1
|
Huang S, Chen X, Qi Y, Xiao J. Drug-containing Serum of Quyoufang Promotes Apoptosis of Ectocervical H8 Cells through an E6/p53-related Pathway. Comb Chem High Throughput Screen 2025; 28:122-131. [PMID: 38018209 DOI: 10.2174/0113862073263350231107105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Persistent human papillomavirus (HPV) infection is a causative agent for the majority of cervical cancer cases. The traditional Chinese medicine formula Quyoufang (QYF), a herbal oral decoction therapy, has been widely applied in the treatment of various diseases caused by HPV infection, but the molecular mechanism of QYF in the treatment of HPV infection remains unclear. This study aimed to investigate the effect of drug-containing serum of QYF on the apoptosis of HPV16-positive cervical immortalized epithelial cell line H8 in vitro. METHODS Different concentrations of medicated serum were obtained by feeding QYF into the stomachs of rats. The effects of medicated serum on H8 cell proliferation and apoptosis were detected using the cell counting kit-8 assay (CCK-8) method, flow cytometry, and Hoechst 33342/PI apoptosis assays. The different expressions of E6, E7, p53, and pRb among H8 cells were detected by RT-PCR and Western Blot. RESULTS The results firstly indicated that the drug-containing serum of QYF induced apoptosis and suppressed the proliferation of H8 cells in a concentration-dependent manner. RT-PCR and Western Blot unveiled that in contrast to the control group, the QYF groups could markedly elevate the mRNA expression of P53 and pRb as well as promote the expression of p53 and pRb protein levels. The QYF groups suppressed the expression of E6 mRNA and inhibited the expression of E6 protein. CONCLUSION The drug-containing serum of QYF could effectively inhibit the proliferation of H8 cells and induce their apoptosis, possibly through the E6/p53-related pathway.
Collapse
Affiliation(s)
- Shan Huang
- Department of Gynaecology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510000, China
- Department of Traditional Chinese Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Xiaofeng Chen
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuanjie Qi
- Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Jing Xiao
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
2
|
Han H, Yang M, Wen Z, Wang X, Lai X, Zhang Y, Fang R, Yin T, Yang X, Wang X, Zhao Q, Qi J, Chen H, Lin H, Yang Y. A modified natural small molecule inhibits triple-negative breast cancer growth by interacting with Tubb3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:154894. [PMID: 38377719 DOI: 10.1016/j.phymed.2023.154894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/28/2023] [Accepted: 05/17/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a malignant tumor without specific therapeutic targets and a poor prognosis. Chemotherapy is currently the first-line therapeutic option for TNBC. However, due to the heterogeneity of TNBC, not all of TNBC patients are responsive to chemotherapeutic agents. Therefore, the demand for new targeted agents is critical. β-tubulin isotype III (Tubb3) is a prognostic factor associated with cancer progression, including breast cancer, and targeting Tubb3 may lead to improve TNBC disease control. Shikonin, the active compound in the roots of Lithospermun erythrorhizon suppresses the growth of various types of tumors, and its efficacy can be improved by altering its chemical structure. PURPOSE In this work, the anti-TNBC effect of a shikonin derivative (PMMB276) was investigated, and its mechanism was also investigated. STUDY DESIGN/METHODS This study combines flow cytometry, immunofluorescence staining, immunoblotting, immunoprecipitation, siRNA silencing, and the iTRAQ proteomics assay to analyze the inhibition potential of PMMB276 on TNBC. In vivo study was performed, Balb/c female murine models with or without the small molecule treatments. RESULTS Herein, we screened 300 in-house synthesized analogs of shikonin against TNBC and identified a novel small molecule, PMMB276; it suppressed cell proliferation, induced apoptosis, and arrested the cell cycle at the G2/M phase, suggesting that it could have a tumor suppressive role in TNBC. Tubb3 was identified as the target of PMMB276 using proteomic and biological activity analyses. Meanwhile, PMMB276 regulated microtubule dynamics in vitro by inducing microtubule depolymerization and it could act as a tubulin stabilizer by a different process than that of paclitaxel. Moreover, suppressing or inhibiting Tubb3 with PMMB276 reduced the growth of breast cancer in an experimental mouse model, indicating that Tubb3 plays a significant role in TNBC progression. CONCLUSION The findings support the therapeutic potential of PMMB276, a Tubb3 inhibitor, as a treatment for TNBC. Our findings might serve as a foundation for the utilization of shikonin and its derivatives in the development of anti-TNBC.
Collapse
Affiliation(s)
- Hongwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, 210037, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaohui Lai
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; School of Biology and Geography Science, Yili Normal University, Yining, 835000, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yahan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Rongjun Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaorong Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; School of Biology and Geography Science, Yili Normal University, Yining, 835000, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaoming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Quan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, 210037, China
| | - Hongyuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, MOE Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Dakilah I, Harb A, Abu-Gharbieh E, El-Huneidi W, Taneera J, Hamoudi R, Semreen MH, Bustanji Y. Potential of CDC25 phosphatases in cancer research and treatment: key to precision medicine. Front Pharmacol 2024; 15:1324001. [PMID: 38313315 PMCID: PMC10834672 DOI: 10.3389/fphar.2024.1324001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
The global burden of cancer continues to rise, underscoring the urgency of developing more effective and precisely targeted therapies. This comprehensive review explores the confluence of precision medicine and CDC25 phosphatases in the context of cancer research. Precision medicine, alternatively referred to as customized medicine, aims to customize medical interventions by taking into account the genetic, genomic, and epigenetic characteristics of individual patients. The identification of particular genetic and molecular drivers driving cancer helps both diagnostic accuracy and treatment selection. Precision medicine utilizes sophisticated technology such as genome sequencing and bioinformatics to elucidate genetic differences that underlie the proliferation of cancer cells, hence facilitating the development of customized therapeutic interventions. CDC25 phosphatases, which play a crucial role in governing the progression of the cell cycle, have garnered significant attention as potential targets for cancer treatment. The dysregulation of CDC25 is a characteristic feature observed in various types of malignancies, hence classifying them as proto-oncogenes. The proteins in question, which operate as phosphatases, play a role in the activation of Cyclin-dependent kinases (CDKs), so promoting the advancement of the cell cycle. CDC25 inhibitors demonstrate potential as therapeutic drugs for cancer treatment by specifically blocking the activity of CDKs and modulating the cell cycle in malignant cells. In brief, precision medicine presents a potentially fruitful option for augmenting cancer research, diagnosis, and treatment, with an emphasis on individualized care predicated upon patients' genetic and molecular profiles. The review highlights the significance of CDC25 phosphatases in the advancement of cancer and identifies them as promising candidates for therapeutic intervention. This statement underscores the significance of doing thorough molecular profiling in order to uncover the complex molecular characteristics of cancer cells.
