1
|
Lozzi I, Arnold A, Barone M, Johnson JC, Sinn BV, Eschrich J, Gebert P, Wang R, Hu M, Feldbrügge L, Schirmeier A, Reutzel-Selke A, Malinka T, Krenzien F, Schöning W, Modest DP, Pratschke J, Sauer IM, Felsenstein M. Clinical prognosticators and targets in the immune microenvironment of intrahepatic cholangiocarcinoma. Oncoimmunology 2024; 13:2406052. [PMID: 39359389 PMCID: PMC11445892 DOI: 10.1080/2162402x.2024.2406052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/06/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) is a disease with poor prognosis and limited therapeutic options. We investigated the tumor immune microenvironment (TIME) to identify predictors of disease outcome and to explore targets for therapeutic modulation. Methods Liver tissue samples were collected during 2008-2019 from patients (n = 139) diagnosed with ICC who underwent curative intent surgery without neoadjuvant chemotherapy. Samples from the discovery cohort (n = 86) were immunohistochemically analyzed on tissue microarrays (TMAs) for the expression of CD68, CD3, CD4, CD8, Foxp3, PD-L1, STAT1, and p-STAT1 in tumor core and stroma areas. Results were digitally analyzed using QuPath software and correlated with clinicopathological characteristics. For validation of TIME-related biomarkers, we performed multiplex imaging mass cytometry (IMC) in a validation cohort (n = 53). Results CD68+ cells were the predominant immune cell type in the TIME of ICC. CD4+high T cell density correlated with better overall survival (OS). Prediction modeling together with validation cohort confirmed relevance of CD4+ cells, PD-L1 expression by immune cells in the stroma and N-stage on overall disease outcome. In turn, IMC analyses revealed that silent CD3+CD4+ clusters inversely impacted survival. Among annotated immune cell clusters, PD-L1 was most relevantly expressed by CD4+FoxP3+ cells. A subset of tumors with high density of immune cells ("hot" cluster) correlated with PD-L1 expression and could identify a group of candidates for immune checkpoint inhibition (ICI). Ultimately, higher levels of STAT1 expression were associated with higher lymphocyte infiltration and PD-L1 expression. Conclusions These results highlight the importance of CD4+ T cells in immune response against ICC. Secondly, a subset of tumors with "hot" TIME represents potential candidates for ICI, while stimulation of STAT1 pathway could be a potential target to turn "cold" into "hot" TIME in ICC.
Collapse
Affiliation(s)
- Isis Lozzi
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander Arnold
- Department of Pathology, CCM, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Barone
- Translational Immunology, Berlin Institute of Health & Charité University Medicine, Berlin, Germany
| | - Juliette Claire Johnson
- Translational Immunology, Berlin Institute of Health & Charité University Medicine, Berlin, Germany
| | - Bruno V Sinn
- Department of Pathology, CCM, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Eschrich
- Department of Hepatology and Gastroenterology, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program Charité - Universitätsmedizin Berlin and The Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Pimrapat Gebert
- Institute of Biometry and Clinical Epidemiology, CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ruonan Wang
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mengwen Hu
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Linda Feldbrügge
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program Charité - Universitätsmedizin Berlin and The Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Anja Schirmeier
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Malinka
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Felix Krenzien
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program Charité - Universitätsmedizin Berlin and The Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Wenzel Schöning
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik P Modest
- Department of Hematology, Oncology, and Cancer Immunology, CCM, CVK, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- DKFZ, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Johann Pratschke
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Igor M Sauer
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthäus Felsenstein
- Department of Surgery, Experimental Surgery, CCM, CVK, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program Charité - Universitätsmedizin Berlin and The Berlin Institute of Health at Charité (BIH), Berlin, Germany
| |
Collapse
|
2
|
Pawaskar R, Huang KZ, Pham H, Nagrial A, Wong M, O’Neill S, Pleass H, Yuen L, Lam VWT, Richardson A, Pang T, Nahm CB. Systematic Review of Preoperative Prognostic Biomarkers in Perihilar Cholangiocarcinoma. Cancers (Basel) 2024; 16:698. [PMID: 38398089 PMCID: PMC10886549 DOI: 10.3390/cancers16040698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Perihilar cholangiocarcinoma (pCCA) is an uncommon malignancy with generally poor prognosis. Surgery is the primary curative treatment; however, the perioperative mortality and morbidity rates are high, with a low 5-year survival rate. Use of preoperative prognostic biomarkers to predict survival outcomes after surgery for pCCA are not well-established currently. This systematic review aimed to identify and summarise preoperative biomarkers associated with survival in pCCA, thereby potentially improving treatment decision-making. The Embase, Medline, and Cochrane databases were searched, and a systematic review was performed using the PRISMA guidelines. English-language studies examining the association between serum and/or tissue-derived biomarkers in pCCA and overall and/or disease-free survival were included. Our systematic review identified 64 biomarkers across 48 relevant studies. Raised serum CA19-9, bilirubin, CEA, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and tumour MMP9, and low serum albumin were most associated with poorer survival; however, the cutoff values used widely varied. Several promising molecular markers with prognostic significance were also identified, including tumour HMGA2, MUC5AC/6, IDH1, PIWIL2, and DNA index. In conclusion, several biomarkers have been identified in serum and tumour specimens that prognosticate overall and disease-free survival after pCCA resection. These, however, require external validation in large cohort studies and/or in preoperatively obtained specimens, especially tissue biopsy, to recommend their use.
Collapse
Affiliation(s)
- Rishaan Pawaskar
- Department of Upper GI Surgery, Westmead Hospital, Sydney, NSW 2145, Australia; (R.P.); (H.P.); (H.P.); (L.Y.); (V.W.T.L.); (A.R.); (T.P.)
| | | | - Helen Pham
- Department of Upper GI Surgery, Westmead Hospital, Sydney, NSW 2145, Australia; (R.P.); (H.P.); (H.P.); (L.Y.); (V.W.T.L.); (A.R.); (T.P.)
- Westmead Hospital, Sydney, NSW 2145, Australia;
- Surgical Innovations Unit, Westmead Hospital, Sydney, NSW 2145, Australia
| | - Adnan Nagrial
- Westmead Clinical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.N.); (M.W.)
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW 2145, Australia;
| | - Mark Wong
- Westmead Clinical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.N.); (M.W.)
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW 2145, Australia;
| | - Siobhan O’Neill
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW 2145, Australia;
| | - Henry Pleass
- Department of Upper GI Surgery, Westmead Hospital, Sydney, NSW 2145, Australia; (R.P.); (H.P.); (H.P.); (L.Y.); (V.W.T.L.); (A.R.); (T.P.)
- Westmead Hospital, Sydney, NSW 2145, Australia;
- Surgical Innovations Unit, Westmead Hospital, Sydney, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.N.); (M.W.)
| | - Lawrence Yuen
- Department of Upper GI Surgery, Westmead Hospital, Sydney, NSW 2145, Australia; (R.P.); (H.P.); (H.P.); (L.Y.); (V.W.T.L.); (A.R.); (T.P.)
- Westmead Hospital, Sydney, NSW 2145, Australia;
- Surgical Innovations Unit, Westmead Hospital, Sydney, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.N.); (M.W.)
| | - Vincent W. T. Lam
- Department of Upper GI Surgery, Westmead Hospital, Sydney, NSW 2145, Australia; (R.P.); (H.P.); (H.P.); (L.Y.); (V.W.T.L.); (A.R.); (T.P.)
- Westmead Hospital, Sydney, NSW 2145, Australia;
- Surgical Innovations Unit, Westmead Hospital, Sydney, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.N.); (M.W.)
- Macquarie University Medical School, Macquarie University, Sydney, NSW 2145, Australia
| | - Arthur Richardson
- Department of Upper GI Surgery, Westmead Hospital, Sydney, NSW 2145, Australia; (R.P.); (H.P.); (H.P.); (L.Y.); (V.W.T.L.); (A.R.); (T.P.)
- Westmead Hospital, Sydney, NSW 2145, Australia;
- Surgical Innovations Unit, Westmead Hospital, Sydney, NSW 2145, Australia
| | - Tony Pang
- Department of Upper GI Surgery, Westmead Hospital, Sydney, NSW 2145, Australia; (R.P.); (H.P.); (H.P.); (L.Y.); (V.W.T.L.); (A.R.); (T.P.)
- Westmead Hospital, Sydney, NSW 2145, Australia;
- Surgical Innovations Unit, Westmead Hospital, Sydney, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.N.); (M.W.)
| | - Christopher B. Nahm
- Department of Upper GI Surgery, Westmead Hospital, Sydney, NSW 2145, Australia; (R.P.); (H.P.); (H.P.); (L.Y.); (V.W.T.L.); (A.R.); (T.P.)
