1
|
Fu L, Zhou X, Zhang X, Li X, Zhang F, Gu H, Wang X. Circulating tumor DNA in lymphoma: technologies and applications. J Hematol Oncol 2025; 18:29. [PMID: 40069858 PMCID: PMC11900646 DOI: 10.1186/s13045-025-01673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Lymphoma, a malignant tumor derived from lymphocytes and lymphoid tissues, presents with complex and heterogeneous clinical manifestations, requiring accurate patient classification for appropriate treatment. While invasive pathological examination of lymph nodes or lymphoid tissue remains the gold standard for lymphoma diagnosis, its utility is limited in cases of deep-seated tumors such as intraperitoneal and central nervous system lymphomas. In addition, biopsy procedures carry an inherent risk of complications. Computed tomography (CT) and positron emission tomography/computed tomography (PET/CT) imaging are essential for treatment assessment and monitoring, but lack the ability to detect early clonal evolution and minimal residual disease (MRD). Liquid biopsy-based analysis of circulating tumor DNA (ctDNA) offers a non-invasive alternative that allows for repeated sampling and overcomes the limitations of spatial heterogeneity and invasive biopsies. ctDNA provides genetic and epigenetic insights into lymphoma and serves as a dynamic, quantifiable biomarker for diagnosis, risk stratification, and treatment response. This review comprehensively summarizes common genetic variations in lymphoma and systematically evaluates ctDNA detection technologies, including PCR-based assays and next-generation sequencing (NGS). Applications of ctDNA detection in noninvasive genotyping, risk stratification, therapeutic response monitoring, and MRD detection are discussed across various lymphoma subtypes, including diffuse large B-cell lymphoma, Hodgkin lymphoma, follicular lymphoma, and T-cell lymphoma. By integrating recent research findings, the review highlights the role of ctDNA profiling in advancing precision medicine, enabling personalized therapeutic strategies, and improving clinical outcomes in lymphoma.
Collapse
Affiliation(s)
- Lina Fu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
| | - Xuerong Zhou
- Department of Hematology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Xiaoyu Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong Province, 250012, Jinan, China
| | - Xuhua Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
| | - Fan Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China.
| | - Xiaoxue Wang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
2
|
Hatiboglu MA, Karacam B, Khan I, Akdur K, Elbasan EB, Mahfooz S, Seyithanoglu MH, Cetin G, Papaker MG, Oztanir MN. Liquid biopsy for CNS lymphoma: CSF exosomes and CSF exosomal miR-15a, miR-21, miR-155, miR-210, and miR-19b are promising biomarkers for diagnosis. Mol Biol Rep 2024; 51:1035. [PMID: 39361107 DOI: 10.1007/s11033-024-09967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Central nervous system lymphoma (CNSL) is a devastating disease with a poor prognosis. Early diagnosis, monitoring of the treatment response, and outcome prediction carry the utmost importance in the management of patients with CNSL. Surgical biopsy is the gold standard for tissue diagnosis, however, this procedure has potential complications. Therefore, there is a need for a method that provides information about diagnosis and patient monitoring to avoid surgical risks. The study aimed to investigate potential diagnostic biomarkers for patients with CNSL. METHODS AND RESULTS Patients with secondary CNSL were included in this study. Serum and cerebrospinal fluid (CSF) samples were collected before treatment and after completion of the treatment. Cell-free DNA (cfDNA), exosomes, free and exosomal microRNA (miR)-15a, miR-21, miR-155, miR-210, and miR-19b in both serum and CSF were examined, and they were compared with the controls. Also, their levels before and after treatment were compared. Nine patients with the diagnosis of secondary CNSL were reviewed. cfDNA, miR-15a, and miR-155 in serum, and exosome in CSF were found to be significantly higher in CNSL patients compared to the controls. Exosomal miR-15a, miR-21, miR-155, miR-210, and miR-19b in CSF were found to be significantly higher in CNSL patients compared to controls, whereas their levels in serum were not significantly high. CONCLUSIONS Our findings suggested that exosomes and exosomal miR-15a, miR-21, miR-155, miR-210 and miR-19b in CSF would be promising biomarkers for the diagnosis of patients with CNSL. Further studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Mustafa Aziz Hatiboglu
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey.
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalikoy, Beykoz, Istanbul, Turkey.
| | - Busra Karacam
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalikoy, Beykoz, Istanbul, Turkey
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalikoy, Beykoz, Istanbul, Turkey
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kerime Akdur
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Elif Burce Elbasan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalikoy, Beykoz, Istanbul, Turkey
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalikoy, Beykoz, Istanbul, Turkey
| | - Mehmet Hakan Seyithanoglu
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Guven Cetin
- Department of Hematology, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Meliha Gundag Papaker
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Mustafa Namik Oztanir
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| |
Collapse
|
3
|
Mikolajewicz N, Yee PP, Bhanja D, Trifoi M, Miller AM, Metellus P, Bagley SJ, Balaj L, de Macedo Filho LJM, Zacharia BE, Aregawi D, Glantz M, Weller M, Ahluwalia MS, Kislinger T, Mansouri A. Systematic Review of Cerebrospinal Fluid Biomarker Discovery in Neuro-Oncology: A Roadmap to Standardization and Clinical Application. J Clin Oncol 2024; 42:1961-1974. [PMID: 38608213 DOI: 10.1200/jco.23.01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/17/2024] [Accepted: 02/26/2024] [Indexed: 04/14/2024] Open
Abstract
Effective diagnosis, prognostication, and management of CNS malignancies traditionally involves invasive brain biopsies that pose significant risk to the patient. Sampling and molecular profiling of cerebrospinal fluid (CSF) is a safer, rapid, and noninvasive alternative that offers a snapshot of the intracranial milieu while overcoming the challenge of sampling error that plagues conventional brain biopsy. Although numerous biomarkers have been identified, translational challenges remain, and standardization of protocols is necessary. Here, we systematically reviewed 141 studies (Medline, SCOPUS, and Biosis databases; between January 2000 and September 29, 2022) that molecularly profiled CSF from adults with brain malignancies including glioma, brain metastasis, and primary and secondary CNS lymphomas. We provide an overview of promising CSF biomarkers, propose CSF reporting guidelines, and discuss the various considerations that go into biomarker discovery, including the influence of blood-brain barrier disruption, cell of origin, and site of CSF acquisition (eg, lumbar and ventricular). We also performed a meta-analysis of proteomic data sets, identifying biomarkers in CNS malignancies and establishing a resource for the research community.