Collapse
Affiliation(s)
- Ibraheem Dakilah
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Amani Harb
- Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Mohammed H Semreen
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
4
|
Shuvalov O, Kirdeeva Y, Daks A, Fedorova O, Parfenyev S, Simon HU, Barlev NA. Phytochemicals Target Multiple Metabolic Pathways in Cancer. Antioxidants (Basel) 2023; 12:2012. [PMID: 38001865 PMCID: PMC10669507 DOI: 10.3390/antiox12112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer metabolic reprogramming is a complex process that provides malignant cells with selective advantages to grow and propagate in the hostile environment created by the immune surveillance of the human organism. This process underpins cancer proliferation, invasion, antioxidant defense, and resistance to anticancer immunity and therapeutics. Perhaps not surprisingly, metabolic rewiring is considered to be one of the "Hallmarks of cancer". Notably, this process often comprises various complementary and overlapping pathways. Today, it is well known that highly selective inhibition of only one of the pathways in a tumor cell often leads to a limited response and, subsequently, to the emergence of resistance. Therefore, to increase the overall effectiveness of antitumor drugs, it is advisable to use multitarget agents that can simultaneously suppress several key processes in the tumor cell. This review is focused on a group of plant-derived natural compounds that simultaneously target different pathways of cancer-associated metabolism, including aerobic glycolysis, respiration, glutaminolysis, one-carbon metabolism, de novo lipogenesis, and β-oxidation of fatty acids. We discuss only those compounds that display inhibitory activity against several metabolic pathways as well as a number of important signaling pathways in cancer. Information about their pharmacokinetics in animals and humans is also presented. Taken together, a number of known plant-derived compounds may target multiple metabolic and signaling pathways in various malignancies, something that bears great potential for the further improvement of antineoplastic therapy.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Yulia Kirdeeva
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Alexandra Daks
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Olga Fedorova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Sergey Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland;
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Nickolai A. Barlev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 20000, Kazakhstan
| |
Collapse
|
5
|
Liu J, Deng L, Wang L, Qian D, He C, Ren Q, Zhang Q, Chen Y. Licochalcone A induces G2/M phase arrest and apoptosis via regulating p53 pathways in esophageal cancer: In-vitro and in-vivo study. Eur J Pharmacol 2023; 958:176080. [PMID: 37758012 DOI: 10.1016/j.ejphar.2023.176080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Licochalcone A (LCA) is a flavonoid isolated from Glycyrrhiza uralensis Fisch that has shown promising therapeutic effects in various cancers. This study attempted to analyze its therapeutic potential for esophageal cancer (EC). Combining multiple databases and network pharmacology, we found that the mechanism of LCA inhibiting EC may be closely related to p53 signaling pathway, cell cycle regulation and apoptosis. Molecular docking was then used to predict the affinity between LCA and key targets. Subsequently, we selected three common EC cell lines for in vitro validation. LCA treatment significantly inhibited EC cell proliferation and colony formation. Wound healing and transwell assay showed that LCA can reduce the migration and invasion of EC cells, and down-regulated the expression of matrix metalloproteinases (MMP). LCA promoted excessive ROS production, decreased mitochondrial membrane potential, and upregulated the expression of Bax, Caspase3 and Caspase-9, all of which are involved in apoptosis. LCA treatment blocked the cell cycle in G2/M phase and decreased the expression of cyclin D1, cyclin B1, and CDK1. LCA significantly up-regulated p53 protein and gene expression, thereby inducing apoptosis and cycle arrest. Finally, the xenograft tumor model was established by subcutaneous injection of Eca-109 cells. LCA administration inhibited tumor growth by activating p53 signaling pathways and apoptosis. Meanwhile, there was no significant weight loss and few major organotoxicity and hematotoxicity. In conclusion, LCA is an excellent candidate for EC treatment by regulating p53 pathway to induce G2/M phase arrest and apoptosis.
Collapse
Affiliation(s)
- Jia Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Liangyan Deng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Lingyu Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Die Qian
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Chengxun He
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Qiang Ren
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Qing Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Yunhui Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
6
|
Király J, Szabó E, Fodor P, Fejes Z, Nagy B, Juhász É, Vass A, Choudhury M, Kónya G, Halmos G, Szabó Z. Shikonin Causes an Apoptotic Effect on Human Kidney Cancer Cells through Ras/MAPK and PI3K/AKT Pathways. Molecules 2023; 28:6725. [PMID: 37764501 PMCID: PMC10534756 DOI: 10.3390/molecules28186725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Shikonin, the main ingredient in Chinese herbal medicine, is described as a novel angiogenesis inhibitor, and its anticancer effects have already been studied. Shikonin and its derivatives induce apoptosis and suppress metastasis, which further enhance the effectiveness of chemotherapy. However, their mechanism of function has not been completely elucidated on human renal cancer cells. (2) Methods: In our study, CAKI-2 and A-498 cells were treated with increasing concentrations (2.5-40 µM) of shikonin, when colony formation ability and cytotoxic activity were tested. The changes in the expression of the main targets of apoptotic pathways were measured by RT-qPCR and Western blot. The intracellular levels of miR-21 and miR-155 were quantified by RT-qPCR. (3) Results: Shikonin exerted a dose-dependent effect on the proliferation of the cell lines examined. In 5 µM concentration of shikonin in vitro elevated caspase-3 and -7 levels, the proteins of the Ras/MAPK and PI3K/AKT pathways were activated. However, no significant changes were detected in the miR-21 and miR-155 expressions. (4) Conclusions: Our findings indicated that shikonin causes apoptosis of renal cancer cells by activating the Ras/MAPK and PI3K/AKT pathways. These effects of shikonin on renal cancer cells may bear important potential therapeutic implications for the treatment of renal cancer.
Collapse
Affiliation(s)
- József Király
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (G.K.); (G.H.)
| | - Erzsébet Szabó
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
- HUN-RE-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Petra Fodor
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (G.K.); (G.H.)
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.F.); (B.N.J.)
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.F.); (B.N.J.)
| | - Éva Juhász
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Anna Vass
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (G.K.); (G.H.)
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, College Station, TX 77845, USA;
| | - Gábor Kónya
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (G.K.); (G.H.)