- Westmead Hospital, Sydney, NSW 2145, Australia;
- Surgical Innovations Unit, Westmead Hospital, Sydney, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.N.); (M.W.)
| |
Collapse
|
3
|
Kwon SC, Bang S, Park YN, Park JH, Kim SJ, Jo JH, Chung MJ, Park JY, Park SW, Song SY, Park E, Lee HS. The Expression of Programmed Death-Ligand 1 on Immune Cells Is Related to a Better Prognosis in Biliary Tract Cancer. Gut Liver 2023; 17:933-941. [PMID: 36510775 PMCID: PMC10651371 DOI: 10.5009/gnl220206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/20/2022] [Accepted: 10/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background/Aims Programmed death-ligand 1 (PD-L1) expression in tumor cells is associated with a poor biliary tract cancer (BTC) prognosis; tumor-infiltrating immune cells in the tumor microenvironment are associated with a better prognosis. The effect of PD-L1 expression on immune cells on survival is unclear. We investigated the relationship between PD-L1 expression in immune cells and BTC prognosis. Methods PD-L1 expression was evaluated using an anti-PD-L1 22C3 mouse monoclonal primary antibody, and its relationships with clinical characteristics and prognosis were analyzed using the Cox proportional hazard model to investigate the prognostic performance of PD-L1 in BTC. Results Among 144 analyzed cases, patients with positive PD-L1 expression in tumor cells and negative PD-L1 expression in immune cells showed poorer overall survival rates than those exhibiting other expressions (tumor cells: hazard ratio [HR]=1.023, p<0.001; immune cells: HR=0.983, p=0.021). PD-L1 expression in tumor cells was an independent predictor of poor overall survival (HR=1.024, p<0.001). In contrast, PD-L1 expression in immune cells was a predictive marker of good prognosis (HR=0.983, p=0.018). Conclusions PD-L1 expression in immune cells may be used as an independent factor to evaluate the prognosis of patients with BTC.
Collapse
Affiliation(s)
- Sung Chan Kwon
- Department of Internal Medicine, Institute of Gastroenterology, Seoul, Korea
| | - Seungmin Bang
- Department of Internal Medicine, Institute of Gastroenterology, Seoul, Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hoon Park
- Department of Internal Medicine, Institute of Gastroenterology, Seoul, Korea
| | - So Jeong Kim
- Department of Internal Medicine, Institute of Gastroenterology, Seoul, Korea
| | - Jung Hyun Jo
- Department of Internal Medicine, Institute of Gastroenterology, Seoul, Korea
| | - Moon Jae Chung
- Department of Internal Medicine, Institute of Gastroenterology, Seoul, Korea
| | - Jeong Youp Park
- Department of Internal Medicine, Institute of Gastroenterology, Seoul, Korea
| | - Seung Woo Park
- Department of Internal Medicine, Institute of Gastroenterology, Seoul, Korea
| | - Si Young Song
- Department of Internal Medicine, Institute of Gastroenterology, Seoul, Korea
| | - Eunhyang Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Hee Seung Lee
- Department of Internal Medicine, Institute of Gastroenterology, Seoul, Korea
| |
Collapse
|
4
|
Zhang Z, Wang X, Li H, Sun H, Chen J, Lin H. Case Report: Camrelizumab combined with gemcitabine and oxaliplatin in the treatment of advanced intrahepatic cholangiocarcinoma: a case report and literature review. Front Immunol 2023; 14:1230261. [PMID: 37671157 PMCID: PMC10475830 DOI: 10.3389/fimmu.2023.1230261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is one of the most common invasive malignant tumors, with a 5-year survival rate of less than 5%. Currently, radical surgical resection is the preferred treatment for ICC. However, most patients are only diagnosed at an advanced stage and are therefore not eligible for surgery. Herein, we present a case of advanced ICC in which radical surgery was not possible due to tumor invasion of the second porta hepatis and right hepatic artery. Six treatment cycles with a gemcitabine and oxaliplatin (GEMOX) regimen combined with camrelizumab immunotherapy achieved a partial response and successful tumor conversion, as tumor invasion of the second porta hepatis and right hepatic artery was no longer evident. The patient subsequently underwent successful radical surgical resection, including hepatectomy, caudate lobe resection, and cholecystectomy combined with lymph node dissection. Cases of patients with advanced ICC undergoing surgical resection after combined immunotherapy and chemotherapy are rare. The GEMOX regimen combined with camrelizumab demonstrated favorable antitumor efficacy and safety, suggesting that it might be a potential feasible and safe conversion therapy strategy for patients with advanced ICC.
Collapse
Affiliation(s)
- Zhongyan Zhang
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Weifang, China
| | - Xin Wang
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Weifang, China
| | - Hehe Li
- Department of Geriatrics, Weifang People’s Hospital, Weifang, China
| | - Huimin Sun
- Department of Pathology, Weifang People’s Hospital, Weifang, China
| | - Jianhong Chen
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Weifang, China
| | - Hongfeng Lin
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Weifang, China
| |
Collapse
|
5
|
Frega G, Cossio FP, Banales JM, Cardinale V, Macias RIR, Braconi C, Lamarca A. Lacking Immunotherapy Biomarkers for Biliary Tract Cancer: A Comprehensive Systematic Literature Review and Meta-Analysis. Cells 2023; 12:2098. [PMID: 37626908 PMCID: PMC10453268 DOI: 10.3390/cells12162098] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Immunotherapy has recently been incorporated into the spectrum of biliary tract cancer (BTC) treatment. The identification of predictive response biomarkers is essential in order to identify those patients who may benefit most from this novel treatment option. Here, we propose a systematic literature review and a meta-analysis of PD-1, PD-L1, and other immune-related biomarker expression levels in patients with BTC. METHODS Prisma guidelines were followed for this systematic review and meta-analysis. Eligible studies were searched on PubMed. Studies published between 2017 and 2022, reporting data on PD-1/PD-L1 expression and other immune-related biomarkers in patients with BTC, were considered eligible. RESULTS A total of 61 eligible studies were identified. Despite the great heterogeneity between 39 studies reporting data on PD-L1 expression, we found a mean PD-L1 expression percentage (by choosing the lowest cut-off per study) of 25.6% (95% CI 21.0 to 30.3) in BTCs. The mean expression percentages of PD-L1 were 27.3%, 21.3%, and 27.4% in intrahepatic cholangiocarcinomas (iCCAs-15 studies), perihilar-distal CCAs (p/dCCAs-7 studies), and gallbladder cancer (GBC-5 studies), respectively. Furthermore, 4.6% (95% CI 2.38 to 6.97) and 2.5% (95% CI 1.75 to 3.34) of BTCs could be classified as TMB-H and MSI/MMRd tumors, respectively. CONCLUSION From our analysis, PD-L1 expression was found to occur approximately in 26% of BTC patients, with minimal differences based on anatomical location. TMB-H and MSI molecular phenotypes occurred less frequently. We still lack a reliable biomarker, especially in patients with mismatch-proficient tumors, and we must need to make an effort to conceive new prospective biomarker discovery studies.
Collapse
Affiliation(s)
- Giorgio Frega
- Osteoncology, Soft Tissue and Bone Sarcomas, Innovative Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Fernando P. Cossio
- Department of Organic Chemistry I, Center of Innovation in Advanced Chemistry (ORFEO-CINQA), University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), 48940 Donostia-San Sebastian, Spain;
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute—Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, 48940 San Sebastian, Spain;
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31009 Pamplona, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy;
| | - Rocio I. R. Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, 37007 Salamanca, Spain
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
- Beatson West of Scotland Cancer Centre, Glasgow G12 0YN, UK
| | - Angela Lamarca
- Department of Oncology—OncoHealth Institute, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
- Department of Medical Oncology, The Christie NHS Foundation, Manchester, Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
6
|
Mocan LP, Craciun R, Grapa C, Melincovici CS, Rusu I, Al Hajjar N, Sparchez Z, Leucuta D, Ilies M, Sparchez M, Mocan T, Mihu CM. PD-L1 expression on immune cells, but not on tumor cells, is a favorable prognostic factor for patients with intrahepatic cholangiocarcinoma. Cancer Immunol Immunother 2023; 72:1003-1014. [PMID: 36251029 PMCID: PMC10991168 DOI: 10.1007/s00262-022-03309-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
Cholangiocarcinoma, the second most common liver malignancy, after hepatocarcinoma is highly aggressive and usually diagnosed in advanced cases. In the era of personalized medicine, targeted therapy protocols are limited for cholangiocarcinoma and the only potential curative treatment, surgical resection, is seldom applicable.This retrospective study included all cases with pathology-confirmed intrahepatic cholangiocarcinoma admitted in a tertiary healthcare facility during a 10-year timeframe. Clinical information, laboratory values, imaging studies, and survival data were retrieved, and PD-L1 immunostaining was performed on representative pathology slides, for each case. From the total of 136 included cases (49 surgical resections and 87 liver biopsies), 38.97% showed PD-L1 positivity on tumoral cells, 34.8% on tumor infiltrating immune cells, 10.11% on epithelial cells within the peritumoral area and 15.95% on immune cells from the peritumoral area. Overall survival was significantly higher in the first two scenarios. However, after adjusting for age, tumor number, tumor size, and tumor differentiation in a multivariate analysis, only PD-L1 positivity on tumor infiltrating immune cells remained a favorable prognostic for survival. High immune cell counts also correlated with increased overall survival.Our study demonstrated that PD-1/PD-L1 checkpoint pathway in the microenvironment of intrahepatic cholangiocarcinoma bears prognostic significance. PD-L1 expression on immune cells, in both resection and biopsy specimens, might be a strong independent predictor for a favorable outcome.
