorithm for OP/OF risk assessment and management in regard to HPI, emphasizing the importance of an integrative (but differentiated) holistic approach. Increased awareness about the consequences of HPI linked to OP/OF can aid early detection and management. Further research on the HPI-OP/OF relationship is needed to close current knowledge gaps and improve clinical management of both OP/OF and HPI-related disorders.
Collapse
Affiliation(s)
- Leon Fisher
- Department of Gastroenterology, Frankston Hospital, Peninsula Health, Melbourne 3199, Australia
| | - Alexander Fisher
- Department of Geriatric Medicine, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Department of Orthopedic Surgery, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Australian National University Medical School, Canberra 2605, Australia
| | - Paul N Smith
- Department of Orthopedic Surgery, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Australian National University Medical School, Canberra 2605, Australia
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Senescent cells are now known to accumulate in multiple tissues with aging and through their inflammation (the senescence-associated secretory phenotype, SASP) contribute to aging and chronic diseases. Here, we review the roles of senescent osteocytes in the context of bone loss. RECENT FINDINGS Numerous studies have established that senescent osteocytes accumulate in the bone microenvironment with aging in mice and in humans. Moreover, at least in mice, elimination of senescent cells results in attenuation of age-related bone loss. Osteocyte senescence also occurs in response to other cellular stressors, including radiotherapy, chemotherapy, and metabolic dysfunction, where it appears to mediate skeletal deterioration. Osteocyte senescence is linked to bone loss associated with aging and other conditions. Senescent osteocytes are potential therapeutic targets to alleviate skeletal dysfunction. Additional studies better defining the underlying mechanisms as well as translating these exciting findings from mouse models to humans are needed.
Collapse
Affiliation(s)
- Joshua N Farr
- Division of Endocrinology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Japneet Kaur
- Division of Endocrinology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Madison L Doolittle
- Division of Endocrinology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
18
|
Yaprak G, Gemici C, Seseogullari OO, Karabag IS, Cini N. CT Derived Hounsfield Unit: An Easy Way to Determine Osteoporosis and Radiation Related Fracture Risk in Irradiated Patients. Front Oncol 2020; 10:742. [PMID: 32477951 PMCID: PMC7237579 DOI: 10.3389/fonc.2020.00742] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Background: We aimed to evaluate osteoporosis, bone mineral density, and fracture risk in irradiated patients by computerized tomography derived Hounsfield Units (HUs) calculated from radiation treatment planning system. Methods: Fifty-seven patients operated for gastric adenocarcinoma who received adjuvant abdominal radiotherapy were included in the study group. Thirty-four patients who were not irradiated after surgery comprised the control group. HUs of T12, L1, L2 vertebral bodies were measured from the computerized tomographies imported to the treatment planning system for all the patients. While the measurements were obtained just after surgery and 1 year later after surgery in the control group, the same measurements were obtained just before irradiation and 1 year after radiotherapy in the study group. Percent change in HU values (Δ%HU) was determined for each group. Vertebral compression fractures, which are the consequence of radiation induced osteoporosis and bone toxicity were assessed during follow-up. Results: There was no statistical significant difference in HU values measured for all the vertebrae between the study and the control group at the onset of the study. While HU values decreased significantly in the study group, there was no significant reduction in HU values in the control group after 1 year. significant correlation was found between Δ%HU and the radiation dose received by each vertebra. Insufficiency fractures (IFs) were observed only in the irradiated patients (4 out of 57 patients) with the cumulative incidence of 7%. Conclusions: HU values are very valuable in determining bone mineral density and fracture risk. Radiation treatment planning system can be utilized to determine HU values. IFs are common after abdominal radiotherapy in patients with low vertebral HU values detected during radiation treatment planning. Radiation dose to the vertebral bones with low HU values should be limited below 20 Gy to prevent late radiation related bone toxicity.
Collapse
Affiliation(s)
- Gokhan Yaprak
- Department of Radiation Oncology, Kartal Dr. Lutfi Kirdar Education and Research Hospital, Istanbul, Turkey
| | - Cengiz Gemici
- Department of Radiation Oncology, Kartal Dr. Lutfi Kirdar Education and Research Hospital, Istanbul, Turkey
| | - Ozgur O. Seseogullari
- Department of Radiation Oncology, Biruni University Medicana Hospital, Istanbul, Turkey
| | - Irem S. Karabag
- Department of Radiology, Ondokuz Mayis University, Samsun, Turkey
| | - Nilsu Cini
- Department of Radiation Oncology, Kartal Dr. Lutfi Kirdar Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
19
|
Pendleton MM, Emerzian SR, Liu J, Tang SY, O'Connell GD, Alwood JS, Keaveny TM. Effects of ex vivo ionizing radiation on collagen structure and whole-bone mechanical properties of mouse vertebrae. Bone 2019; 128:115043. [PMID: 31445224 PMCID: PMC6813909 DOI: 10.1016/j.bone.2019.115043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022]
Abstract
Bone can become brittle when exposed to ionizing radiation across a wide range of clinically relevant doses that span from radiotherapy (accumulative 50 Gy) to sterilization (~35,000 Gy). While irradiation-induced embrittlement has been attributed to changes in the collagen molecular structure, the relative role of collagen fragmentation versus non-enzymatic collagen crosslinking remains unclear. To better understand the effects of radiation on the bone material without cellular activity, we conducted an ex vivo x-ray radiation experiment on excised mouse lumbar vertebrae. Spinal tissue from twenty-week old, female, C57BL/6J mice were randomly assigned to a single x-ray radiation dose of either 0 (control), 50, 1000, 17,000, or 35,000 Gy. Measurements were made for collagen fragmentation, non-enzymatic collagen crosslinking, and both monotonic and cyclic-loading compressive mechanical properties. We found that the group differences for mechanical properties were more consistent with those for collagen fragmentation than for non-enzymatic collagen crosslinking. Monotonic strength at 17,000 and 35,000 Gy was lower than that of the control by 50% and 73% respectively, (p < 0.001) but at 50 and 1000 Gy was not different than the control. Consistent with those trends, collagen fragmentation only occurred at 17,000 and 35,000 Gy. By contrast, non-enzymatic collagen crosslinking was greater than control for all radiation doses (p < 0.001). All results were consistent both for monotonic and cyclic loading conditions. We conclude that the reductions in bone compressive monotonic strength and fatigue life due to ex vivo ionizing radiation are more likely caused by fragmentation of the collagen backbone than any increases in non-enzymatic collagen crosslinks.
Collapse
Affiliation(s)
- Megan M Pendleton
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Shannon R Emerzian
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Jennifer Liu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Simon Y Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Department of Material Science & Mechanical Engineering, Washington University, St. Louis, MO, USA
| | - Grace D O'Connell
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA; Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Tony M Keaveny
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA.
| |
Collapse
|