Collapse
Affiliation(s)
- Nicholas Mikolajewicz
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Patricia P Yee
- Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA
| | - Debarati Bhanja
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Mara Trifoi
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Alexandra M Miller
- Departments of Neurology and Pediatrics, Memorial Sloan Kettering Cancer Center, Manhattan, NY
| | - Philippe Metellus
- Department of Neurosurgery, Ramsay Santé, Hôpital Privé Clairval, Marseille, France
| | - Stephen J Bagley
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Brad E Zacharia
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Dawit Aregawi
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Michael Glantz
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Manmeet S Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| |
Collapse
|
4
|
Li Y, Li Y, Zeng R, He Y, Liang L, Ou L, Su C, Zhou H, Xiao L. High-dose methotrexate, thiotepa, orelabrutinib combined with or without rituximab in primary or secondary central nervous system diffuse large B-cell lymphoma: a single-center retrospective analysis. J Cancer 2023; 14:3182-3190. [PMID: 37928429 PMCID: PMC10622989 DOI: 10.7150/jca.85756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/10/2023] [Indexed: 11/07/2023] Open
Abstract
Purpose: Central nervous system lymphoma (CNSL) is an aggressive non-Hodgkin's lymphoma (NHL) confined to the central nervous system (CNS). Orelabrutinib is an oral second-generation Bruton tyrosine kinase (BTK) inhibitor and a novel therapeutic strategy for CNSL. The purpose of this study was to evaluate the effectiveness and safety of high-dose methotrexate (HD-MTX), thiotepa, and orelabrutinib combined with or without rituximab (MTO±R)regimen in the treatment of patients with CNSL. Methods: A total of 14 patients with CNS diffuse large B-cell lymphoma (DLBCL) were included in this retrospective study. All patients received the regimen MTO±R. Overall response rate (ORR), complete response rate(CR), partial response (PR), stable disease (SD), progressive disease (PD), progression-free survival (PFS), overall survival (OS), and the safety of MTO±R were assessed by the investigator. Results: Fourteen patients were evaluable for safety, and 13 patients were evaluable for efficacy. The overall CR rate was 69.2%, and the ORR was 92.3% for total patients. For PCNSL, the CR rate and ORR were 55.6% and 88.9%, respectively. For relapsed/refractory CNSL, the CR rate and ORR were 66.7% and 91.7%, respectively. The median follow-up time was 12.8 months. The median PFS was 11.3 months, and the median OS was not achieved. The 12-month PFS and OS rates were 60% and 70%, respectively. Adverse events occurred in 17 cycles, and Grade 3 AEs occurred in 5 patients (35.7%). Conclusion: MTO±R was an efficacious and well-tolerated regimen in patients with CNSL. A novel BTK inhibitor in combination with chemotherapy offers a new potential therapeutic strategy for patients with CNSL.
Collapse
Affiliation(s)
- Yufeng Li
- Central South University, Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Changsha, Hunan, China
- Department of Histology and Embryology of School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yajun Li
- Central South University, Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Changsha, Hunan, China
| | - Ruolan Zeng
- Central South University, Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Changsha, Hunan, China
| | - Yizi He
- Central South University, Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Changsha, Hunan, China
| | - Liang Liang
- Central South University, Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Changsha, Hunan, China
| | - Lijia Ou
- Department of Histology and Embryology of School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chang Su
- Department of Histology and Embryology of School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hui Zhou
- Central South University, Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Changsha, Hunan, China
| | - Ling Xiao
- Department of Histology and Embryology of School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Figaredo G, Martín-Muñoz A, Barrio S, Parrilla L, Campos-Martín Y, Poza M, Rufián L, Algara P, De La Torre M, Jiménez Ubieto A, Martínez-López J, Casado LF, Mollejo M. Genetic Profiling of Cell-Free DNA in Liquid Biopsies: A Complementary Tool for the Diagnosis of B-Cell Lymphomas and the Surveillance of Measurable Residual Disease. Cancers (Basel) 2023; 15:4022. [PMID: 37627050 PMCID: PMC10452485 DOI: 10.3390/cancers15164022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
PURPOSE To assess the potential value of LiqBio as a complementary tool for diagnosis and surveillance of BCL. METHODS This prospective multi-center study included 78 patients (25 follicular lymphomas (FL) and 53 large B-cell lymphomas (LBCL)). We performed next-generation sequencing (NGS) of cfDNA LiqBio and paired gDNA tissue biopsies at diagnosis and compared the mutational statuses. Also, through NGS of LiqBio, we identified MRD biomarkers and compared this novel LiqBio-MRD method with PET/CT in detecting MRD at follow-up. RESULTS We identified mutations in 71% of LiqBio and 95% of tissue biopsies, and found a correlation between variant allele frequency of somatic mutations. Additionally, we identified mutations in 73% of LiqBio from patients with no available tissue samples or no mutations in them. Regarding the utility of LiqBio-MRD as a dynamic monitoring tool, when compared with the PET/CT method, a lower sensitivity was observed for LiqBio-MRD at 92.3% (vs. 100% for PET/CT), but a higher specificity of 91.3% (vs. 86.9% for PET/CT). CONCLUSION Genetic profiling of tumor cfDNA in plasma LiqBio is a complementary tool for BCL diagnosis and MRD surveillance.
Collapse
Affiliation(s)
- Gloria Figaredo
- Department of Haematology, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007 Toledo, Spain; (L.P.); (M.D.L.T.); (L.-F.C.)
| | - Alejandro Martín-Muñoz
- Altum Sequencing SL, Av. Gregorio Peces Barba, 1, 28919 Madrid, Spain; (A.M.-M.); (S.B.); (L.R.)
| | - Santiago Barrio
- Altum Sequencing SL, Av. Gregorio Peces Barba, 1, 28919 Madrid, Spain; (A.M.-M.); (S.B.); (L.R.)
- Computational Science Department, Carlos III University, Ronda de Toledo, 1, 28005 Madrid, Spain
| | - Laura Parrilla
- Department of Haematology, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007 Toledo, Spain; (L.P.); (M.D.L.T.); (L.-F.C.)
| | - Yolanda Campos-Martín
- Biobank Department, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007 Toledo, Spain;
| | - María Poza
- Haematology Department, Hospital Universitario 12 de Octubre, Avda. de Córdoba, s/n, 28041 Madrid, Spain; (M.P.); (A.J.U.); (J.M.-L.)
| | - Laura Rufián
- Altum Sequencing SL, Av. Gregorio Peces Barba, 1, 28919 Madrid, Spain; (A.M.-M.); (S.B.); (L.R.)