Collapse
Affiliation(s)
- Lavinia Patricia Mocan
- Department of Histology, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rares Craciun
- 3rd Medical Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristiana Grapa
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen Stanca Melincovici
- Department of Histology, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Rusu
- 3rd Pathology Department, Institute for Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Nadim Al Hajjar
- 3rd Surgical Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Zeno Sparchez
- 3rd Medical Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel Leucuta
- Department of Medical Informatics and Biostatistics, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria Ilies
- Department of Proteomics and Metabolomics, MedFUTURE Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Sparchez
- 2nd Pediatrics Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tudor Mocan
- Department of Gastroenterology, "Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca, Romania.
| | - Carmen Mihaela Mihu
- Department of Histology, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Byeon SJ, Chang MS, Cho HJ, Park JH, Kim KH, Park JH, Choi IS, Kim W, Han DS, Ahn HS, Heo SC. Prognostic roles of leptin-signaling proteins, PD-L1, and tumor-infiltrating lymphocytes in surgically-resected biliary tract cancers. J Surg Oncol 2023; 127:587-597. [PMID: 36367404 DOI: 10.1002/jso.27140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Biliary tract cancers are rare, with a poor patient prognosis. Leptin and programmed death-ligand 1 (PD-L1) influence CD8+ and forkhead box P3 (FOXP3)+ lymphocytes, and thus, cancer cell growth. We aimed to define the prognostic implications of these variables and the clinicopathological features of biliary tract cancers. METHODS Immunohistochemistry for leptin signaling-related proteins (leptin, leptin receptor, pSTAT3, extracellular-regulated kinase, mammalian target of rapamycin), PD-L1, CD8, and FOXP3 and in situ hybridization for Epstein-Barr virus-encoded small RNAs were performed in 147 cases of surgically-resected biliary tract cancers. RESULTS Immune cell PD-L1-positivity, tumor size < 3 cm, adjuvant chemotherapy, no recurrence, and early-stage tumors were correlated with better 5-year survival in the tumoral PD-L1(-) and leptin(-) subgroups, and extrahepatic cholangiocarcinoma through multivariate analysis (all p < 0.05). Immune cell PD-L1 and adjuvant chemotherapy lost its prognostic significance in the tumoral PD-L1+ and leptin+ subgroups. CONCLUSIONS The prognostic implication of the variables may depend upon tumoral protein expression and the anatomical site. Immune cell PD-L1-positivity and the administration of adjuvant chemotherapy may indicate the favorable survival of patients with surgically-resected biliary tract cancers, specifically, in the tumoral PD-L1(-) or tumor leptin(-) subgroups and extrahepatic cholangiocarcinoma. PD-L1- or leptin-targeted therapy combined with conventional chemotherapy may benefit the tumoral PD-L1+ or leptin+ subgroups.
Collapse
Affiliation(s)
- Sun-Ju Byeon
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hwa Jin Cho
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hwan Park
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Hwan Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Hyun Park
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In Sil Choi
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Seok Han
- Department of Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Seong Ahn
- Department of Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Chul Heo
- Department of Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Chervoneva I, Peck AR, Sun Y, Yi M, Udhane SS, Langenheim JF, Girondo MA, Jorns JM, Chaudhary LN, Kamaraju S, Bergom C, Flister MJ, Hooke JA, Kovatich AJ, Shriver CD, Hu H, Palazzo JP, Bibbo M, Hyslop T, Nevalainen MT, Pestell RG, Fuchs SY, Mitchell EP, Rui H. High PD-L2 Predicts Early Recurrence of ER-Positive Breast Cancer. JCO Precis Oncol 2023; 7:e2100498. [PMID: 36652667 PMCID: PMC9928763 DOI: 10.1200/po.21.00498] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 01/20/2023] Open
Abstract
PURPOSE T-cell-mediated cytotoxicity is suppressed when programmed cell death-1 (PD-1) is bound by PD-1 ligand-1 (PD-L1) or PD-L2. Although PD-1 inhibitors have been approved for triple-negative breast cancer, the lower response rates of 25%-30% in estrogen receptor-positive (ER+) breast cancer will require markers to identify likely responders. The focus of this study was to evaluate whether PD-L2, which has higher affinity than PD-L1 for PD-1, is a predictor of early recurrence in ER+ breast cancer. METHODS PD-L2 protein levels in cancer cells and stromal cells of therapy-naive, localized or locoregional ER+ breast cancers were measured retrospectively by quantitative immunofluorescence histocytometry and correlated with progression-free survival (PFS) in the main study cohort (n = 684) and in an independent validation cohort (n = 273). All patients subsequently received standard-of-care adjuvant therapy without immune checkpoint inhibitors. RESULTS Univariate analysis of the main cohort revealed that high PD-L2 expression in cancer cells was associated with shorter PFS (hazard ratio [HR], 1.8; 95% CI, 1.3 to 2.6; P = .001), which was validated in an independent cohort (HR, 2.3; 95% CI, 1.1 to 4.8; P = .026) and remained independently predictive after multivariable adjustment for common clinicopathological variables (HR, 2.0; 95% CI, 1.4 to 2.9; P < .001). Subanalysis of the ER+ breast cancer patients treated with adjuvant chemotherapy (n = 197) revealed that high PD-L2 levels in cancer cells associated with short PFS in univariate (HR, 2.5; 95% CI, 1.4 to 4.4; P = .003) and multivariable analyses (HR, 3.4; 95% CI, 1.9 to 6.2; P < .001). CONCLUSION Up to one third of treatment-naive ER+ breast tumors expressed high PD-L2 levels, which independently predicted poor clinical outcome, with evidence of further elevated risk of progression in patients who received adjuvant chemotherapy. Collectively, these data warrant studies to gain a deeper understanding of PD-L2 in the progression of ER+ breast cancer and may provide rationale for immune checkpoint blockade for this patient group.
Collapse
Affiliation(s)
- Inna Chervoneva
- Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA
| | - Amy R. Peck
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| | - Misung Yi
- Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA
| | - Sameer S. Udhane
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| | | | | | - Julie M. Jorns
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| | | | - Sailaja Kamaraju
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Carmen Bergom
- Department Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI
| | | | - Jeffrey A. Hooke
- John P. Murtha Cancer Center, Uniformed Services University, Bethesda, MD
| | - Albert J. Kovatich
- John P. Murtha Cancer Center, Uniformed Services University, Bethesda, MD
| | - Craig D. Shriver
- John P. Murtha Cancer Center, Uniformed Services University, Bethesda, MD
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA
| | - Juan P. Palazzo
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA
| | - Marluce Bibbo
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA
| | - Terry Hyslop
- Center for Health Equity, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Richard G. Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Doylestown, PA
- The Wistar Cancer Center, Philadelphia, PA
| | - Serge Y. Fuchs
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA
| | - Edith P. Mitchell
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
9
|
Ruggieri AN, Yarchoan M, Goyal S, Liu Y, Sharon E, Chen HX, Olson BM, Paulos CM, El-Rayes BF, Maithel SK, Azad NS, Lesinski GB. Combined MEK/PD-L1 Inhibition Alters Peripheral Cytokines and Lymphocyte Populations Correlating with Improved Clinical Outcomes in Advanced Biliary Tract Cancer. Clin Cancer Res 2022; 28:4336-4345. [PMID: 35833954 PMCID: PMC9529897 DOI: 10.1158/1078-0432.ccr-22-1123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Biliary tract cancers (BTC) are aggressive malignancies refractory to chemotherapy and immunotherapy. MEK inhibition (MEKi)-based regimens may have utility in this disease when combined with PD-L1 blockade. We hypothesize that dual MEK/PD-L1 inhibition alters circulating soluble and cellular immune mediators to improve clinical outcomes in patients with advanced BTC. EXPERIMENTAL DESIGN We examined immune features in peripheral blood from 77 patients with advanced BTC enrolled in a phase II clinical trial investigating atezolizumab with or without cobimetinib. Plasma and peripheral blood mononuclear cells (PBMC) were isolated from whole blood to evaluate soluble factors and immune cell populations. Baseline blood samples were additionally compared with healthy donors to identify immune signatures unique to BTC. RESULTS At baseline, the soluble factors platelet-derived growth factor B (PDGF)-BB, placental growth factor (PlGF)-1, IL5, and IL17A were elevated in patients with BTC compared with healthy adult donors, and higher baseline frequencies of CD8+BTLA+ T cells correlated with better overall survival (OS) in this trial. There were also significant treatment-related alterations in several factors, including decreased PDGF-BB following combination treatment, that correlated with improved OS and progression-free survival (PFS). Higher baseline levels of IL23 and RANTES corresponded to improved clinical outcomes following combination treatment. Dual MEK/PD-L1 inhibition increased populations of CD4+TIM3+ and decreased CD8+VISTA+ T cells, correlating with worse OS and better PFS, respectively. CONCLUSIONS This work represents a comprehensive analysis of peripheral immune features in patients with BTC and systemic responses to dual MEK/PD-L1 inhibition. These data support further investigation to understand how MEKi combines with immunotherapeutic approaches to improve clinical outcomes for patients with advanced BTC.