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (G.K.); (G.H.)
| | - Zsuzsanna Szabó
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (G.K.); (G.H.)
| |
Collapse
|
7
|
Sulyman AO, Fulcher J, Crossley S, Fatokun AA, Olorunniji FJ. Shikonin and Juglone Inhibit Mycobacterium tuberculosis Low-Molecular-Weight Protein Tyrosine Phosphatase a (Mt-PTPa). BIOTECH 2023; 12:59. [PMID: 37754203 PMCID: PMC10526854 DOI: 10.3390/biotech12030059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Low-molecular-weight protein tyrosine phosphatases (LMW-PTPs) are involved in promoting the intracellular survival of Mycobacterium tuberculosis (Mtb), the causative organism of tuberculosis. These PTPs directly alter host signalling pathways to evade the hostile environment of macrophages and avoid host clearance. Among these, protein tyrosine phosphatase A (Mt-PTPa) is implicated in phagosome acidification failure, thereby inhibiting phagosome maturation to promote Mycobacterium tuberculosis (Mtb) survival. In this study, we explored Mt-PTPa as a potential drug target for treating Mtb. We started by screening a library of 502 pure natural compounds against the activities of Mt-PTPa in vitro, with a threshold of 50% inhibition of activity via a <500 µM concentration of the candidate drugs. The initial screen identified epigallocatechin, myricetin, rosmarinic acid, and shikonin as hits. Among these, the naphthoquinone, shikonin (5, 8-dihydroxy-2-[(1R)-1-hydroxy-4-methyl-3-pentenyl]-1,4-naphthoquinone), showed the strongest inhibition (IC50 33 µM). Further tests showed that juglone (5-hydroxy-1,4-naphthalenedione), another naphthoquinone, displayed similar potent inhibition of Mt-PTPa to shikonin. Kinetic analysis of the inhibition patterns suggests a non-competitive inhibition mechanism for both compounds, with inhibitor constants (Ki) of 8.5 µM and 12.5 µM for shikonin and juglone, respectively. Our findings are consistent with earlier studies suggesting that Mt-PTPa is susceptible to specific allosteric modulation via a non-competitive or mixed inhibition mechanism.
Collapse
Affiliation(s)
- Abdulhakeem O. Sulyman
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete 241103, Nigeria
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Jessie Fulcher
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Samuel Crossley
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Amos A. Fatokun
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Femi J. Olorunniji
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
8
|
Zhang S, Gao Q, Li W, Zhu L, Shang Q, Feng S, Jia J, Jia Q, Shen S, Su Z. Correction: Shikonin inhibits cancer cell cycling by targeting Cdc25s. BMC Cancer 2023; 23:461. [PMID: 37208659 DOI: 10.1186/s12885-023-10976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Affiliation(s)
- Shoude Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China.
- Department of Pharmacy, Medical College of Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China.
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China
| | - Wei Li
- Qinghai Academy of Agriculture and Forestry Science, 251# Ningda Road, Xining, 810016, China
| | - Luwei Zhu
- Department of Pharmacy, Medical College of Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China
| | - Qianhan Shang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China
| | - Shuo Feng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China
| | - Junmei Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China
| | - Qiangqiang Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China
| | - Shuo Shen
- Qinghai Academy of Agriculture and Forestry Science, 251# Ningda Road, Xining, 810016, China
| | - Zhanhai Su
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China
- Department of Pharmacy, Medical College of Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China
| |
Collapse
|
9
|
Liang S, Zhao W, Chen Y, Lin H, Zhang W, Deng M, Fu L, Zhong X, Zeng S, He B, Qi X, Lü M. A comparative investigation of catalytic mechanism and domain between catechol-O-methyltransferase isoforms by isomeric shikonin and alkannin. Int J Biol Macromol 2023; 242:124758. [PMID: 37150367 DOI: 10.1016/j.ijbiomac.2023.124758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
The differences in catalytic mechanism and domain between the soluble (S-COMT) and membrane-bound catechol-O-methyltransferase (MB-COMT) are poorly documented due to the unavailable crystal structure of MB-COMT. Considering the enzymatic nature of S-COMT and MB-COMT, the challenge could be solvable by probing the interactions between the enzymes with the ligands with minor differences in structures. Herein, isomeric shikonin and alkannin bearing a R/S -OH group in side chain at the C2 position were used for domain profiling of COMTs. Human and rat liver-derived COMTs showed the differences in inhibitory response (human's IC50 and Ki values for S-COMT < rat's, 5.80-19.56 vs. 19.56-37.47 μM; human's IC50 and Ki values for MB-COMT > rat's) and mechanism (uncompetition vs. noncompetition) towards the two isomers. The inhibition of the two isomers against human and rat S-COMTs was stronger than those for MB-COMTs (S-COMT's IC50 and Ki values < MB-COMT's, 5.80-37.47 vs. 40.01-111.8 μM). Additionally, the inhibition response of alkannin was higher than those of shikonin in no matter human and rat COMTs. Molecular docking stimulation was used for analysis. The inhibitory effects observed in in vitro and in silico tests were confirmed in vivo. These findings would facilitate further COMT-associated basic and applied research.
Collapse
Affiliation(s)
- Sicheng Liang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou 646000, China
| | - Wenjing Zhao
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yonglan Chen
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Hua Lin
- Technology Center of Chengdu Customs, Chengdu, China
| | - Wei Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Mingming Deng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lu Fu
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China
| | - Bing He
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| | - Xiaoyi Qi
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou 646000, China.
| |
Collapse
|
10
|
Boonnate P, Kariya R, Okada S. Shikonin Induces ROS-Dependent Apoptosis Via Mitochondria Depolarization and ER Stress in Adult T Cell Leukemia/Lymphoma. Antioxidants (Basel) 2023; 12:864. [PMID: 37107239 PMCID: PMC10135058 DOI: 10.3390/antiox12040864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Adult T cell leukemia/lymphoma (ATLL) is an aggressive T-cell malignancy that develops in some elderly human T-cell leukemia virus (HTVL-1) carriers. ATLL has a poor prognosis despite conventional and targeted therapies, and a new safe and efficient therapy is required. Here, we examined the anti-ATLL effect of Shikonin (SHK), a naphthoquinone derivative that has shown several anti-cancer activities. SHK induced apoptosis of ATLL cells accompanied by generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential, and induction of endoplasmic reticulum (ER) stress. Treatment with a ROS scavenger, N-acetylcysteine (NAC), blocked both loss of mitochondrial membrane potential and ER stress, and prevented apoptosis of ATLL cells, indicating that ROS is an upstream trigger of SHK-induced apoptosis of ATLL cells through disruption of the mitochondrial membrane potential and ER stress. In an ATLL xenografted mouse model, SHK treatment suppressed tumor growth without significant adverse effects. These results suggest that SHK could be a potent anti-reagent against ATLL.