- Haematology Department, Hospital Universitario 12 de Octubre, Avda. de Córdoba, s/n, 28041 Madrid, Spain; (M.P.); (A.J.U.); (J.M.-L.)
| | - Patrocinio Algara
- Genetics Department, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007 Toledo, Spain;
| | - Marina De La Torre
- Department of Haematology, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007 Toledo, Spain; (L.P.); (M.D.L.T.); (L.-F.C.)
| | - Ana Jiménez Ubieto
- Haematology Department, Hospital Universitario 12 de Octubre, Avda. de Córdoba, s/n, 28041 Madrid, Spain; (M.P.); (A.J.U.); (J.M.-L.)
| | - Joaquín Martínez-López
- Haematology Department, Hospital Universitario 12 de Octubre, Avda. de Córdoba, s/n, 28041 Madrid, Spain; (M.P.); (A.J.U.); (J.M.-L.)
| | - Luis-Felipe Casado
- Department of Haematology, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007 Toledo, Spain; (L.P.); (M.D.L.T.); (L.-F.C.)
| | - Manuela Mollejo
- Anatomopathology Department, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007 Toledo, Spain;
| |
Collapse
|
6
|
Hickman RA, Miller AM, Arcila ME. Cerebrospinal fluid: A unique source of circulating tumor DNA with broad clinical applications. Transl Oncol 2023; 33:101688. [PMID: 37196447 DOI: 10.1016/j.tranon.2023.101688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Malignancies involving the central nervous system present unique challenges for diagnosis and monitoring due to the difficulties and risks of direct biopsies and the low specificity and/or sensitivity of other techniques for assessment. In recent years, liquid biopsy of the cerebrospinal fluid (CSF) has emerged as a convenient alternative that combines minimal invasiveness with the ability to detect disease-defining or therapeutically actionable genetic alterations from circulating tumor DNA (ctDNA). Since CSF can be obtained by lumbar puncture, or an established ventricular access device at multiple time points, ctDNA analysis enables initial molecular characterization and longitudinal monitoring throughout a patient's disease course, promoting optimization of treatment regimens. This review outlines some of the key aspects of ctDNA from CSF as a highly suitable approach for clinical assessment, the benefits and drawbacks, testing methods, as well as potential future advancements in this field. We anticipate wider adoption of this practice as technologies and pipelines improve and envisage significant improvements for cancer care.
Collapse
Affiliation(s)
- Richard A Hickman
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, United States; Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Alexandra M Miller
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, United States; Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Maria E Arcila
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
7
|
Lauer EM, Mutter J, Scherer F. Circulating tumor DNA in B-cell lymphoma: technical advances, clinical applications, and perspectives for translational research. Leukemia 2022; 36:2151-2164. [PMID: 35701522 PMCID: PMC9417989 DOI: 10.1038/s41375-022-01618-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/22/2022]
Abstract
Noninvasive disease monitoring and risk stratification by circulating tumor DNA (ctDNA) profiling has become a potential novel strategy for patient management in B-cell lymphoma. Emerging innovative therapeutic options and an unprecedented growth in our understanding of biological and molecular factors underlying lymphoma heterogeneity have fundamentally increased the need for precision-based tools facilitating personalized and accurate disease profiling and quantification. By capturing the entire mutational landscape of tumors, ctDNA assessment has some decisive advantages over conventional tissue biopsies, which usually target only one single tumor site. Due to its non- or minimal-invasive nature, serial and repeated ctDNA profiling provides a real-time picture of the genetic composition and facilitates quantification of tumor burden any time during the course of the disease. In this review, we present a comprehensive overview of technologies used for ctDNA detection and genotyping in B-cell lymphoma, focusing on pre-analytical and technical requirements, the advantages and limitations of various approaches, and highlight recent advances around improving sensitivity and suppressing technical errors. We broadly review potential applications of ctDNA in clinical practice and for translational research by describing how ctDNA might enhance lymphoma subtype classification, treatment response assessment, outcome prediction, and monitoring of measurable residual disease. We finally discuss how ctDNA could be implemented in prospective clinical trials as a novel surrogate endpoint and be utilized as a decision-making tool to guide lymphoma treatment in the future.
Collapse
Affiliation(s)
- Eliza M Lauer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jurik Mutter
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Florian Scherer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
8
|
Sugio T, Baba S, Mori Y, Yoshimoto G, Kamesaki K, Takashima S, Urata S, Shima T, Miyawaki K, Kikushige Y, Kunisaki Y, Numata A, Takenaka K, Iawasaki H, Miyamoto T, Ishigami K, Akashi K, Kato K. Prognostic value of pre-transplantation total metabolic tumor volume on 18fluoro-2-deoxy-D-glucose positron emission tomography-computed tomography in relapsed and refractory aggressive lymphoma. Int J Hematol 2022; 116:603-611. [PMID: 35701707 DOI: 10.1007/s12185-022-03394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Relapsed and refractory aggressive lymphoma have a poor prognosis. High-dose chemotherapy followed by autologous hematopoietic stem cell transplantation (auto-HSCT) is effective in chemosensitive patients. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is among the few options for non-chemosensitive patients. 18Fluoro-2-deoxy-D-glucose positron emission tomography-computed tomography (18FDG-PET/CT) is the standard tool for evaluating response to chemotherapy and residual tumor volume. However, accurate assessment of residual tumor volume is not currently being achieved in clinical practice, and its value in prognostic and therapeutic stratification remains unclear. To answer this question, we investigated the efficacy of quantitative indicators, including total metabolic tumor volume (TMTV), in predicting prognosis after auto-HSCT and allo-HSCT. We retrospectively analyzed 39 patients who received auto-HSCT and 28 who received allo-HSCT. In the auto-HSCT group, patients with a higher TMTV had a poor prognosis due to greater risk of relapse. In the allo-HSCT group, patients with a higher TMTV had a lower progression-free survival rate and a significantly higher relapse rate. Neither Deauville score nor other clinical parameters were associated with prognosis in either group. Therefore, pre-transplant TMTV on PET is effective for prognostic prediction and therapeutic decision-making for relapsed or refractory aggressive lymphoma.
Collapse
Affiliation(s)
- Takeshi Sugio
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shingo Baba
- Department of Clinical Radiology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasuo Mori
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Goichi Yoshimoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenjiro Kamesaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shuichiro Takashima
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shingo Urata
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takahiro Shima
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuya Kunisaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akihiko Numata
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Katsuto Takenaka
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiromi Iawasaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | - Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
9
|
Zhai Y, Zhou X, Wang X. Novel insights into the biomarkers and therapies for primary central nervous system lymphoma. Ther Adv Med Oncol 2022; 14:17588359221093745. [PMID: 35558005 PMCID: PMC9087239 DOI: 10.1177/17588359221093745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare and highly aggressive extranodal type of non-Hodgkin lymphoma. After the introduction and widespread use of high-dose-methotrexate (HD-MTX)-based polychemotherapy, treatment responses of PCNSL have been improved. However, long-term prognosis for patients who have failed first-line therapy and relapsed remains poor. Less invasive diagnostic markers, including the circulating tumor DNAs (ctDNAs), microRNAs, metabolomic markers, and other novel biomarkers, such as a proliferation inducing ligand (APRIL) and B-cell activating factor of the TNF family (BAFF), have shown potential to distinguish PCNSL at an early stage, and some of them are related with prognosis to a certain extent. Recent insights into novel therapies, including Bruton tyrosine kinase (BTK) inhibitors, immunomodulatory drugs, immune checkpoint inhibitors, PI3K/mTOR inhibitors, and chimeric antigen receptor (CAR) T cells, have revealed encouraging efficacy in treatment response, whereas the duration of response and long-term survival of patients with relapsed or refractory PCNSL (r/r PCNSL) need further improvement. In addition, the diagnostic efficiency of novel markers and the antitumor efficacy of novel therapies are needed to be assessed further in larger clinical trials. This review provides an overview of recent research on novel diagnostic markers and therapeutic strategies for PCNSL.