Collapse
Affiliation(s)
- Amanda N. Ruggieri
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Mark Yarchoan
- Department of Oncology, Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Subir Goyal
- Biostatistics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Yuan Liu
- Biostatistics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Elad Sharon
- National Cancer Institute (NCI) Cancer Therapy Evaluation Program (CTEP), Bethesda, MD, USA
| | - Helen X. Chen
- National Cancer Institute (NCI) Cancer Therapy Evaluation Program (CTEP), Bethesda, MD, USA
| | - Brian M. Olson
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Chrystal M. Paulos
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Bassel F. El-Rayes
- O’Neal Comprehensive Cancer Center of the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shishir K. Maithel
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Nilofer S. Azad
- Department of Oncology, Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA,To whom correspondence should be addressed: Nilofer S. Azad, Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, 1650 Orleans Street, Room 4M10, Baltimore, MD 20815, Tel: 410-955-8893; , Gregory B. Lesinski, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Rd. NE, Atlanta, GA, 30322, USA. Tel: (404)-778-3072;
| | - Gregory B. Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA,To whom correspondence should be addressed: Nilofer S. Azad, Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, 1650 Orleans Street, Room 4M10, Baltimore, MD 20815, Tel: 410-955-8893; , Gregory B. Lesinski, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Rd. NE, Atlanta, GA, 30322, USA. Tel: (404)-778-3072;
| |
Collapse
|
10
|
Zeng TM, Pan YF, Yuan ZG, Chen DS, Song YJ, Gao Y. Immune-related RNA signature predicts outcome of PD-1 inhibitor-combined GEMCIS therapy in advanced intrahepatic cholangiocarcinoma. Front Immunol 2022; 13:943066. [PMID: 36159865 PMCID: PMC9501891 DOI: 10.3389/fimmu.2022.943066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundImmune checkpoint inhibitor (ICI)-combined chemotherapy in advanced intrahepatic cholangiocarcinoma has been proved to have more efficacy in a series of clinical trials. However, whether the tumor microenvironment (TME) plays a vital role in immune-combined therapy has not been rigorously evaluated.MethodsFirstly, we assayed the immunogenic properties of GEM-based chemotherapy. Then, 12 ICC patients treated with PD-1 inhibitor (sintilimab) combined with gemcitabine and cisplatin (GemCis) from a phase 2 clinical trial (ChiCTR2000036652) were included and their immune-related gene expression profiles were analyzed using RNA from baseline tumor samples. Immune-related signature correlating with clinical outcome was identified according to the 12 ICC patients, and its predictive value was validated in an ICC cohort with 26 patients. Multiplexed immunofluorescence (mIF) and flow cytometry (FCM) analysis were performed to evaluate the immune-related molecules with therapeutic outcomes.ResultsGEM-based chemotherapy induced immunogenic cell death of cholangiocarcinoma cells, together with increased CD274 expression. In an ICC cohort, we found that upregulation of immune-checkpoint molecules and immune response-related pathways were significantly related to better clinical outcome. On the contrary, baseline immune-cell proportions in tumor tissues did not show any correlation with clinical benefit between responders and non-responders. Immune-related signature (including six genes) correlating with clinical outcome was identified according to the 12 ICC patients, and its predictive value was validated in a small ICC cohort with 26 patients.ConclusionImmune-related RNA signature predicts the outcome of PD-1 inhibitor-combined GEMCIS therapy in advanced intrahepatic cholangiocarcinoma, which could be tested as a biomarker for immune-chemotherapy in the future.
Collapse
Affiliation(s)
- Tian-mei Zeng
- School of Medicine, Tongji University, Shanghai, China
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yu-fei Pan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zhen-gang Yuan
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Dong-sheng Chen
- Jiangsu Simcere Diagnostics Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, China
| | - Yun-jie Song
- Jiangsu Simcere Diagnostics Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, China
| | - Yong Gao
- School of Medicine, Tongji University, Shanghai, China
- Department of Oncology, Shanghai East Hospital, Shanghai, China
- *Correspondence: Yong Gao,
| |
Collapse
|
11
|
Xia T, Li K, Niu N, Shao Y, Ding D, Thomas DL, Jing H, Fujiwara K, Hu H, Osipov A, Yuan C, Wolfgang CL, Thompson ED, Anders RA, He J, Mou Y, Murphy AG, Zheng L. Immune cell atlas of cholangiocarcinomas reveals distinct tumor microenvironments and associated prognoses. J Hematol Oncol 2022; 15:37. [PMID: 35346322 PMCID: PMC8962046 DOI: 10.1186/s13045-022-01253-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/10/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Immunotherapy has demonstrated a limited clinical efficacy in approximately 5% of cholangiocarcinoma. The main challenges for an effective immunotherapy response in cholangiocarcinoma arise from the tumor microenvironment, which is poorly understood. METHODS For a comprehensive analysis of the tumor microenvironment in cholangiocarcinoma, we performed multiplex immunohistochemistry with two 15-marker immune panels and Nanostring assays for a comprehensive analysis of 104 surgically resected cholangiocarcinomas including intrahepatic, hilar, and distal cholangiocarcinoma. We also validated some key findings with a batch integration analysis of published single cell RNA sequencing data. RESULTS This study found that natural killer cells occupy the largest immune cell compartment in cholangiocarcinoma. Granzyme-B+CD8+ effector T cells are significantly associated with better overall survival in both intrahepatic and distal cholangiocarcinoma. Above 85% of intrahepatic cholangiocarcinomas with higher density of PD-1-EOMES-CD8+ effector T cells are associated with long-term survival. However, only the density of PD-1-EOMES-CD8+ T cells in the tumor areas, but not in the peripheries of the tumors, is prognostic. In all three cholangiocarcinoma subtypes, T regulator cells are significantly associated with a poor prognosis; however, M1 and M2 tumor-associated macrophages or PD-L1+ tumor-associated macrophage demonstrate different prognostic values. Combining PD-L1+ M1 or M2, PD-L1- M1 or M2 tumor-associated macrophages, and T regulator cells to subgroup intrahepatic and distal cholangiocarcinoma, the prognosis is significantly better distinguished. Moreover, PD-L1- M2 tumor-associated macrophages is associated with a good prognosis in intrahepatic and distal cholangiocarcinoma, suggesting this subtype of M2 tumor-associated macrophages may be antitumoral. Interestingly, lower densities of various types of immunosuppressive cells are associated with decreased infiltration of effector T cells in distal and hilar cholangiocarcinoma, but not in intrahepatic cholangiocarcinoma. In intrahepatic cholangiocarcinoma, PD-L1+ tumor-associated macrophages exert their immunosuppressive function likely through promoting T cell exhaustion. CONCLUSIONS This study suggests that the densities of Granzyme-B+CD8+ effector T cells and non-exhausted PD-1-EOMES-CD8+ T cells and the PD-L1 status in the tumor-associated macrophages are prognostic makers in cholangiocarcinomas. The study also supports targeting PD-L1+ tumor-associated macrophages as the immunotherapy for cholangiocarcinoma.
Collapse
Affiliation(s)
- Tao Xia
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Gastrointestinal and Pancreatic Surgery, Department of General Surgery, and Cancer Center, The Zhejiang Provincial People's Hospital and the Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Keyu Li
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Niu
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Gastrointestinal and Pancreatic Surgery, Department of General Surgery, and Cancer Center, The Zhejiang Provincial People's Hospital and the Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yingkuan Shao
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Zhejiang University Second Affiliated Hospital, Hangzhou, China
| | - Ding Ding
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dwayne L Thomas
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Jing
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenji Fujiwara
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haijie Hu
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arsen Osipov
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chunhui Yuan
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher L Wolfgang
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth D Thompson
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A Anders
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin He
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiping Mou
- Department of Gastrointestinal and Pancreatic Surgery, Department of General Surgery, and Cancer Center, The Zhejiang Provincial People's Hospital and the Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Adrian G Murphy
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
STAT1 and STAT3 Exhibit a Crosstalk and Are Associated with Increased Inflammation in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14051154. [PMID: 35267462 PMCID: PMC8909292 DOI: 10.3390/cancers14051154] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Liver cancer is the fourth-leading cause of cancer-related mortality worldwide and lacks effective therapies. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the two most common types of liver cancer and both are associated with underlying inflammatory diseases. Thereby, interleukin-6 (IL-6)-mediated STAT3 signaling is critically involved in early carcinogenesis and disease progression. Here, we assessed the interplay between STAT1 and STAT3 in IL-6 signaling in vitro and studied the activation of STAT1 and STAT3 in a cohort of 124 HCC and a cohort of 138 CCA patients by immunohistochemistry. We found that IL-6 induced STAT1 transcriptional activity upon STAT3 depletion, suggesting that HCC tumor cells may activate both STAT1 and STAT3 signaling under pro-inflammatory conditions. Furthermore, HCC patient tissues showed a strong positive correlation of STAT1 and STAT3 activation in distinct patient groups. These patients also exhibited a high degree of immune cell infiltration, suggesting that these tumors are immune “hot”. Abstract Liver cancers, which are mostly hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are very aggressive tumors with poor prognosis. Therapeutic options with curative intent are largely limited to surgery and available systemic therapies show limited benefit. Signal transducer and activator of transcription 1 (STAT1) and 3 (STAT3) are key transcription factors activated by pro-inflammatory cytokines such as interferon-γ (IFN-γ) and interleukin-6 (IL-6). In this study, we combined in vitro cell culture experiments and immunohistochemical analyses of human HCC (N = 124) and CCA (N = 138) specimens. We observed that in the absence of STAT3, IL-6 induced the activation of STAT1 and its target genes suggesting that IL-6 derived from the tumor microenvironment may activate both STAT1 and STAT3 target genes in HCC tumor cells. In addition, STAT1 and STAT3 were highly activated in a subset of HCC, which exhibited a high degree of infiltrating CD8- and FOXP3-positive immune cells and PD-L1 expression. Our results demonstrate that STAT1 and STAT3 are expressed and activated in HCC and tumor infiltrating immune cells. In addition, HCC cases with high STAT1 and STAT3 expression also exhibited a high degree of immune cell infiltration, suggesting increased immunological tolerance.