Collapse
Affiliation(s)
| | | | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (P.B.); (R.K.)
| |
Collapse
|
11
|
Kim JY, Jung JH, Lee SJ, Han SS, Hong SH. Glyoxalase 1 as a Therapeutic Target in Cancer and Cancer Stem Cells. Mol Cells 2022; 45:869-876. [PMID: 36172978 PMCID: PMC9794553 DOI: 10.14348/molcells.2022.0109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 01/11/2023] Open
Abstract
Methylglyoxal (MG) is a dicarbonyl compound formed in cells mainly by the spontaneous degradation of the triose phosphate intermediates of glycolysis. MG is a powerful precursor of advanced glycation end products, which lead to strong dicarbonyl and oxidative stress. Although divergent functions of MG have been observed depending on its concentration, MG is considered to be a potential anti-tumor factor due to its cytotoxic effects within the oncologic domain. MG detoxification is carried out by the glyoxalase system. Glyoxalase 1 (Glo1), the ubiquitous glutathione-dependent enzyme responsible for MG degradation, is considered to be a tumor promoting factor due to it catalyzing the removal of cytotoxic MG. Indeed, various cancer types exhibit increased expression and activity of Glo1 that closely correlate with tumor cell growth and metastasis. Furthermore, mounting evidence suggests that Glo1 contributes to cancer stem cell survival. In this review, we discuss the role of Glo1 in the malignant progression of cancer and its possible use as a promising therapeutic target for tumor therapy. We also summarize therapeutic outcomes of Glo1 inhibitors as prospective treatments for the prevention of cancer.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Ji-Hye Jung
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seung-Joon Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seon-Sook Han
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
- Institute of Medical Science, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
- KW-Bio Co., Ltd., Wonju 26487, Korea
| |
Collapse
|
12
|
Lohberger B, Glänzer D, Kaltenegger H, Eck N, Leithner A, Bauer R, Kretschmer N, Steinecker-Frohnwieser B. Shikonin derivatives cause apoptosis and cell cycle arrest in human chondrosarcoma cells via death receptors and MAPK regulation. BMC Cancer 2022; 22:758. [PMID: 35820864 PMCID: PMC9275282 DOI: 10.1186/s12885-022-09857-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Although chondrosarcoma is the second most common primary malignant bone tumor, treatment options are limited due to its extensive resistance to a chemo- and radiation therapy. Since shikonin has shown potent anticancer activity in various types of cancer cells, it represents a promising compound for the development of a new therapeutic approach. Methods The dose-relationships of shikonin and its derivatives acetylshikonin and cyclopropylshikonin on two human chondrosarcoma cell lines were measured using the CellTiter-Glo®. The changes in the cell cycle were presented by flow cytometry. Protein phosphorylation and expression apoptotic markers, MAPKs and their downstream targets were analyzed using western blotting and gene expression were evaluated using RT-qPCR. Results Chondrosarcoma cells showed a dose-dependent inhibition of cell viability after treatment with shikonin and its derivatives, with the strongest effect for shikonin and IC50 values of 1.3 ± 0.2 µM. Flow cytometric measurements revealed a G2/M arrest of the cells after treatment. Protein and gene expression analysis demonstrated a dose-dependent downregulation of survivin and XIAP, and an upregulation of Noxa, γH2AX, cleaved caspase-8, -9, -3, and -PARP. Furthermore, the expression of various death receptors was modulated. As MAPK signaling pathways play a key role in tumor biology, their phosphorylation pattern and their corresponding downstream gene regulation were analyzed. Treatment with shikonin derivatives caused an inhibition of pSTAT3 and an increase of pAKT and the MAPKs pERK, pJNK, and pp38 in a dose-dependent manner. Conclusions These data demonstrated the significant anti-tumorigenic effect of shikonin derivatives in chondrosarcoma and encourage further research. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09857-x.
Collapse
Affiliation(s)
- Birgit Lohberger
- Department of Orthopedics and Trauma, Medical University of Graz, 8036, Graz, Austria. .,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Saalfelden, Austria.
| | - Dietmar Glänzer
- Department of Orthopedics and Trauma, Medical University of Graz, 8036, Graz, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Saalfelden, Austria
| | - Heike Kaltenegger
- Department of Orthopedics and Trauma, Medical University of Graz, 8036, Graz, Austria
| | - Nicole Eck
- Department of Orthopedics and Trauma, Medical University of Graz, 8036, Graz, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Saalfelden, Austria
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, 8036, Graz, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Graz, Austria
| | - Nadine Kretschmer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Graz, Austria
| | | |
Collapse
|
13
|
NGR-modified PEG-PLGA micelles containing Shikonin enhance targeting of dendritic cells for therapy of allergic rhinitis. Int Immunopharmacol 2022; 107:108649. [DOI: 10.1016/j.intimp.2022.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/26/2022] [Accepted: 02/20/2022] [Indexed: 11/23/2022]
|
14
|
Zhang W, Guo X, Ren J, Chen Y, Wang J, Gao A. GCN5-mediated PKM2 acetylation participates in benzene-induced hematotoxicity through regulating glycolysis and inflammation via p-Stat3/IL17A axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118708. [PMID: 34929209 DOI: 10.1016/j.envpol.2021.118708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Benzene is a common environmental carcinogen that induces leukemia. Studies suggest that metabolic disorder has a relationship with the toxicity of benzene. Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. However, the upstream and downstream regulatory mechanisms of PKM2 in benzene-induced hematotoxicity and the therapeutic effects of targeting PKM2 in vivo are unclear. This study aims to provide insights into the new mechanism of benzene-induced hematotoxicity and reveal the therapeutic significance of targeting PKM2. Herein, we demonstrated that PKM2-dependent glycolysis contributes to benzene-induced hematotoxicity by regulating inflammation reaction. Mechanistically, acetylated proteomics revealed that 1,4-benzoquinone (1,4-BQ) induced acetylation of PKM2 at position K66, and this modification contributed to the increase of PKM2 expression and can be inhibited by inhibition of acetyltransferase GCN5. Meanwhile, the elevated PKM2 was shown to prompt the activation of nuclear phosphorylated Stat3 (p-Stat3) and IL17A. Clinically, pharmacological inhibition of PKM2 alleviated the blood toxicity induced by benzene, which was mainly characterized by an increase in routine blood parameters and improvement of hematopoietic imbalance. Besides, elevated PKM2 is a promising biomarker in people occupationally exposed to benzene. Overall, we identified PKM2/p-Stat3/IL-17A axis participates in the hematotoxicity of benzene, and targeting PKM2 has certain therapeutic implications in hematologic diseases.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Xiaoli Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jing Ren
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yujiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
15
|
Sun Q, Gong T, Liu M, Ren S, Yang H, Zeng S, Zhao H, Chen L, Ming T, Meng X, Xu H. Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153805. [PMID: 34749177 DOI: 10.1016/j.phymed.2021.153805] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Shikonin is one of the major phytochemical components of Lithospermum erythrorhizon (Purple Cromwell), which is a type of medicinal herb broadly utilized in traditional Chinese medicine. It is well established that shikonin possesses remarkable therapeutic actions on various diseases, with the underlying mechanisms, pharmacokinetics and toxicological effects elusive. Also, the clinical trial and pharmaceutical study of shikonin remain to be comprehensively delineated. PURPOSE The present review aimed to systematically summarize the updated knowledge regarding the therapeutic actions, pharmacokinetics, toxicological effects, clinical trial and pharmaceutical study of shikonin. METHODS The information contained in this review article were retrieved from some authoritative databases including Web of Science, PubMed, Google scholar, Chinese National Knowledge Infrastructure (CNKI), Wanfang Database and so on, till August 2021. RESULTS Shikonin exerts multiple therapeutic efficacies, such as anti-inflammation, anti-cancer, cardiovascular protection, anti-microbiomes, analgesia, anti-obesity, brain protection, and so on, mainly by regulating the NF-κB, PI3K/Akt/MAPKs, Akt/mTOR, TGF-β, GSK3β, TLR4/Akt signaling pathways, NLRP3 inflammasome, reactive oxygen stress, Bax/Bcl-2, etc. In terms of pharmacokinetics, shikonin has an unfavorable oral bioavailability, 64.6% of the binding rate of plasma protein, and enhances some metabolic enzymes, particularly including cytochrome P450. In regard to the toxicological effects, shikonin may potentially cause nephrotoxicity and skin allergy. The above pharmacodynamics and pharmacokinetics of shikonin have been validated by few clinical trials. In addition, pharmaceutical innovation of shikonin with novel drug delivery system such as nanoparticles, liposomes, microemulsions, nanogel, cyclodextrin complexes, micelles and polymers are beneficial to the development of shikonin-based drugs. CONCLUSIONS Shikonin is a promising phytochemical for drug candidates. Extensive and intensive explorations on shikonin are warranted to expedite the utilization of shikonin-based drugs in the clinical setting.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ting Gong