Collapse
Affiliation(s)
- Yujia Zhai
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, ChinaSchool of Medicine, Shandong University, Jinan, China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- School of Medicine, Shandong University, Jinan, China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China
| |
Collapse
|
10
|
Yamagishi Y, Sasaki N, Nakano Y, Matushita Y, Omura T, Shimizu S, Saito K, Kobayashi K, Narita Y, Kondo A, Shiokawa Y, Nagane M, Ichimura K. Liquid biopsy of cerebrospinal fluid for MYD88 L265P mutation is useful for diagnosis of central nervous system lymphoma. Cancer Sci 2021; 112:4702-4710. [PMID: 34523186 PMCID: PMC8586690 DOI: 10.1111/cas.15133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022] Open
Abstract
The current standard of diagnosing central nervous system (CNS) lymphoma is stereotactic biopsy, however the procedure has a risk of surgical complication. Liquid biopsy of the CSF is a less invasive, non-surgical method that can be used for diagnosing CNS lymphoma. In this study, we established a clinically applicable protocol for determining mutations in MYD88 in the CSF of patients with CNS lymphoma. CSF was collected prior to the start of chemotherapy from 42 patients with CNS lymphoma and matched tumor specimens. Mutations in MYD88 in 33 tumor samples were identified using pyrosequencing. Using 10 ng each of cellular DNA and cell-free DNA (cfDNA) extracted from the CSF, the MYD88 L265P mutation was detected using digital PCR. The conditions to judge mutation were rigorously determined. The median Target/Total value of cases with MYD88 mutations in the tumors was 5.1% in cellular DNA and 22.0% in cfDNA. The criteria to judge mutation were then determined, with a Target/Total value of 0.25% as the cutoff. When MYD88 mutations were determined based on these criteria, the sensitivity and specificity were 92.2% and 100%, respectively, with cellular DNA; and the sensitivity and specificity were 100% with cfDNA. Therefore, the DNA yield, mutated allele fraction, and accuracy were significantly higher in cfDNA compared with that in cellular DNA. Taken together, this study highlights the importance of detecting the MYD88 L265P mutation in cfDNA of the CSF for diagnosing CNS lymphoma using digital PCR, a highly accurate and clinically applicable method.
Collapse
Affiliation(s)
- Yuki Yamagishi
- Division of Brain Tumor Translational ResearchNational Cancer Center Research InstituteChuo‐kuTokyoJapan
- Department of NeurosurgeryKyorin University Facility of MedicineMitaka‐shiTokyoJapan
- Department of Brain Disease Translational ResearchJuntendo University Facility of MedicineBunkyo‐kuTokyoJapan
| | - Nobuyoshi Sasaki
- Department of NeurosurgeryKyorin University Facility of MedicineMitaka‐shiTokyoJapan
| | - Yoshiko Nakano
- Division of Brain Tumor Translational ResearchNational Cancer Center Research InstituteChuo‐kuTokyoJapan
| | - Yuko Matushita
- Division of Brain Tumor Translational ResearchNational Cancer Center Research InstituteChuo‐kuTokyoJapan
- Department of Brain Disease Translational ResearchJuntendo University Facility of MedicineBunkyo‐kuTokyoJapan
| | - Takaki Omura
- Division of Brain Tumor Translational ResearchNational Cancer Center Research InstituteChuo‐kuTokyoJapan
- Department of Neurosurgery and Neuro‐OncologyNational Cancer Center HospitalChuo‐kuTokyoJapan
| | - Saki Shimizu
- Department of NeurosurgeryKyorin University Facility of MedicineMitaka‐shiTokyoJapan
| | - Kuniaki Saito
- Department of NeurosurgeryKyorin University Facility of MedicineMitaka‐shiTokyoJapan
| | - Keiichi Kobayashi
- Department of NeurosurgeryKyorin University Facility of MedicineMitaka‐shiTokyoJapan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro‐OncologyNational Cancer Center HospitalChuo‐kuTokyoJapan
| | - Akihide Kondo
- Department of Brain Disease Translational ResearchJuntendo University Facility of MedicineBunkyo‐kuTokyoJapan
| | - Yoshiaki Shiokawa
- Department of NeurosurgeryKyorin University Facility of MedicineMitaka‐shiTokyoJapan
| | - Motoo Nagane
- Department of NeurosurgeryKyorin University Facility of MedicineMitaka‐shiTokyoJapan
| | - Koichi Ichimura
- Division of Brain Tumor Translational ResearchNational Cancer Center Research InstituteChuo‐kuTokyoJapan
- Department of Brain Disease Translational ResearchJuntendo University Facility of MedicineBunkyo‐kuTokyoJapan
| |
Collapse
|
11
|
Zing N, Fischer T, Federico M, Chiattone C, Ferreri AJM. Diagnosis, prevention and treatment of central nervous system involvement in peripheral t-cell lymphomas. Crit Rev Oncol Hematol 2021; 167:103496. [PMID: 34653598 DOI: 10.1016/j.critrevonc.2021.103496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
Non-Hodgkin lymphomas with T-cell immunophenotype encompass a heterogeneous group of infrequent neoplasms that follow variable clinical courses but prevalently include aggressive behavior and high mortality rates. The involvement of the central nervous system (CNS) is an uncommon event in T-cell lymphomas, with wide variability among the different disease entities. CNS can be affected either at initial diagnosis or at recurrence, and both forms are considered "secondary CNS T-cell lymphoma". Given the low incidence of secondary CNS T-cell lymphoma, related literature is sparse, contradictory, and primarily constituted by small case series and single case reports. However, reported studies uniformly suggest high mortality rates related to this event. Therefore, to improve our ability to identify high-risk patients and offer them successful CNS prophylaxis or timely and effective treatment once the event has occurred may prevent CNS-related T-cell lymphomas deaths. For example, some entities like aggressive adult T-cell leukemia/lymphoma, extranodal natural killer/T-cell lymphoma, and other peripheral T-cell lymphomas with involvement of two or more extranodal organs are prone to CNS dissemination and should be considered for personalized CNS prophylaxis. The level of evidence suggesting an increased risk of CNS recurrence for other T-cell lymphomas and for other risk factors is lower. Published case series show that, following the example of aggressive B-cell lymphomas, patients with T-cell lymphomas and putative increased CNS risk receive different forms of prophylaxis, mostly methotrexate and cytarabine delivered by intrathecal and/or intravenous routes, with varied success. To date, achievements in the treatment of CNS involvement in patients with aggressive B-cell lymphoma were not replicated in secondary CNS T-cell lymphomas, and identification of effective therapies remains an urgent research target. This review is focused on clinical findings, diagnosis, treatment, and prognosis of patients with T-cell lymphoma experiencing CNS dissemination either at presentation or relapse. It aims to provide logical and, oftentimes, evidence-based answers to the most common questions on the most probable risk factors to CNS involvement in patients with T-cell lymphoma, the indications and strategies to prevent this life-threating event, and the management of patients with CNS disease.