Collapse
|
13
|
Matsumoto K, Ohara T, Fujisawa M, Takaki A, Takahara M, Kato H, Yoshida R, Umeda Y, Yagi T, Matsukawa A, Okada H. Diagnostic Utility of the PD-L1 Immunostaining in Biopsy Specimens of Patients with Biliary Tract Neoplasms. J Gastrointest Surg 2022; 26:1213-1223. [PMID: 35137343 PMCID: PMC9184404 DOI: 10.1007/s11605-021-05197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/30/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anti-programmed death 1/programmed death ligand 1 (PD1/PD-L1) antibodies have been successfully used as treatment agents for several solid tumors; however, it is difficult to predict their effectiveness. We evaluated whether biopsy specimens could predict the positive status of PD-L1 in surgically resected tissue. METHODS Among 91 patients who underwent tissue sampling with endoscopic or liver biopsy before surgery for biliary tract neoplasms in an academic center, 45 (49%) patients were selected for retrospective analysis because the quality and quantity of their biopsy specimens were adequate for histologic evaluation. We performed immunohistochemical staining to investigate the PD-L1 expression in both resected and biopsy specimens. The percentage of the positively stained cells was calculated for subsequent use in the correlation investigation. RESULTS The biopsy methods were endoscopic retrograde cholangiopancreatography (ERCP) in 28 cases, percutaneous liver biopsy in 10 cases, and endoscopic ultrasound fine-needle aspiration in 7 cases. Among the 45 patients, when patients with > 10% positive tumor cells in surgically resected tissues were regarded as truly positive PD-L1, the positive and negative concordance rates between surgically resected tissues and biopsy samples were 56% (5/9) and 100% (36/36), respectively. With regard to the use of preoperative biopsy as a diagnostic tool, all (5/5) PD-L1-positive patients had a positive resected specimen. The accuracy of each biopsy method was as follows: ERCP, 89% (25/28); fine-needle aspiration, 86% (6/7); and liver biopsy, 100% (10/10). CONCLUSIONS Biopsy samples could be a surrogate material for the assessment of the PD-L1 expression with substantial positive and high negative concordance rates.
Collapse
Affiliation(s)
- Kazuyuki Matsumoto
- grid.261356.50000 0001 1302 4472Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiaki Ohara
- grid.261356.50000 0001 1302 4472Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masayoshi Fujisawa
- grid.261356.50000 0001 1302 4472Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Akinobu Takaki
- grid.261356.50000 0001 1302 4472Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Takahara
- grid.261356.50000 0001 1302 4472Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hironari Kato
- grid.261356.50000 0001 1302 4472Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ryuichi Yoshida
- grid.261356.50000 0001 1302 4472Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuzo Umeda
- grid.261356.50000 0001 1302 4472Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takahito Yagi
- grid.261356.50000 0001 1302 4472Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Matsukawa
- grid.261356.50000 0001 1302 4472Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Okada
- grid.261356.50000 0001 1302 4472Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
14
|
Okawa Y, Ebata N, Kim NKD, Fujita M, Maejima K, Sasagawa S, Nakamura T, Park WY, Hirano S, Nakagawa H. Actionability evaluation of biliary tract cancer by genome transcriptome analysis and Asian cancer knowledgebase. Oncotarget 2021; 12:1540-1552. [PMID: 34316332 PMCID: PMC8310666 DOI: 10.18632/oncotarget.28021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Treatment options for biliary tract cancer (BTC) are very limited. It is necessary to investigate actionable genes and candidate drugs using a sophisticated knowledgebase (KB) and characterize BTCs immunologically for evaluating the actionability of molecular and immune therapies. MATERIALS AND METHODS The genomic and transcriptome data of 219 patients with BTC who underwent surgery were analyzed. Actionable mutations and candidate drugs were annotated using the largest available KB of the Asian population (CancerSCAN®). Predictive biomarkers of immune checkpoint inhibitors were analyzed using DNA and RNA sequencing data. RESULTS Twenty-two actionable genes and 43 candidate drugs were annotated in 74 patients (33.8%). The most frequent actionable genes were PTEN (7.3%), CDKN2A (6.8%), KRAS (6.4%). BRCA2, CDKN2A, and FGFR2 mutations were most frequently identified in case of intrahepatic cholangiocarcinoma. PTEN and CDKN2A mutations were associated with significantly shorter overall survival. PD-L1 and PD-1 expression was significantly higher in case of extrahepatic cholangiocarcinoma and T-cell-high expression. In total, 49.7% of cases were evaluated as having actionability for molecular therapy or immune checkpoint inhibitors. CONCLUSIONS Identifying actionable genes and candidate drugs using the KB contribute to the development of therapeutic drugs and personalized treatment for BTC.
Collapse
Affiliation(s)
- Yuki Okawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Nobutaka Ebata
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Nayoung K D Kim
- Geninus Inc., Seoul, Republic of Korea.,Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Masashi Fujita
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazuhiro Maejima
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shota Sasagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Toru Nakamura
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Woong-Yang Park
- Geninus Inc., Seoul, Republic of Korea.,Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
15
|
Chen Z, Yu M, Yan J, Guo L, Zhang B, Liu S, Lei J, Zhang W, Zhou B, Gao J, Yang Z, Li X, Zhou J, Fan J, Ye Q, Li H, Xu Y, Xiao Y. PNOC Expressed by B Cells in Cholangiocarcinoma Was Survival Related and LAIR2 Could Be a T Cell Exhaustion Biomarker in Tumor Microenvironment: Characterization of Immune Microenvironment Combining Single-Cell and Bulk Sequencing Technology. Front Immunol 2021; 12:647209. [PMID: 33841428 PMCID: PMC8024580 DOI: 10.3389/fimmu.2021.647209] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background Cholangiocarcinoma was a highly malignant liver cancer with poor prognosis, and immune infiltration status was considered an important factor in response to immunotherapy. In this investigation, we tried to locate immune infiltration related genes of cholangiocarcinoma through combination of bulk-sequencing and single-cell sequencing technology. Methods Single sample gene set enrichment analysis was used to annotate immune infiltration status in datasets of TCGA CHOL, GSE32225, and GSE26566. Differentially expressed genes between high- and low-infiltrated groups in TCGA dataset were yielded and further compressed in other two datasets through backward stepwise regression in R environment. Single-cell sequencing data of GSE138709 was loaded by Seurat software and was used to examined the expression of infiltration-related gene set. Pathway changes in malignant cell populations were analyzed through scTPA web tool. Results There were 43 genes differentially expressed between high- and low-immune infiltrated patients, and after further compression, PNOC and LAIR2 were significantly correlated with high immune infiltration status in cholangiocarcinoma. Through analysis of single-cell sequencing data, PNOC was mainly expressed by infiltrated B cells in tumor microenvironment, while LAIR2 was expressed by Treg cells and partial GZMB+ CD8 T cells, which were survival related and increased in tumor tissues. High B cell infiltration levels were related to better overall survival. Also, malignant cell populations demonstrated functionally different roles in tumor progression. Conclusion PNOC and LAIR2 were biomarkers for immune infiltration evaluation in cholangiocarcinoma. PNOC, expressed by B cells, could predict better survival of patients, while LAIR2 was a potential marker for exhaustive T cell populations, correlating with worse survival of patients.
Collapse
MESH Headings
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Bile Duct Neoplasms/genetics
- Bile Duct Neoplasms/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cholangiocarcinoma/genetics
- Cholangiocarcinoma/metabolism
- Databases, Genetic
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Prognosis
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Opioid/genetics
- Receptors, Opioid/metabolism
- Sequence Analysis, DNA/methods
- Single-Cell Analysis/methods
- Survival Analysis
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Zheng Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Mincheng Yu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jiuliang Yan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Lei Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Bo Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Shuang Liu
- Neurosurgery Department of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jin Lei
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wentao Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Binghai Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zhangfu Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Qinghai Ye
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Hui Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yongfeng Xu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yongsheng Xiao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
16
|
Seesaha PK, Wang KX, Wang GQ, Cui TY, Zhao FJ, Pan LL, Li XC, Shu YQ, Chen XF. Current Progress and Future Perspectives of Immune Checkpoint Inhibitors in Biliary Tract Cancer. Onco Targets Ther 2021; 14:1873-1882. [PMID: 33737812 PMCID: PMC7966382 DOI: 10.2147/ott.s269671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
Biliary tract cancer (BTC) is an uncommon and aggressive neoplasm, with most patients presenting in an advanced stage. Systemic chemotherapy is the limited treatment available but is unsatisfactory, while targeted therapy is still awaiting validation from clinical trials. Given the potential effect of immune checkpoint inhibitors (ICIs) in the treatment of BTC, this review aims to summarize the evidence-based benefits and predictive biomarkers for using inhibitors of cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) ligand, or programmed cell death protein-1 and its ligand (PD-1 and PD-L1) as monotherapy or combined with other anti-tumor therapies, while also pointing out certain pitfalls with the use of ICIs which need to be addressed.