- Department of Ultrasound, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
16
|
Zhu L, Li K, Liu M, Liu K, Ma S, Cai W. Anti-cancer Research on Arnebiae Radix-derived Naphthoquinone in Recent Five Years. Recent Pat Anticancer Drug Discov 2021; 17:218-230. [PMID: 34886780 DOI: 10.2174/1574892816666211209164745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In recent years, many naphthoquinone compounds with anticancer activity have been identified in Arnebiae Radix, and some of them have the potential to be developed into anticancer drugs. OBJECTIVE This article aimed to provide a comprehensive overview of the anticancer effects of naphthoquinone compounds through a detailed review of literature and Chinese patents, and discuss their potential to be developed as anticancer drugs for clinical application. METHODS Research papers were collected through the databases of PubMed, Cnki and SciDirect using keyword searches "naphthoquinone compounds" and "anticancer". The keywords of "shikonin" and "shikonin derivatives" were also used in PubMed, Cnki and SciDirect databases to collect research articles. The Chinese patents were collected using the Cnki patent database. RESULTS Naphthoquinone compounds have been found to possess anti-cancer activity, and their modes of action are associated with inducing apoptosis, inhibiting cancer cell proliferation, promoting autophagy in cancer cells, anti-cancer angiogenesis and inhibition of cell adhesion, invasion and metastasis, inhibiting glycolysis and inhibiting DNA topoisomerase activity. CONCLUSION Most of the naphthoquinone compounds show effective anti-cancer activity in vitro. The structure modification of naphthoquinone aims to develop anti-cancer drugs with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Lian Zhu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800. China
| | - Kailin Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800. China
| | - Mingjuan Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800. China
| | - Kexin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800. China
| | - Shengjun Ma
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800. China
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800. China
| |
Collapse
|
17
|
Lönn P, Al-Amin RA, Doulabi EM, Heldin J, Gallini R, Björkesten J, Oelrich J, Kamali-Moghaddam M, Landegren U. Image-based high-throughput mapping of TGF-β-induced phosphocomplexes at a single-cell level. Commun Biol 2021; 4:1284. [PMID: 34773084 PMCID: PMC8590043 DOI: 10.1038/s42003-021-02798-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
Protein interactions and posttranslational modifications orchestrate cellular responses to e.g. cytokines and drugs, but it has been difficult to monitor these dynamic events in high-throughput. Here, we describe a semi-automated system for large-scale in situ proximity ligation assays (isPLA), combining isPLA in microtiter wells with automated microscopy and computer-based image analysis. Phosphorylations and interactions are digitally recorded along with subcellular morphological features. We investigated TGF-β-responsive Smad2 linker phosphorylations and complex formations over time and across millions of individual cells, and we relate these events to cell cycle progression and local cell crowding via measurements of DNA content and nuclear size of individual cells, and of their relative positions. We illustrate the suitability of this protocol to screen for drug effects using phosphatase inhibitors. Our approach expands the scope for image-based single cell analyses by combining observations of protein interactions and modifications with morphological details of individual cells at high throughput. To improve our ability to monitor cellular responses to e.g. cytokines or drugs, Lönn et al have developed a semi-automated system for large-scale in situ proximity ligation assays (isPLA) in HaCAT keratinocyte cells. Their approach expands the scope for image-based single cell analyses by combining observations of protein interactions and modifications with morphological details of individual cells at high throughput.
Collapse
Affiliation(s)
- Peter Lönn
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Rasel A Al-Amin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ehsan Manouchehri Doulabi
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Heldin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Radiosa Gallini
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Björkesten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Oelrich
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ulf Landegren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
18
|
Chavda VP, Ertas YN, Walhekar V, Modh D, Doshi A, Shah N, Anand K, Chhabria M. Advanced Computational Methodologies Used in the Discovery of New Natural Anticancer Compounds. Front Pharmacol 2021; 12:702611. [PMID: 34483905 PMCID: PMC8416109 DOI: 10.3389/fphar.2021.702611] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Natural chemical compounds have been widely investigated for their programmed necrosis causing characteristics. One of the conventional methods for screening such compounds is the use of concentrated plant extracts without isolation of active moieties for understanding pharmacological activity. For the last two decades, modern medicine has relied mainly on the isolation and purification of one or two complicated active and isomeric compounds. The idea of multi-target drugs has advanced rapidly and impressively from an innovative model when first proposed in the early 2000s to one of the popular trends for drug development in 2021. Alternatively, fragment-based drug discovery is also explored in identifying target-based drug discovery for potent natural anticancer agents which is based on well-defined fragments opposite to use of naturally occurring mixtures. This review summarizes the current key advancements in natural anticancer compounds; computer-assisted/fragment-based structural elucidation and a multi-target approach for the exploration of natural compounds.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.,ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Vinayak Walhekar
- Department of Medicinal Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, India
| | - Dharti Modh
- Department of Medicinal Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, India
| | - Avani Doshi
- Department of Chemistry, SAL Institute of Pharmacy, Ahmedabad, India
| | - Nirav Shah
- Department of Pharmaceutics, SAL Institute of Pharmacy, Ahmedabad, India
| | - Krishna Anand
- Faculty of Health Sciences and National Health Laboratory Service, Department of Chemical Pathology, School of Pathology, University of the Free State, Bloemfontein, South Africa
| | - Mahesh Chhabria
- Department of Pharmaceutical Chemistry, L.M. College of Pharmacy, Ahmedabad, India
| |
Collapse
|
19
|
Tao Y, Hao X, Jing L, Sun L, Cherukupalli S, Liu S, Wu G, Xu S, Zhang X, Shi X, Song Y, Liu X, Zhan P. Discovery of potent and selective Cdc25 phosphatase inhibitors via rapid assembly and in situ screening of Quinonoid-focused libraries. Bioorg Chem 2021; 115:105254. [PMID: 34426152 DOI: 10.1016/j.bioorg.2021.105254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 12/31/2022]
Abstract
Cell division cycle 25 (Cdc25) phosphatase is an attractive target for drug discovery. The rapid assembly and in situ screening of focused combinatorial fragment libraries using efficient modular reactions is a highly robust strategy for discovering bioactive molecules. In this study, we have utilized miniaturized synthesis to generate several quinonoid-focused libraries, by standard CuAAC reaction and HBTU-based amide coupling chemistry. Then the enzyme inhibition screening afforded some potent and selective Cdc25s inhibitors. Compound M5N36 (Cdc25A: IC50 = 0.15 ± 0.05 μM; Cdc25B: IC50 = 0.19 ± 0.06 μM; Cdc25C: IC50 = 0.06 ± 0.04 μM) exhibited higher inhibitory activity than the initial lead NSC663284 (Cdc25A: IC50 = 0.27 ± 0.02 μM; Cdc25B: IC50 = 0.42 ± 0.01 μM; Cdc25C: IC50 = 0.23 ± 0.01 μM). Moreover, M5N36 displayed about three-fold more potent against Cdc25C than Cdc25A and B, indicating that M5N36 could act as a relatively selective Cdc25C inhibitor. Cell viability evaluation, western blotting and molecular simulations provided a mechanistic understanding of the activity of M5N36. It showed promising anti-growth activity against the MDA-MB-231 cell line and desirable predicted physicochemical properties. Overall, M5N36 was proven to be a promising novel Cdc25C inhibitor.