Collapse
Affiliation(s)
- Natalia Zing
- Departament of Onco-Hematology, Hospital Beneficência Portuguesa de São Paulo, Brazil; T-cell Brazil Project, Brazil
| | - Thais Fischer
- Hospital AC Camargo Cancer Center, Brazil; T-cell Brazil Project, Brazil
| | - Massimo Federico
- Medical Oncology, CHIMOMO Department, University of Modena and Reggio Emilia, Modena, Italy; T-cell Brazil Project, Brazil
| | - Carlos Chiattone
- Hospital Samaritano de São Paulo, Brazil; T-cell Brazil Project, Brazil; Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| | - Andrés J M Ferreri
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
12
|
Detection of clonotypic DNA in the cerebrospinal fluid as a marker of central nervous system invasion in lymphoma. Blood Adv 2021; 5:5525-5535. [PMID: 34551072 PMCID: PMC8714713 DOI: 10.1182/bloodadvances.2021004512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/16/2021] [Indexed: 11/30/2022] Open
Abstract
The NGS-MRD assay detected clonotypic DNA in 100% of CSF samples from patients who had lymphoma with parenchymal CNS involvement. Clonotypic DNA in CSF was present in 36% of newly diagnosed aggressive lymphomas and was associated with a 29% risk of CNS recurrence.
The diagnosis of parenchymal central nervous system (CNS) invasion and prediction of risk for future CNS recurrence are major challenges in the management of aggressive lymphomas, and accurate biomarkers are needed to supplement clinical risk predictors. For this purpose, we studied the results of a next-generation sequencing (NGS)–based assay that detects tumor-derived DNA for clonotypic immunoglobulin gene rearrangements in the cerebrospinal fluid (CSF) of patients with lymphomas. Used as a diagnostic tool, the NGS-minimal residual disease (NGS-MRD) assay detected clonotypic DNA in 100% of CSF samples from 13 patients with known CNS involvement. They included 7 patients with parenchymal brain disease only, whose CSF tested negative by standard cytology and flow cytometry, and 6 historical DNA aliquots collected from patients at a median of 39 months before accession, which had failed to show clonal rearrangements using standard polymerase chain reaction. For risk prognostication, we prospectively collected CSF from 22 patients with newly diagnosed B-cell lymphomas at high clinical risk of CNS recurrence, of whom 8 (36%) had detectable clonotypic DNA in the CSF. Despite intrathecal prophylaxis, a positive assay of CSF was associated with a 29% cumulative risk of CNS recurrence within 12 months of diagnosis, in contrast with a 0% risk among patients with negative CSF (P = .045). These observations suggest that detection of clonotypic DNA can aid in the diagnosis of suspected parenchymal brain recurrence in aggressive lymphoma. Furthermore, the NGS-MRD assay may enhance clinical risk assessment for CNS recurrence among patients with newly diagnosed lymphomas and help select those who may benefit most from novel approaches to CNS-directed prophylaxis.
Collapse
|
13
|
Ye Z, Bennett MF, Bahlo M, Scheffer IE, Berkovic SF, Perucca P, Hildebrand MS. Cutting edge approaches to detecting brain mosaicism associated with common focal epilepsies: implications for diagnosis and potential therapies. Expert Rev Neurother 2021; 21:1309-1316. [PMID: 34519595 DOI: 10.1080/14737175.2021.1981288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Mosaic variants arising in brain tissue are increasingly being recognized as a hidden cause of focal epilepsy. This knowledge gain has been driven by new, highly sensitive genetic technologies and genome-wide analysis of brain tissue from surgical resection or autopsy in a small proportion of patients with focal epilepsy. Recently reported novel strategies to detect mosaic variants limited to brain have exploited trace brain DNA obtained from cerebrospinal fluid liquid biopsies or stereo-electroencephalography electrodes. AREAS COVERED The authors review the data on these innovative approaches published in PubMed before 12 June 2021, discuss the challenges associated with their application, and describe how they are likely to improve detection of mosaic variants to provide new molecular diagnoses and therapeutic targets for focal epilepsy, with potential utility in other nonmalignant neurological disorders. EXPERT OPINION These cutting-edge approaches may reveal the hidden genetic etiology of focal epilepsies and provide guidance for precision medicine.
Collapse
Affiliation(s)
- Zimeng Ye
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia
| | - Mark F Bennett
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Ingrid E Scheffer
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Neuroscience Research Group, Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Australia.,Department of Neurology, Comprehensive Epilepsy Program, Austin Health, Heidelberg, Australia
| | - Samuel F Berkovic
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Department of Neurology, Comprehensive Epilepsy Program, Austin Health, Heidelberg, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Department of Neurology, Comprehensive Epilepsy Program, Austin Health, Heidelberg, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.,Department of Neurology, Alfred Health, Melbourne, Australia.,Department of Neurology, The Royal Melbourne Hospital, Parkville, Australia
| | - Michael S Hildebrand
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Neuroscience Research Group, Murdoch Children's Research Institute, Parkville, Australia
| |
Collapse
|
14
|
Poynton E, Okosun J. Liquid biopsy in lymphoma: Is it primed for clinical translation? EJHAEM 2021; 2:616-627. [PMID: 35844685 PMCID: PMC9175672 DOI: 10.1002/jha2.212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/23/2022]
Abstract
The simultaneous growth in our understanding of lymphoma biology and the burgeoning therapeutic options has come with a renewed drive for precision-based approaches and how best to incorporate them into contemporary and future patient care. In the hunt for accurate and sensitive biomarkers, liquid biopsies, particularly circulating tumour DNA, have come to the forefront as a promising tool in multiple cancer types including lymphomas, with considerable implications for clinical practice. Liquid biopsy analyses could supplement existing tissue biopsies with distinct advantages including the minimally invasive nature and the ease with which it can be repeated during a patient's clinical journey. Circulating tumour DNA (ctDNA) analyses has been and continues to be evaluated across lymphoma subtypes with potential applications as a diagnostic, disease monitoring and treatment selection tool. To make the leap into the clinic, these assays must demonstrate accuracy, reliability and a quick turnaround to be employed in the real-time clinical management of lymphoma patients. Here, we review the available ctDNA assays and discuss key practical and technical issues around improving sensitivity. We then focus on their potential roles in several lymphoma subtypes exemplified by recent studies and provide a glimpse of different features that can be analysed beyond ctDNA.