Collapse
Affiliation(s)
- Poshita-Kumari Seesaha
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Kang-Xin Wang
- Department of Oncology, Pukou Branch Hospital of Jiangsu Province Hospital (Nanjing Pukou Central Hospital), Nanjing, 211800, People’s Republic of China
| | - Guo-Qun Wang
- Department of Oncology, Pukou Branch Hospital of Jiangsu Province Hospital (Nanjing Pukou Central Hospital), Nanjing, 211800, People’s Republic of China
| | - Ting-Yun Cui
- Department of Oncology, Pukou Branch Hospital of Jiangsu Province Hospital (Nanjing Pukou Central Hospital), Nanjing, 211800, People’s Republic of China
| | - Feng-Jiao Zhao
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Lan-Lan Pan
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Xiang-Cheng Li
- Hepatobiliary Center of the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Yong-Qian Shu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Xiao-Feng Chen
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of Oncology, Pukou Branch Hospital of Jiangsu Province Hospital (Nanjing Pukou Central Hospital), Nanjing, 211800, People’s Republic of China
| |
Collapse
|
17
|
Uson Junior PLS, Arora M, Bogenberger JM, Borad MJ. Recent advances in understanding cholangiocarcinoma. Fac Rev 2021; 9:15. [PMID: 33659947 PMCID: PMC7886064 DOI: 10.12703/b/9-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The definition of cholangiocarcinoma (CCA) encompasses all tumors originating in the epithelium of the bile ducts, including the intrahepatic bile ducts (ICCA) and extrahepatic bile ducts (ECCA). The incidence of ICCA and ECCA has increased in the last few decades, and molecular advances in both entities have brought understanding of their differences and allowed treatment advances aimed at personalized therapy. In this review, we discuss recent progress in the molecular landscape of CCAs, emerging treatment biomarker-guided strategies, and future insights into the management of advanced disease.
Collapse
Affiliation(s)
- Pedro Luiz Serrano Uson Junior
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, Arizona, USA
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Mansi Arora
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, Arizona, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - James M Bogenberger
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, Arizona, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mitesh J Borad
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, Arizona, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
18
|
Louis C, Edeline J, Coulouarn C. Targeting the tumor microenvironment in cholangiocarcinoma: implications for therapy. Expert Opin Ther Targets 2021; 25:153-162. [PMID: 33502260 DOI: 10.1080/14728222.2021.1882998] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a rare, deadly cancer that is characterized by an abundant desmoplastic stroma. Late diagnoses and limited available effective treatments are major problems with this malignancy. Targeting of the tumor microenvironment (TME) has emerged as a potential therapeutic strategy.Areas covered: In this review, we describe the role of the various compartments of the TME in CCA and focus on the preclinical rationale for the development of innovative therapies. Relevant literature was identified by a PubMed search covering the last decade (2010-2020).Expert opinion: Low efficacy of surgery and cytotoxic chemotherapy emphasizes the need for new therapeutic strategies and companion biomarkers. Single-cell RNA sequencing of the stroma is yielding a critical functional characterization of TME in CCA and is paving the way for immunotherapies and cancer-associated fibroblast and extracellular matrix-oriented treatments. We believe that the development of treatments targeting the components of the TME will produce the best results if in combination with cytotoxic chemotherapy. Biomarkers should be developed to define the patient population of interest for each combination strategy.
Collapse
Affiliation(s)
- Corentin Louis
- Inserm, Univ Rennes 1, COSS (Chemistry, Oncogenesis Stress Signaling), UMR_S 1242, Centre De Lutte Contre Le Cancer Eugène Marquis, Rennes, France
| | - Julien Edeline
- Inserm, Univ Rennes 1, COSS (Chemistry, Oncogenesis Stress Signaling), UMR_S 1242, Centre De Lutte Contre Le Cancer Eugène Marquis, Rennes, France
| | - Cédric Coulouarn
- Inserm, Univ Rennes 1, COSS (Chemistry, Oncogenesis Stress Signaling), UMR_S 1242, Centre De Lutte Contre Le Cancer Eugène Marquis, Rennes, France
| |
Collapse
|
19
|
Kawasaki H, Akazawa Y, Razumilava N. Progress toward improving outcomes in patients with cholangiocarcinoma. ACTA ACUST UNITED AC 2021; 19:153-168. [PMID: 33883870 PMCID: PMC8054970 DOI: 10.1007/s11938-021-00333-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Purpose of review: To provide an update on latest advances in treatment of cholangiocarcinoma. Recent findings: Incidence of cholangiocarcinoma has been increasing over the past decade. A better understanding of the genetic landscape of cholangiocarcinoma and its risk factors resulted in earlier diagnosis and treatment option expansion to targeted therapy with FGFR inhibitors, and liver transplantation for early perihilar cholangiocarcinoma and early intrahepatic cholangiocarcinoma. IDH1/2 inhibition for intrahepatic cholangiocarcinoma is an emerging targeted therapy approach. Data supports benefits of adjuvant therapy for a subset of patients undergoing surgical resection. Approaches combining different treatment modalities such as chemotherapy, surgery, radiation therapy appear promising. Summary: Earlier diagnosis and genetic characterization provided additional treatment options for patients with previously incurable cholangiocarcinoma. A precision medicine approach with a focus on actionable genetic alterations and combination of treatment modalities are actively being explored and will further improve outcomes in our patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Hiroko Kawasaki
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuko Akazawa
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | |
Collapse
|
20
|
Wu H, Wei Y, Jian M, Lu H, Song Q, Hao L, Yue Y. Clinicopathological and Prognostic Significance of Immunoscore and PD-L1 in Intrahepatic Cholangiocarcinoma. Onco Targets Ther 2021; 14:39-51. [PMID: 33442265 PMCID: PMC7797318 DOI: 10.2147/ott.s288982] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background An increasing amount of evidence reveals that immunosuppression is a major issue in cancer progression. The association of immunoscore (IS) and its impact on clinical outcome have been studied in many tumor types, but its significance in intrahepatic cholangiocarcinoma (ICC) is poorly known. Methods By immunohistochemistry, CD3 and CD8 expressions were assessed in tissue samples of 50 cases of postoperative ICC. The IS was determined by analyzing CD3+ and CD8+ expression data in different areas (intratumor and invasion margins). The relationship between IS and clinicopathological characteristics, including the overall survival (OS) and recurrence-free survival (RFS), was analyzed. In addition, PD-L1, a major regulator of immune escape, was also assessed in tumor cells by immunohistochemistry. Results IS was related to histological differentiation (P=0.026), the presence of lymphoid metastasis (P=0.034), and TNM clinical stages (P = 0.031) of ICC. High IS was significantly associated with better RFS (P=0.033) and OS (P=0.014). IS was an independent prognostic factor for better OS in multivariate analysis. PD-L1 expression was closely related to tumor vascular invasion (P=0.044). Although there was no association between PD-L1 expression and IS, high PD-L1 expression in tumor cells indicated poor RFS (P=0.017) and OS (P=0.004) in ICC. Conclusion The IS and PD-L1 may be used as a complement to the TNM system for predicting the prognosis of patients with ICC.
Collapse
Affiliation(s)
- Hong Wu
- Department of Ultrasound, Inner Mongolia Bayannaoer City Hospital, Bayannaoer 015000, Inner Mongolia, People's Republic of China
| | - Yulong Wei
- Department of Pathology, Inner Mongolia Bayannaoer City Hospital, Bayannaoer 015000, Inner Mongolia, People's Republic of China
| | - Mei Jian
- Department of Ultrasound, Inner Mongolia Bayannaoer City Hospital, Bayannaoer 015000, Inner Mongolia, People's Republic of China
| | - Hong Lu
- Department of Pathology, Inner Mongolia Bayannaoer City Hospital, Bayannaoer 015000, Inner Mongolia, People's Republic of China
| | - Qingzhu Song
- Department of Clinical Laboratory, Inner Mongolia Bayannaoer City Hospital, Bayannaoer 015000, Inner Mongolia, People's Republic of China
| | - Liheng Hao
- Department of Hepatobiliary Surgery, Inner Mongolia Bayannaoer City Hospital, Bayannaoer 015000, Inner Mongolia, People's Republic of China
| | - Yong Yue
- Department of Hepatobiliary Surgery, Inner Mongolia Bayannaoer City Hospital, Bayannaoer 015000, Inner Mongolia, People's Republic of China
| |
Collapse
|
21
|
Abstract
Introduction: Cancers of the biliary tract (BTC) are aggressive malignancies with limited treatment options and an overall dismal prognosis. In recent years, two concepts, namely precision oncology and immune oncology (IO) have profoundly influenced and, in some cancers, even revolutionized tumor treatments. While positive data from randomized trials have led to the incorporation of targeted concepts for genetically select BTC patients, IO is not yet implemented in clinical practice.Areas covered: We discuss published results from completed, as well as from ongoing studies on IO in BTC, based on a literature search on Pubmed and information provided by clinicaltrials.gov in October 2020. Apart from monotherapy, we outline IO-based combination approaches and highlight pivotal studies whose results will likely influence the future development of relevant concepts in BTC.Expert opinion: Despite partially positive signals, IO thus far disappointed in unselected BTC populations and should currently not be considered as a preferred systemic treatment in patients with microsatellite stable disease outside of clinical trials. In the coming years, a better understanding of the molecular mechanisms underlying resistance to checkpoint inhibition, and the identification of positive predictive biomarkers will be important for the successful integration of IO into treatment concepts for BTC patients.