Collapse
Affiliation(s)
- Yucen Tao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xia Hao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Shugong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xiaoyu Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, 250012 Jinan, China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| |
Collapse
|
20
|
Ma SX, Tang LB, Chen ZH, Wei ML, Tang ZJ, Zheng YH, Zong G, Li J. Effects of shikonin on the development of ovarian follicles and female germline stem cells. J Int Med Res 2021; 49:3000605211029461. [PMID: 34325571 PMCID: PMC8327240 DOI: 10.1177/03000605211029461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective To investigate the effects and potential mechanism of action of shikonin (SHK) on the development of ovarian follicles and female germline stem cells (FGSCs). Methods Female Kunming adult mice were administered SHK (0, 20 and 50 mg/kg) by oral gavage. Cultures of FGSCs were treated with SHK 32 μmol/l for 24 h. The ovarian index in mouse ovaries was calculated. Numbers of primordial, primary and atretic follicles were counted. Germline stem cell markers and apoptosis were examined. Levels of glutathione (GSH), superoxide dismutase (SOD) and reactive oxygen species (ROS) were measured. Results Both doses of SHK significantly decreased the ovarian index, the numbers of primordial follicles, primary follicles and antral follicles in mice. SHK significantly increased the numbers of atretic follicles and atretic corpora lutea. SHK promoted apoptosis in vivo and in vitro. SHK significantly decreased the levels of the germline stem cell markers. SHK significantly lowered GSH levels and the activity of SOD in the peripheral blood from mice, whereas SHK significantly elevated cellular ROS content in FGSCs. Conclusions These current results suggested that follicular development and FGSCs were suppressed by SHK through the induction of apoptosis and oxidative stress might be involved in this pathological process.
Collapse
Affiliation(s)
- Shu-Xin Ma
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi Province, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Li-Bo Tang
- Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhi-Hang Chen
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi Province, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Min-Li Wei
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zi-Juan Tang
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yue-Hui Zheng
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi Province, China
| | - Guo Zong
- Shanghai Horizon Medical Technology Co., Ltd, Shanghai, China
| | - Jia Li
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
21
|
Ahmad M, Leroy T, Krigas N, Temsch EM, Weiss-Schneeweiss H, Lexer C, Sehr EM, Paun O. Spatial and Ecological Drivers of Genetic Structure in Greek Populations of Alkanna tinctoria (Boraginaceae), a Polyploid Medicinal Herb. FRONTIERS IN PLANT SCIENCE 2021; 12:706574. [PMID: 34335669 PMCID: PMC8317432 DOI: 10.3389/fpls.2021.706574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/16/2021] [Indexed: 06/08/2023]
Abstract
Background and Aims: Quantifying genetic variation is fundamental to understand a species' demographic trajectory and its ability to adapt to future changes. In comparison with diploids, however, genetic variation and factors fostering genetic divergence remain poorly studied in polyploids due to analytical challenges. Here, by employing a ploidy-aware framework, we investigated the genetic structure and its determinants in polyploid Alkanna tinctoria (Boraginaceae), an ancient medicinal herb that is the source of bioactive compounds known as alkannin and shikonin (A/S). From a practical perspective, such investigation can inform biodiversity management strategies. Methods: We collected 14 populations of A. tinctoria within its main distribution range in Greece and genotyped them using restriction site-associated DNA sequencing. In addition, we included two populations of A. sieberi. By using a ploidy-aware genotype calling based on likelihoods, we generated a dataset of 16,107 high-quality SNPs. Classical and model-based analysis was done to characterize the genetic structure within and between the sampled populations, complemented by genome size measurements and chromosomal counts. Finally, to reveal the drivers of genetic structure, we searched for associations between allele frequencies and spatial and climatic variables. Key Results: We found support for a marked regional structure in A. tinctoria along a latitudinal gradient in line with phytogeographic divisions. Several analyses identified interspecific admixture affecting both mainland and island populations. Modeling of spatial and climatic variables further demonstrated a larger contribution of neutral processes and a lesser albeit significant role of selection in shaping the observed genetic structure in A. tinctoria. Conclusion: Current findings provide evidence of strong genetic structure in A. tinctoria mainly driven by neutral processes. The revealed natural genomic variation in Greek Alkanna can be used to further predict variation in A/S production, whereas our bioinformatics approach should prove useful for the study of other non-model polyploid species.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Thibault Leroy
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Nikos Krigas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, Thessaloniki, Greece
| | - Eva M. Temsch
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Eva Maria Sehr
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Damasceno LEA, Prado DS, Veras FP, Fonseca MM, Toller-Kawahisa JE, Rosa MH, Públio GA, Martins TV, Ramalho FS, Waisman A, Cunha FQ, Cunha TM, Alves-Filho JC. PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation. J Exp Med 2021; 217:151965. [PMID: 32697823 PMCID: PMC7537396 DOI: 10.1084/jem.20190613] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/28/2019] [Accepted: 05/28/2020] [Indexed: 01/15/2023] Open
Abstract
Th17 cell differentiation and pathogenicity depend on metabolic reprogramming inducing shifts toward glycolysis. Here, we show that the pyruvate kinase M2 (PKM2), a glycolytic enzyme required for cancer cell proliferation and tumor progression, is a key factor mediating Th17 cell differentiation and autoimmune inflammation. We found that PKM2 is highly expressed throughout the differentiation of Th17 cells in vitro and during experimental autoimmune encephalomyelitis (EAE) development. Strikingly, PKM2 is not required for the metabolic reprogramming and proliferative capacity of Th17 cells. However, T cell-specific PKM2 deletion impairs Th17 cell differentiation and ameliorates symptoms of EAE by decreasing Th17 cell-mediated inflammation and demyelination. Mechanistically, PKM2 translocates into the nucleus and interacts with STAT3, enhancing its activation and thereby increasing Th17 cell differentiation. Thus, PKM2 acts as a critical nonmetabolic regulator that fine-tunes Th17 cell differentiation and function in autoimmune-mediated inflammation.