Collapse
Affiliation(s)
- Edward Poynton
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Jessica Okosun
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| |
Collapse
|
15
|
Yoon SE, Kim YJ, Shim JH, Park D, Cho J, Ko YH, Park WY, Mun YC, Lee KE, Cho D, Kim WS, Kim SJ. Plasma Circulating Tumor DNA in Patients with Primary Central Nervous System Lymphoma. Cancer Res Treat 2021; 54:597-612. [PMID: 34325497 PMCID: PMC9016302 DOI: 10.4143/crt.2021.752] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose Analysis of circulating tumor DNA (ctDNA) in blood could allow noninvasive genetic analysis of primary tumors. Although there have been unmet needs for noninvasive methods in patients with primary central nervous system lymphoma (PCNSL), it is still not determined whether plasma ctDNA analysis could be useful for patients with PCNSL. Materials and Methods Targeted deep sequencing of 54 genes was performed in cell-free DNA isolated from plasma samples collected pretreatment, during treatment, and at the end of treatment in 42 consecutively diagnosed PCNSL patients between January 2017 and December 2018. Results Targeted sequencing of plasma cell-free DNA detected somatic mutations representing ctDNA in 11 cases (11/41, 27%). The detection of ctDNA was not related to the concentration of cell-free DNA or tumor volume. The mutation profiles of these 11 cases varied between patients. The most frequently mutated gene was PIM1 (4/11, 36.4%), whereas KMT2D, PIK3CA, and MYD88 were each observed in three patients (3/11, 27%). The mutations of 13 genes were concordantly found in primary tumor tissue and plasma ctDNA, giving a detection sensitivity of 45%. During the serial tracking of seven patients with complete response, the disappearance of ctDNA mutations was found in four patients, whereas three patients had detected ctDNA mutation at the end of treatment. Conclusion The plasma ctDNA mutation analysis still has limited value for surveillance and predicting treatment outcomes of PCNSL because the detection efficiency was lower than other systemic lymphomas. Thus, analytical platforms should be improved to overcome anatomical hurdles associated with PCNSL.
Collapse
Affiliation(s)
- Sang Eun Yoon
- Division of Hematology-oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeon Jeong Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Joon Ho Shim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| | - Donghyun Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,GENINUS Inc., Seoul, Korea
| | - Junhun Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Yeung-Chul Mun
- Division of Hematology-Oncology, Department of Internal Medicine, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Kyoung Eun Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology-oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| | - Seok Jin Kim
- Division of Hematology-oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
16
|
Perrone ME, Alvarez R, Vo TT, Chung MW, Chhieng DC, Paulson VA, Colbert BG, Q Konnick E, Huang EC. Validating cell-free DNA from supernatant for molecular diagnostics on cytology specimens. Cancer Cytopathol 2021; 129:956-965. [PMID: 34265180 DOI: 10.1002/cncy.22491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cytology specimens are often used for biomarker testing in the setting of neoplasia. On occasion, formalin-fixed paraffin-embedded (FFPE) cell blocks unfortunately may not yield sufficient material for testing. Recent studies have suggested that residual supernatant fluid from cell block preparation is a valuable source of DNA: both cellular and cell-free DNA (cfDNA). In the present study, the use of cfDNA from supernatant is compared against DNA from FFPE materials. METHODS cfDNA was extracted prospectively from residual supernatants of 30 cytology samples (29 neoplastic cases and 1 benign ascitic fluid from a patient with a history of melanoma). Samples were tested using clinically validated next-generation-sequencing platforms and the results were compared with data from paired FFPE cell blocks in a real-time prospective clinical setting. Thirteen samples were tested on an amplicon-based assay (Solid Tumor Hotspot), and 17 samples were tested using a comprehensive capture-based assay (UW-Oncoplex). RESULTS Neoplastic content was estimated by mutational variant allele fraction, with a mean content of 24.0% and 25.8% in supernatant and FFPE, respectively. The variant concordance between paired samples was 90%, and identical results were detected in both supernatant and FFPE samples in 74% of cases. CONCLUSIONS This study confirmed that cfDNA from supernatant is a viable alternative to FFPE cell blocks for molecular biomarker testing using both amplicon-based and capture-based assays with potential for decreasing additional tissue sampling and faster turnaround time.
Collapse
Affiliation(s)
- Marie E Perrone
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Rebeca Alvarez
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Tawnie T Vo
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Moon-Wook Chung
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington
| | - David C Chhieng
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Vera A Paulson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Brice G Colbert
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Eric Q Konnick
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Eric C Huang
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
17
|
Ogawa M, Yokoyama K, Imoto S, Tojo A. Role of Circulating Tumor DNA in Hematological Malignancy. Cancers (Basel) 2021; 13:2078. [PMID: 33923024 PMCID: PMC8123338 DOI: 10.3390/cancers13092078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
With the recent advances in noninvasive approaches for cancer diagnosis and surveillance, the term "liquid biopsy" has become more familiar to clinicians, including hematologists. Liquid biopsy provides a variety of clinically useful genetic data. In this era of personalized medicine, genetic information is critical to early diagnosis, aiding risk stratification, directing therapeutic options, and monitoring disease relapse. The validity of circulating tumor DNA (ctDNA)-mediated liquid biopsies has received increasing attention. This review summarizes the current knowledge of liquid biopsy ctDNA in hematological malignancies, focusing on the feasibility, limitations, and key areas of clinical application. We also highlight recent advances in the minimal residual disease monitoring of leukemia using ctDNA. This article will be useful to those involved in the clinical practice of hematopoietic oncology.
Collapse
Affiliation(s)
- Miho Ogawa
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (M.O.); (A.T.)
| | - Kazuaki Yokoyama
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan;
| | - Arinobu Tojo
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (M.O.); (A.T.)
| |
Collapse
|
18
|
ctDNA-Based Liquid Biopsy of Cerebrospinal Fluid in Brain Cancer. Cancers (Basel) 2021; 13:cancers13091989. [PMID: 33919036 PMCID: PMC8122255 DOI: 10.3390/cancers13091989] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
The correct characterisation of central nervous system (CNS) malignancies is crucial for accurate diagnosis and prognosis and also the identification of actionable genomic alterations that can guide the therapeutic strategy. Surgical biopsies are performed to characterise the tumour; however, these procedures are invasive and are not always feasible for all patients. Moreover, they only provide a static snapshot and can miss tumour heterogeneity. Currently, monitoring of CNS cancer is performed by conventional imaging techniques and, in some cases, cytology analysis of the cerebrospinal fluid (CSF); however, these techniques have limited sensitivity. To overcome these limitations, a liquid biopsy of the CSF can be used to obtain information about the tumour in a less invasive manner. The CSF is a source of cell-free circulating tumour DNA (ctDNA), and the analysis of this biomarker can characterise and monitor brain cancer. Recent studies have shown that ctDNA is more abundant in the CSF than plasma for CNS malignancies and that it can be sequenced to reveal tumour heterogeneity and provide diagnostic and prognostic information. Furthermore, analysis of longitudinal samples can aid patient monitoring by detecting residual disease or even tracking tumour evolution at relapse and, therefore, tailoring the therapeutic strategy. In this review, we provide an overview of the potential clinical applications of the analysis of CSF ctDNA and the challenges that need to be overcome in order to translate research findings into a tool for clinical practice.