Collapse
|
22
|
Prognostic and Clinicopathological Significance of PD-L1 in Patients with Cholangiocarcinoma: A Meta-Analysis. DISEASE MARKERS 2020; 2020:1817931. [PMID: 32724483 PMCID: PMC7381947 DOI: 10.1155/2020/1817931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 05/12/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Background In recent years, there is growing literature on the prognostic significance of programmed death-ligand 1 (PD-L1) in cholangiocarcinoma (CCA); however, data have been conflicting. Therefore, the objective of this study was to assess the correlation between PD-L1 and prognosis in CCA through meta-analysis. Methods Published studies were retrieved from the Web of Science, PubMed, Embase, and Cochrane Library up to April 17, 2020. The relationships between PD-L1 expression and survival outcomes were assessed using hazard ratios (HRs) and 95% confidence intervals (CIs). Results Eighteen studies consisting of 2012 patients were included. Overexpression of PD-L1 was significantly associated with worse overall survival (OS) (HR = 1.58, 95%CI = 1.30 - 1.92, p < 0.001) but not with poor disease-free survival (DFS) (HR = 1.03, 95%CI = 0.68 - 1.55, p = 0.895) in CCA. Moreover, PD-L1 was associated with low differentiation (OR = 1.43, 95%CI = 1.09 - 1.87, p = 0.010) and higher pN stage (OR = 1.45, 95%CI = 1.10 - 1.92, p = 0.009) but not with sex, TNM stage, vascular invasion, perineural invasion, age, or tumor size. Conclusion High PD-L1 expression was associated with worse OS, poor differentiation, and higher pN stage in patients with CCA. PD-L1 could be a potential prognostic marker in CCA.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Cholangiocarcinoma (CCA) are heterogeneous tumors that arise from the malignant transformation of cholangiocytes along the biliary tree. CCA heterogeneity occurs at multiple levels and results in resistance to therapy and poor prognosis. Here, we review the molecular classification of CCA by focusing on the latest progresses based on genetic, epigenetic, transcriptomic and proteomic profiles. In addition, we introduce the emerging field of radiogenomics. RECENT FINDINGS Genome-wide integrative omics approaches have been widely reported by using large cohorts of CCA patients. Morphomolecular correlations have been established, including enrichment of FGFR2 gene fusions and IDH1/2 mutations in iCCA. A specific IDH mutant iCCA subtype displays high mitochondrial and low chromatin modifier expression linked to ARID1A promoter hypermethylation. Examples of translation of these classifications for the management of CCA have also been reported, with prediction of drug efficacy based on genetic alterations. SUMMARY Although there is currently no international consensus on CCA morphomolecular classification, the recent initiatives developed under the umbrella of The European Network for the Study of Cholangiocarcinoma (ENSCCA) should favor new collaborative research. Identifying distinct molecular subgroups and developing appropriate targeted therapies will improve the clinical outcome of patients with CCA.
Collapse
|
24
|
Fukuda Y, Asaoka T, Eguchi H, Yokota Y, Kubo M, Kinoshita M, Urakawa S, Iwagami Y, Tomimaru Y, Akita H, Noda T, Gotoh K, Kobayashi S, Hirata M, Wada H, Mori M, Doki Y. Endogenous CXCL9 affects prognosis by regulating tumor-infiltrating natural killer cells in intrahepatic cholangiocarcinoma. Cancer Sci 2020; 111:323-333. [PMID: 31799781 PMCID: PMC7004525 DOI: 10.1111/cas.14267] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 12/18/2022] Open
Abstract
CXCL9, an IFN‐γ inducible chemokine, has been reported to play versatile roles in tumor‐host interrelationships. However, little is known about its role in intrahepatic cholangiocarcinoma (iCCA). Here, we aimed to elucidate the prognostic and biological implications of CXCL9 in iCCA. Endogenous CXCL9 expression and the number of tumor‐infiltrating lymphocytes were immunohistochemically assessed in resection specimens. These data were validated in mice treated by silencing CXCL9 with short hairpin RNA. In addition, the induction of endogenous CXCL9 and the effects of CXCL9 on tumor biological behaviors were evaluated in human cholangiocarcinoma cell lines. Immunohistochemical analyses revealed that high CXCL9 expression was closely correlated with prolonged postoperative survival and a large number of tumor‐infiltrating natural killer (NK) cells. In fact, due to the trafficking of total and tumor necrosis factor‐related apoptosis‐inducing ligand‐expressing NK cells into tumors, CXCL9‐sufficient cells were less tumorigenic in the liver than CXCL9‐deficient cells in mice. Although CXCL9 involvement in tumor growth and invasion abilities differed across cell lines, it did not exacerbate these abilities in CXCL9‐expressing cell lines. We showed that CXCL9 was useful as a prognostic marker. Our findings also suggested that CXCL9 upregulation might offer a therapeutic strategy for treating CXCL9‐expressing iCCA by augmenting anti–tumor immune surveillance.
Collapse
Affiliation(s)
- Yasunari Fukuda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuki Yokota
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masahiko Kubo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mitsuru Kinoshita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shinya Urakawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Michinari Hirata
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Hisashi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
25
|
Lei C, Peng X, Gong X, Fan Y, Wu S, Liu N, Li L, Huang J, Zheng G, Long Z. Prognostic role of programmed death-ligand 1 expression in patients with biliary tract cancer: a meta-analysis. Aging (Albany NY) 2019; 11:12568-12580. [PMID: 31881008 PMCID: PMC6949100 DOI: 10.18632/aging.102588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
Abstract
Previous studies investigated the prognostic role of programmed death-ligand 1 (PD-L1) expression in patients with biliary tract cancer (BTC); however, the results remained controversial. Therefore, we conducted the current meta-analysis with the aim of clarifying the association between PD-L1 expression and prognosis as well as with several important clinicopathological features of BTC. We searched PubMed, Embase, and Web of Science for relevant studies. Studies that detected PD-L1 expression in tumor cells by using immunohistochemistry (IHC) were selected. Pooled hazard ratios (HRs) and pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to estimate the correlations. In total, 15 independent studies with 1,776 patients were included in this meta-analysis. The pooled data demonstrated that high PD-L1 expression was associated with poor overall survival (n=15, HR=1.79, 95% CI=1.55-2.07, p<0.001). The correlation between PD-L1 expression and disease-free survival was not significant (n=6, HR=1.38, 95% CI=1.00-1.91, p=0.051). In addition, no significant correlation was observed between PD-L1 expression and clinical features in patients with BTC. Our study results showed that PD-L1 expression could play a pivotal role as an effective factor of poor prognosis in patients with BTC.
Collapse
Affiliation(s)
- Changjiang Lei
- Department of General Surgery, The Second Affiliated Hospital of Jianghan University, Wuhan, China
| | - Xiulan Peng
- Department of Oncology, The Second Affiliated Hospital of Jianghan University, Wuhan, Hubei 430000, China
| | - Xiaojun Gong
- Department of General Surgery, The Second Affiliated Hospital of Jianghan University, Wuhan, China
| | - Ying Fan
- Department of Cardiology, The Second Affiliated Hospital of Jianghan University, Wuhan, Wuhan, Hubei 430000, China
| | - Shenglin Wu
- Department of Pharmacology, The Second Affiliated Hospital of Jianghan University, Wuhan, Wuhan, Hubei 430000, China
| | - Ning Liu
- Department of General Surgery, The Second Affiliated Hospital of Jianghan University, Wuhan, China
| | - Lei Li
- Department of General Surgery, The Second Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jianbin Huang
- Department of General Surgery, The Second Affiliated Hospital of Jianghan University, Wuhan, China
| | - Gang Zheng
- Department of General Surgery, The Second Affiliated Hospital of Jianghan University, Wuhan, China
| | - Zhixiong Long
- Department of Oncology, The Second Affiliated Hospital of Jianghan University, Wuhan, Hubei 430000, China
| |
Collapse
|
26
|
Albrecht T, Rausch M, Rössler S, Albrecht M, Braun JD, Geissler V, Mehrabi A, Vogel MN, Pathil-Warth A, Mechtersheimer G, Renner M, Rupp C, Weiss KH, Busch E, Köhler B, Springfeld C, Schirmacher P, Goeppert B. HER2 gene (ERBB2) amplification is a rare event in non-liver-fluke associated cholangiocarcinogenesis. BMC Cancer 2019; 19:1191. [PMID: 31805897 PMCID: PMC6896712 DOI: 10.1186/s12885-019-6320-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
Background Cholangiocarcinoma is a rapidly fatal cancer entity with a median survival of less than one year. In contrast to many other malignancies, no substantial therapeutic breakthrough has been made in the past few decades, thereby limiting the treatment to cytotoxic chemotherapy with little beneficial effect for most patients. Targeted therapy tailored to the individual has shown substantial success in the recent past as a promising avenue for cancer therapy. Methods In this study, we determined the frequency of amplification of the HER2 gene in a comprehensive and well-characterized European cholangiocarcinoma cohort encompassing 436 patients including intrahepatic (n = 155), proximal (n = 155) and distal (n = 126) cholangiocarcinoma by strict application of a combined immunohistochemical and in situ hybridization algorithm following the current guidelines for HER2 assessment in gastric cancer. Results We identified a proportion of 1.4% (n = 6) patients that demonstrated HER2 gene amplification, with the highest rate among the distal cholangiocarcinoma patients (2.4%). None of the patients with equivocal (2+) immunohistochemical staining results exhibited gene amplification molecularly. In four of the five patients with HER2 positivity, gene amplification was already present in concomitantly tested high-grade biliary intraepithelial neoplasia (80%). HER2 gene amplification was not significantly associated with other clinical parameters, including survival. Conclusions This study identifies HER2 gene amplification as a rare event in cholangiocarcinoma of the Western population, occurring already in high-grade BilIN in a subset of patients. Furthermore, we provide a robust testing algorithm that may be used prior to therapy administration in future clinical trials evaluating the role of HER2 as a predictive marker in cholangiocarcinoma.