Collapse
Affiliation(s)
- Luis Eduardo Alves Damasceno
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Douglas Silva Prado
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Flavio Protasio Veras
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Miriam M Fonseca
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Juliana E Toller-Kawahisa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Marcos Henrique Rosa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Gabriel Azevedo Públio
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Timna Varela Martins
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Fernando S Ramalho
- Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - José Carlos Alves-Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
23
|
Feng J, Yu P, Zhou Q, Tian Z, Sun M, Li X, Wang X, Jiang H. An integrated data filtering and identification strategy for rapid profiling of chemical constituents, with Arnebiae Radix as an example. J Chromatogr A 2020; 1629:461496. [PMID: 32846341 DOI: 10.1016/j.chroma.2020.461496] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023]
Abstract
Profiling the chemical components of complicated herbal extracts using traditional analytical methods is time-consuming and laborious. In this study, an integrated data filtering and identification strategy was developed to efficiently identify the chemical constituents in Arnebiae Radix. The post-acquisition data processing steps with this strategy were as follows: (1) data acquisition by ultra-high performance liquid chromatography-quadrupole-Orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap-MS); (2) background subtraction on the basis of the total ion chromatogram (TIC) to obtain the background-subtracted ion chromatogram; (3) construction of a diagnostic ion database based on the measured MS/MS fragment ions of reference standards and auxiliary diagnostic information according to literatures; (4) mass defect filtering (MDF) to filter the background-subtracted ion chromatogram; and (5) rapid structural identification in the MDF-processed ion chromatogram on the basis of the diagnostic ion database and further structural confirmation by analysing the retention time, fragment behaviour, and online databases (Chemspider, PubChem, and SciFinder). In this study, the herbal medicine Arnebiae Radix was used to illustrate this strategy. A total of 96 compounds were efficiently exposed and characterized from Arnebiae Radix samples obtained from 20 sources, and 13 of these compounds were confirmed by comparison with the reference standards. Thirty components with a low abundance, that remained undetected in the TIC, were identified in the MDF-processed ion chromatogram. Nine of these compounds had not been identified from Arnebiae Radix previously, and were tentatively screened as unknowns. The chemical components in traditional Chinese medicine preparations are considered to be the material basis for the effectiveness of this medical system, and are closely related to the pharmacological activities of the drugs. The pharmacodynamics of these drugs are known to be influenced by the synergistic effects of various components. Therefore, comprehensive profiling of the chemical compositions of herbal extracts is essential for systematic elucidation of the pharmacodynamics of these medicines.
Collapse
Affiliation(s)
- Junjie Feng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Pengfei Yu
- Inner MenGolia Mengqi Pharmaceutical Co. LTD, Huhhot, 011700, China
| | - Qian Zhou
- Shandong Academy of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhenhua Tian
- Expermiental Centre, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengjia Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xueling Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoming Wang
- Expermiental Centre, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Haiqiang Jiang
- Expermiental Centre, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
24
|
Tao Y, Hao X, Ding X, Cherukupalli S, Song Y, Liu X, Zhan P. Medicinal chemistry insights into novel CDC25 inhibitors. Eur J Med Chem 2020; 201:112374. [PMID: 32603979 DOI: 10.1016/j.ejmech.2020.112374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022]
Abstract
Cell division cycle 25 (CDC25) phosphatases, a kind of cell cycle regulators, have become an attractive target for drug discovery, as they have been found to be over-expressed in various human cancer cells. Several CDC25 inhibitors have achieved significant attention in clinical trials with possible mechanistic actions. Prompted by the significance of CDC25 inhibitors with medicinal chemistry prospect, it is an apt time to review the various drug discovery methods involved in CDC25 drug discovery including high throughput screening (HTS), virtual screening (VS), fragment-based drug design, substitution decorating approach, structural simplification approach and scaffold hopping method to seek trends and identify promising new avenues of CDC25 drug discovery.
Collapse
Affiliation(s)
- Yucen Tao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xia Hao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, 250012, Jinan, China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
25
|
Du P, Yan J, Long S, Xiong H, Wen N, Cai S, Wang Y, Peng D, Liu Z, Liu Y. Tumor microenvironment and NIR laser dual-responsive release of berberine 9-O-pyrazole alkyl derivative loaded in graphene oxide nanosheets for chemo-photothermal synergetic cancer therapy. J Mater Chem B 2020; 8:4046-4055. [PMID: 32248212 DOI: 10.1039/d0tb00489h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A berberine 9-O-pyrazole alkyl derivative, a chemical compound (called B3) previously synthesized by our group, shows anti-cancer activity. However, B3 lacks targeting cytotoxicity to cancer cells, leading to obvious toxic side effects on normal cells. To solve this problem, here, we prepared a drug delivery system, namely, AS1411-GO/B3 for tumor targeting, in which nano-graphene oxide (GO) sheets were employed as the drug carrier, and the aptamer AS1411 was conjugated onto GO for tumor targeting. GO also had a photothermal effect, which helped the release of B3 from GO as well as the thermal cytotoxicity to cells. We found that the release of B3 could respond to acid conditions, indicating that the tumor intracellular environment could promote the release of B3, thus allowing it to perform chemotherapy effects. This system could also release B3 in response to photothermal heating, moreover, combined photothermal therapy and chemotherapy to improve the anticancer activity was achieved. This AS1411-GO/B3 platform with chemo-photothermal synergetic therapy provides a very promising treatment for tumors.