Collapse
|
19
|
You H, Wei L, Kaminska B. Emerging insights into origin and pathobiology of primary central nervous system lymphoma. Cancer Lett 2021; 509:121-129. [PMID: 33766752 DOI: 10.1016/j.canlet.2021.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 01/03/2023]
Abstract
Primary central nervous system lymphoma (PCNSL) is an aggressive cancer typically confined to the brain, eyes, leptomeninges and spinal cord, without evidence of systemic involvement. PCNSL remains a challenge for scientists and clinicians due to insufficient biological knowledge, a lack of appropriate animal models and validated diagnostic biomarkers. We summarize recent findings on genomic, transcriptomic and epigenetic alterations identified in PCNSL. These findings help to define pathobiology of the disease and delineate defects in B cell differentiation. Evidence from genomic and transcriptomic studies helps to separate PCNSL from other hematological malignancies, improves diagnostics and reveals new therapeutic targets for treatment. Discovery of the CNS lymphatic system may be instrumental in better understanding the origin of the disease. We critically assess the attempts to model PCNSL in rodents, and conclude that there is a lack of a genetic/transgenic model that adequately mimics pathogenesis of the disease. Contribution of the tumor microenvironment in tumorigenesis and aggressiveness of PCNSL remains understudied. Assessing heterogeneity of immune infiltrates, cytokine profiling and molecular markers, may improve diagnostics and put forward new therapeutic strategies.
Collapse
Affiliation(s)
- Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Li Wei
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Bozena Kaminska
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China; Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
20
|
Tan X, Yan H, Chen L, Zhang Y, Sun C. Clinical Value of ctDNA in Hematological Malignancies (Lymphomas, Multiple Myeloma, Myelodysplastic Syndrome, and Leukemia): A Meta-Analysis. Front Oncol 2021; 11:632910. [PMID: 33747954 PMCID: PMC7970179 DOI: 10.3389/fonc.2021.632910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Circulating tumor DNA (ctDNA) has offered a minimally invasive approach for the detection and measurement of cancer. However, its diagnostic and prognostic value in hematological malignancies remains unclear. Materials and methods: Pubmed, Embase, and Cochrane Library were searched for relating literature. Diagnostic accuracy variables and disease progression prediction data were pooled by the Meta-Disc version 1.4 software. Review Manager version 5.4 software was applied for prognostic data analysis. Results: A total of 11 studies met our inclusion criteria. In terms of diagnosis, the pooled sensitivity and specificity were 0.51 (95% confidence intervals (CI) 0.38–0.64) and 0.96 (95% CI 0.88–1.00), respectively. The AUSROC (area under the SROC) curve was 0.89 (95%CI 0.75–1.03). When it comes to the prediction of disease progression, the overall sensitivity and specificity was 0.83 (95% CI 0.67–0.94) and 0.98 (95% CI 0.93–1.00), respectively. Moreover, a significant association also existed between the presence of ctDNA and worse progression-free survival (HR 2.63, 95% CI 1.27–5.43, p = 0.009), as well as overall survival (HR 2.92, 95% CI 1.53–5.57, p = 0.001). Conclusions: The use of ctDNA in clinical practice for hematological malignancies is promising, as it may not only contribute to diagnosis, but could also predict the prognosis of patients so as to guide treatment. In the future, more studies are needed to realize the standardization of sequencing techniques and improve the detection sensitivity of exploration methods.
Collapse
Affiliation(s)
- Xiangyu Tan
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Yan
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuyang Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Lakhotia R, Roschewski M. Circulating tumour DNA in B-cell lymphomas: current state and future prospects. Br J Haematol 2021; 193:867-881. [PMID: 33550600 DOI: 10.1111/bjh.17251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022]
Abstract
Circulating tumour DNA (ctDNA) is a highly versatile analyte and an emerging biomarker for detection of tumour-specific sequences in lymphoid malignancies. Since ctDNA is derived from tumour cells throughout the body, it overcomes fundamental limitations of tissue biopsies by capturing the complete molecular profile of tumours, including those from inaccessible anatomic locations. Assays for ctDNA are minimally invasive and serial sampling monitors the effectiveness of therapy and identifies minimal residual disease below the detection limit of standard imaging scans. Dynamic changes in ctDNA levels measure real-time tumour kinetics, and early reductions in ctDNA during treatment correlate with clinical outcomes in multiple B-cell lymphomas. After therapy, ctDNA can effectively discriminate between patients who achieved a complete molecular remission from those with residual treatment-resistant disease. Serial monitoring of ctDNA after therapy can detect early molecular relapse and identify drug-resistant clones that harbour targetable mutations. In order for ctDNA to reach its full potential, the standardization and harmonization of the optimal pre-analytical and analytical techniques for B-cell lymphomas is a critically necessary requirement. Prospective validation of ctDNA within clinical studies is also required to determine its clinical utility as an adjunctive decision-making tool.
Collapse
Affiliation(s)
- Rahul Lakhotia
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
22
|
Bobillo S, Crespo M, Escudero L, Mayor R, Raheja P, Carpio C, Rubio-Perez C, Tazón-Vega B, Palacio C, Carabia J, Jiménez I, Nieto JC, Montoro J, Martínez-Ricarte F, Castellvi J, Simó M, Puigdefàbregas L, Abrisqueta P, Bosch F, Seoane J. Cell free circulating tumor DNA in cerebrospinal fluid detects and monitors central nervous system involvement of B-cell lymphomas. Haematologica 2021; 106:513-521. [PMID: 32079701 PMCID: PMC7849551 DOI: 10.3324/haematol.2019.241208] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/18/2020] [Indexed: 11/10/2022] Open
Abstract
The levels of cell free circulating tumor DNA (ctDNA) in plasma correlate with treatment response and outcome in systemic lymphomas. Notably, in brain tumors, the levels of ctDNA in the cerebrospinal fluid (CSF) are higher than in plasma. Nevertheless, their role in central nervous system (CNS) lymphomas remains elusive. We evaluated the CSF and plasma from 19 patients: 6 restricted CNS lymphomas, 1 systemic and CNS lymphoma, and 12 systemic lymphomas. We performed whole exome sequencing or targeted sequencing to identify somatic mutations of the primary tumor, then variant-specific droplet digital polymerase chain reaction was designed for each mutation. At time of enrollment, we found ctDNA in the CSF of all patients with restricted CNS lymphoma but not in patients with systemic lymphoma without CNS involvement. Conversely, plasma ctDNA was detected in only 2 out of 6 patients with restricted CNS lymphoma with lower variant allele frequencies than CSF ctDNA. Moreover, we detected CSF ctDNA in one patient with CNS lymphoma in complete remission and in one patient with systemic lymphoma, 3 and 8 months before CNS relapse was confirmed, indicating that CSF ctDNA might detect CNS relapse earlier than conventional methods. Finally, in two cases with CNS lymphoma, CSF ctDNA was still detected after treatment even though no tumoral cells were observed by flow cytometry (FC), indicating that CSF ctDNA detected residual disease better than FC. In conclusion, CSF ctDNA can detect CNS lesions better than plasma ctDNA and FC. In addition, CSF ctDNA predicted CNS relapse in CNS and systemic lymphomas.