Collapse
Affiliation(s)
- Thomas Albrecht
- Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.,Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Melina Rausch
- Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Stephanie Rössler
- Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.,Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Michael Albrecht
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany
| | - Jana Dorothea Braun
- Department of Dermatology, University Medical Centre Mannheim, Mannheim, Germany
| | - Veronika Geissler
- Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Arianeb Mehrabi
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.,Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Monika Nadja Vogel
- Diagnostic and Interventional Radiology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Anita Pathil-Warth
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Gunhild Mechtersheimer
- Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Marcus Renner
- Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Christian Rupp
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.,Department of Internal Medicine IV, Gastroenterology and Hepatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Karl Heinz Weiss
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.,Department of Internal Medicine IV, Gastroenterology and Hepatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Elena Busch
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.,Department of Medical Oncology, University Hospital Heidelberg, National Center for Tumor Diseases, Heidelberg, Germany
| | - Bruno Köhler
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.,Department of Medical Oncology, University Hospital Heidelberg, National Center for Tumor Diseases, Heidelberg, Germany
| | - Christoph Springfeld
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.,Department of Medical Oncology, University Hospital Heidelberg, National Center for Tumor Diseases, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.,Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Benjamin Goeppert
- Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany. .,Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.
| |
Collapse
|
27
|
Sun D, Ma J, Wang J, Han C, Qian Y, Chen G, Li X, Zhang J, Cui P, Du W, Wu Z, Chen S, Zheng X, Yue Z, Song J, Gao C, Zhao X, Cai S, Hu Y. Anti-PD-1 therapy combined with chemotherapy in patients with advanced biliary tract cancer. Cancer Immunol Immunother 2019; 68:1527-1535. [PMID: 31535160 PMCID: PMC6768892 DOI: 10.1007/s00262-019-02386-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Evidence for the efficacy of immunotherapy in biliary tract cancer (BTC) is limited and unsatisfactory. METHODS Chinese BTC patients receiving a PD-1 inhibitor with chemotherapy, PD-1 inhibitor monotherapy or chemotherapy alone were retrospectively analyzed. The primary outcome was overall survival (OS). The key secondary outcomes were progression-free survival (PFS) and safety. Patients previously treated with any agent targeting T cell costimulation or immune checkpoints were excluded. RESULTS The study included 77 patients (a PD-1 inhibitor plus chemotherapy, n = 38; PD-1 inhibitor monotherapy, n = 20; chemotherapy alone, n = 19). The median OS was 14.9 months with a PD-1 inhibitor plus chemotherapy, significantly longer than the 4.1 months with PD-1 inhibitor monotherapy (HR 0.37, 95% CI 0.17-0.80, P = 0.001) and the 6.0 months with chemotherapy alone (HR 0.63, 95% CI 0.42-0.94, P = 0.011). The median PFS was 5.1 months with a PD-1 inhibitor plus chemotherapy, significantly longer than the 2.2 months with PD-1 inhibitor monotherapy (HR 0.59, 95% CI 0.31-1.10, P = 0.014) and the 2.4 months with chemotherapy alone (HR 0.61, 95% CI 0.45-0.83, P = 0.003). Grade 3 or 4 treatment-related adverse events were similar between the anti-PD-1 combination group and the chemotherapy alone group (34.2% and 36.8%, respectively). CONCLUSIONS Anti-PD-1 therapy plus chemotherapy is an effective and tolerable approach for advanced BTC.
Collapse
Affiliation(s)
- Danyang Sun
- Department of Medical Oncology, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People's Republic of China
| | - Junxun Ma
- Department of Medical Oncology, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People's Republic of China
| | - Jinliang Wang
- Department of Medical Oncology, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People's Republic of China
| | - Chun Han
- Department of Medical Oncology, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People's Republic of China
| | - Yuanyu Qian
- Department of Medical Oncology, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People's Republic of China
| | - Guangying Chen
- Department of Medical Oncology, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People's Republic of China
| | - Xiaoyan Li
- Department of Medical Oncology, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People's Republic of China
| | - Juan Zhang
- Department of Medical Oncology, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People's Republic of China
| | - Pengfei Cui
- Department of Medical Oncology, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People's Republic of China
| | - Wushuang Du
- Department of Medical Oncology, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People's Republic of China
| | - Zhaozhen Wu
- Department of Medical Oncology, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People's Republic of China
| | - Shixue Chen
- Department of Medical Oncology, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People's Republic of China
| | - Xuan Zheng
- Department of Medical Oncology, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People's Republic of China
| | - Zhichao Yue
- Department of Medical Oncology, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People's Republic of China
| | - Jia Song
- The Medical Department, 3D Medicines Inc., 158 Xinjunhuan Road, Minhang, Shanghai, 201114, People's Republic of China
| | - Chan Gao
- The Medical Department, 3D Medicines Inc., 158 Xinjunhuan Road, Minhang, Shanghai, 201114, People's Republic of China
| | - Xiaochen Zhao
- The Medical Department, 3D Medicines Inc., 158 Xinjunhuan Road, Minhang, Shanghai, 201114, People's Republic of China
| | - Shangli Cai
- The Medical Department, 3D Medicines Inc., 158 Xinjunhuan Road, Minhang, Shanghai, 201114, People's Republic of China.
| | - Yi Hu
- Department of Medical Oncology, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People's Republic of China.
| |
Collapse
|
28
|
Xu G, Sun L, Li Y, Xie F, Zhou X, Yang H, Du S, Xu H, Mao Y. The Clinicopathological and Prognostic Value of PD-L1 Expression in Cholangiocarcinoma: A Meta-Analysis. Front Oncol 2019; 9:897. [PMID: 31620360 PMCID: PMC6759577 DOI: 10.3389/fonc.2019.00897] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Recently, blockade of immune checkpoint has emerged as one of the most potential treatments for solid tumors. Programmed cell death ligand 1(PD-L1), a member of the B7 family of molecules, plays a crucial role in tumor immunobiology. However, the prognostic significance of PD-L1 in cholangiocarcinoma (CCA) patients remains controversial. This study aimed to inquire into the prognostic and clinicopathological significance of PD-L1 in CCA via a meta-analysis. Methods: We searched PubMed, the Cochrane Library, Embase, Web of Science and Google Scholar up to April 2019, regardless of the region or language, for studies on the correlation between clinicopathology/prognosis and PD-L1 in patients with CCA. The pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to investigate the prognostic significance of PD-L1 expression in cholangiocarcinoma. The odds ratios (ORs) were also determined to explore the association between PD-L1 expression and clinicopathological features. Results: Our meta-analysis included 11 studies with 1,066 patients. The meta-analysis of these studies indicated a trend that high PD-L1 expression indicated a poor OS, but the result was not statistically significant (HR = 1.62, 95% CI [0.98–2.68], p = 0.063). For DFS, although the pooled result is not statistically significant, it trends toward being significant that high PD-L1 expression indicated improved DFS (HR = 0.80, 95% CI [0.62, 1.04], p = 0.092). In subgroup analyses, the results were not consistent across the subgroups that were divided based on the publication year (before 2018: HR = 1.92, 95% CI [1.34–2.75], p < 0.001; after 2018: HR = 1.42, 95% CI [0.70–2.89], p = 0.335). Moreover, PD-L1 expression in TCs significantly correlated with the AJCC TNM stage of CCA (OR = 0.52, 95% CI [0.27, 0.99], p = 0.09). Conclusion: Our meta-analyses revealed that PD-L1 expressed in TCs was significantly correlated with the AJCC TNM stage of CCA. Based on the included studies, we found that PD-L1 indeed expressed in both TCs and ICs in CCA patients, raising the possibility of the use of anti-PD-1/PD-L1 therapy for CCA patients. In contrast, expression of PD-L1 did not seem to be associated with patient outcome in our study. The prognostic role of PD-L1 in CCA demands further investigation.
Collapse
Affiliation(s)
- Gang Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Lejia Sun
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Yunzhu Li
- Department of Plastic Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Feihu Xie
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxiang Zhou
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Knief J, Lazar-Karsten P, Hummel R, Wellner U, Thorns C. PD-L1 expression in carcinoma of the esophagogastric junction is positively correlated with T-cell infiltration and overall survival. Pathol Res Pract 2019; 215:152402. [DOI: 10.1016/j.prp.2019.03.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 02/08/2023]
|