Collapse
Affiliation(s)
- Peifang Du
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tang Q, Liu L, Zhang H, Xiao J, Hann SS. Regulations of miR-183-5p and Snail-Mediated Shikonin-Reduced Epithelial-Mesenchymal Transition in Cervical Cancer Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:577-589. [PMID: 32103900 PMCID: PMC7023881 DOI: 10.2147/dddt.s236216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Background Shikonin, the main ingredient of Lithospermum erythrorhizon, has been reported to have antitumor effects via multiple targets and signaling pathways. However, the detailed mechanism underlying the effects in cervical cancer still remained unknown. Methods MTT, wound-healing, transwell assays and flow cytometry experiments were used to measure cell growth, migration, invasion, and cell cycle analysis. Western blot was used to examine protein levels of Snail, Vimentin and E-cadherin. The expression level of miR-183-5p was measured via qRT-PCR. The E-cadherin promoter activity was detected via Secrete-PairTM Dual Luminescence Assay Kit. The transient transfection experiments were used for silencing of E-cadherin and overexpression of Snail genes. Tumor xenograft and bioluminescent imaging experiments were carried out to confirm the in vitro findings. Results We showed that shikonin inhibited cell viability, migration and invasion, and induced cell cycle arrest in a dose-dependent manner in cervical cancer Hela and C33a cells. Mechanistically, we found that shikonin increased miR-183-5p expression and inhibited expression of transcription factor Snail protein. The mimics of miR-183-5p reduced, while the inhibitors of miR-183-5p reversed shikonin-inhibited Snail protein expression. In addition, shikonin decreased Vimentin, increased E-cadherin protein expressions and E-cadherin promoter activity, the latter was reversed in cells transfected with exogenous Snail overexpression vectors. Moreover, silencing of E-cadherin significantly abolished shikonin-inhibited cervical cancer cell growth. Similar findings were also observed in vivo using one xenograft mouse model. Conclusion Our results show that shikonin inhibits EMT through inhibition of Snail and stimulation of miR-183-5p expressions, which resulted in induction of E-cadherin expression. Thus, blockade of EMT could be a novel mechanism underlying the anti-cervical cancer effects of shikonin.
Collapse
Affiliation(s)
- Qing Tang
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| | - Lihua Liu
- Department of Gynecology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| | - Hongyan Zhang
- Department of Gynecology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| | - Jing Xiao
- Department of Gynecology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| |
Collapse
|
27
|
Ahmad M, Lazic D, Hansel‐Hohl K, Lexer C, Sehr EM. Development of novel microsatellite markers for Alkanna tinctoria by comparative transcriptomics. APPLICATIONS IN PLANT SCIENCES 2019; 7:e11296. [PMID: 31667024 PMCID: PMC6814220 DOI: 10.1002/aps3.11296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/09/2019] [Indexed: 06/08/2023]
Abstract
PREMISE Alkanna tinctoria (Boraginaceae) is an important medicinal herb with its main distribution across the Mediterranean region. To reveal its genetic variation and population structure, microsatellite markers were developed and validated in four Greek populations. METHODS AND RESULTS RNA-Seq data of the related species Arnebia euchroma and Echium plantagineum were assembled and mined to identify conserved ortholog sets containing simple sequence repeat motifs. Fifty potential loci were identified and then tested on A. tinctoria, of which 17 loci were polymorphic. The number of alleles ranged from one to nine, and the levels of observed and expected heterozygosity ranged from 0.000 to 1.000 and 0.000 to 0.820, respectively. Most of these loci could be successfully amplified in eight other species of Boraginaceae (Alkanna graeca, A. hellenica, A. sfikasiana, Echium vulgare, E. plantagineum, Lithospermum officinale, Borago officinalis, and Anchusa officinalis). CONCLUSIONS This study provides the first set of microsatellite loci for studying the genetic variation and population structure of A. tinctoria and shows their potential usefulness in other Boraginaceae species.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Center for Health and BioresourcesAIT Austrian Institute of Technology GmbH3430TullnAustria
- Department of Botany and Biodiversity ResearchFaculty of Life SciencesUniversity of Vienna1030ViennaAustria
| | - Desanka Lazic
- Center for Health and BioresourcesAIT Austrian Institute of Technology GmbH3430TullnAustria
| | - Karin Hansel‐Hohl
- Center for Health and BioresourcesAIT Austrian Institute of Technology GmbH3430TullnAustria
| | - Christian Lexer
- Department of Botany and Biodiversity ResearchFaculty of Life SciencesUniversity of Vienna1030ViennaAustria
| | - Eva Maria Sehr
- Center for Health and BioresourcesAIT Austrian Institute of Technology GmbH3430TullnAustria
| |
Collapse
|
28
|
Schepetkin IA, Karpenko AS, Khlebnikov AI, Shibinska MO, Levandovskiy IA, Kirpotina LN, Danilenko NV, Quinn MT. Synthesis, anticancer activity, and molecular modeling of 1,4-naphthoquinones that inhibit MKK7 and Cdc25. Eur J Med Chem 2019; 183:111719. [PMID: 31563013 DOI: 10.1016/j.ejmech.2019.111719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/09/2019] [Accepted: 09/17/2019] [Indexed: 01/04/2023]
Abstract
Cell division cycle 25 (Cdc25) and mitogen-activated protein kinase kinase 7 (MKK7) are enzymes involved in intracellular signaling but can also contribute to tumorigenesis. We synthesized and characterized the biological activity of 1,4-naphthoquinones structurally similar to reported Cdc25 and(or) MKK7 inhibitors with anticancer activity. Compound 7 (3-[(1,4-dioxonaphthalen-2-yl)sulfanyl]propanoic acid) exhibited high binding affinity for MKK7 (Kd = 230 nM), which was greater than the affinity of NSC 95397 (Kd = 1.1 μM). Although plumbagin had a lower binding affinity for MKK7, this compound and sulfur-containing derivatives 4 and 6-8 were potent inhibitors of Cdc25A and Cdc25B. Derivative 22e containing a phenylamino side chain was selective for MKK7 versus MKK4 and Cdc25 A/B, and its isomer 22f was a selective inhibitor of Cdc25 A/B. Docking studies performed on several naphthoquinones highlighted interesting aspects concerning the molecule orientation and hydrogen bonding interactions, which could help to explain the activity of the compounds toward MKK7 and Cdc25B. The most potent naphthoquinone-based inhibitors of MKK7 and/or Cdc25 A/B were also screened for their cytotoxicity against nine cancer cell lines and primary human mononuclear cells, and a correlation was found between Cdc25 A/B inhibitory activity and cytotoxicity of the compounds. Quantum chemical calculations using BP86 and ωB97X-D3 functionals were performed on 20 naphthoquinone derivatives to obtain a set of molecular electronic properties and to correlate these properties with cytotoxic activities. Systematic theoretical DFT calculations with subsequent correlation analysis indicated that energy of the lowest unoccupied molecular orbital E(LUMO), vertical electron affinity (VEA), and reactivity index ω of these molecules were important characteristics related to their cytotoxicity. The reactivity index ω was also a key characteristic related to Cdc25 A/B phosphatase inhibitory activity. Thus, 1,4-naphthoquinones displaying sulfur-containing and phenylamino side chains with additional polar groups could be successfully utilized for further development of efficacious Cdc25 A/B and MKK7 inhibitors with anticancer activity.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Alexander S Karpenko
- A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, 65080, Ukraine
| | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia; Faculty of Chemistry, National Research Tomsk State University, Tomsk, 634050, Russia
| | - Marina O Shibinska
- A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, 65080, Ukraine
| | - Igor A Levandovskiy
- Department of Organic Chemistry, Kiev Polytechnic Institute, Kiev, 03056, Ukraine
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | | | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|