Collapse
Affiliation(s)
- Sabela Bobillo
- Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Department of Medicine
| | - Marta Crespo
- Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Department of Medicine
| | - Laura Escudero
- Translational Research Program, Vall Hebron Institute of Oncology (VHIO)
| | - Regina Mayor
- Translational Research Program, Vall Hebron Institute of Oncology (VHIO)
| | - Priyanka Raheja
- Vall Hebron University Hospital, Universitat Autònoma de Barcelona, Department of Medicine
| | - Cecilia Carpio
- Vall Hebron University Hospital, Universitat Autònoma de Barcelona, Department of Medicine
| | | | - Bárbara Tazón-Vega
- Vall Hebron University Hospital, Universitat Autònoma de Barcelona, Department of Medicine
| | - Carlos Palacio
- Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Department of Medicine
| | - Júlia Carabia
- Vall Hebron University Hospital, Universitat Autònoma de Barcelona, Department of Medicine
| | - Isabel Jiménez
- Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Department of Medicine
| | - Juan C Nieto
- Vall Hebron University Hospital, Universitat Autònoma de Barcelona, Department of Medicine
| | - Julia Montoro
- Vall Hebron University Hospital, Universitat Autònoma de Barcelona, Department of Medicine
| | | | | | - Marc Simó
- Department of Nuclear Medicine, Vall Hebron University Hospital
| | - Lluis Puigdefàbregas
- Vall Hebron University Hospital, Universitat Autònoma de Barcelona, Department of Medicine
| | - Pau Abrisqueta
- Vall Hebron University Hospital, Universitat Autònoma de Barcelona, Department of Medicine
| | - Francesc Bosch
- Vall Hebron University Hospital, Universitat Autònoma de Barcelona, Department of Medicine
| | - Joan Seoane
- Translational Research Program, Vall Hebron Institute of Oncology (VHIO)
| |
Collapse
|
23
|
Cirillo M, Craig AFM, Borchmann S, Kurtz DM. Liquid biopsy in lymphoma: Molecular methods and clinical applications. Cancer Treat Rev 2020; 91:102106. [PMID: 33049623 PMCID: PMC8043056 DOI: 10.1016/j.ctrv.2020.102106] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/31/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
In this article, we broadly review the application of cfDNA analysis to the diagnosis and management of lymphoma. We introduce the advantages of cfDNA measurement over conventional tissue biopsy and describe how cfDNA may be utilized for both genotyping and detection of minimal residual disease. First, we discuss genotyping, beginning with differences in identifying mutations from the blood plasma vs. from circulating cells. We review the technical distinctions between PCR- and NGS-based assays and describe two important applications of NGS-based cfDNA tests, namely the identification of resistance mutations and classification of disease subtype. We discuss difficulties in genotyping diseases with low burden of tumor cells and the application of cfDNA assays in these contexts. Second, we describe the utility of ctDNA measurement in assessing MRD. We cover recent advances in the assessment of pre-treatment disease burden as a prognostic biomarker, detection of molecular response to therapy, and early detection of relapsing disease. Third, we explore select emerging areas of research in ctDNA technologies that show promise in boosting the performance of existing ctDNA-based assays. These include cell-free DNA fragment structure analysis or 'fragmentomics', epigenetic modifications, and novel circulating analytes such as tumor-educated platelets and extracellular vesicular DNA. We also discuss alternative analytes to blood plasma for tumor detection, such as urine, saliva, and stool. Finally, we present a case that highlights potential applications of ctDNA approaches to the management of patients with lymphoma, while also defining important prerequisite advances before this can be fully realized. We close with a look to the future of cfDNA applications, outlining one potential timeline and path forward towards routine clinical application.
Collapse
Affiliation(s)
- Melita Cirillo
- Royal Perth Hospital, Perth, Australia; University of Western Australia, Perth, Australia
| | - Alexander F M Craig
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA; University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Sven Borchmann
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Hodgkin Study Group, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital of Cologne, Center for Molecular Medicine, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital of Cologne, Else Kröner Forschungskolleg Clonal Evolution in Cancer, Cologne, Germany.
| | - David M Kurtz
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
24
|
Cerebrospinal fluid circulating tumour DNA as a liquid biopsy for central nervous system malignancies. Curr Opin Neurol 2020; 33:736-741. [DOI: 10.1097/wco.0000000000000869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Calimeri T, Ferreri AJM. Prevention of CNS relapse in diffuse large B-cell lymphoma: common sense prevails where science fails. Br J Haematol 2020; 190:645-647. [PMID: 32394433 DOI: 10.1111/bjh.16719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Teresa Calimeri
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Andrés J M Ferreri
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
26
|
Chen F, Pang D, Guo H, Jiang X, Liu S, Huang L, Wei X, Liang Z, Wang X, Li W. Clinicopathological Characteristics and Mutational Profiling of Adult T-Cell Lymphoblastic Lymphoma in a Chinese Population. Cancer Manag Res 2020; 12:3003-3012. [PMID: 32431543 PMCID: PMC7198442 DOI: 10.2147/cmar.s242903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 01/02/2023] Open
Abstract
Purpose The purpose of this study is to perform a retrospective analysis of disease outcomes and mutational profiles in patients with adult T-cell lymphoblastic lymphoma (T-LBL). Patients and Methods A total of 43 patients were treated over a 9-year period at a single institution. The study examined treatment outcomes, clinical characteristics, and the use of circulating tumor DNA (ctDNA) and mutational profiling for patient diagnosis. Results The estimated overall survival (OS) and progression-free survival (PFS) time for all patients was 37.0 (95% CI: 17.7–56.2) and 28.1 (95% CI: 0.9–55.4) months, respectively. Chidamide maintenance was used in five patients exhibiting unfavorable genetic alterations, with no evidence of relapse. Next-generation sequencing of pretreatment tumor tissue was undertaken for 15 patients. NOTCH1 mutations were the most frequent genetic alterations, followed by mutations in PHF6, TP53, JAK1, JAK3, PTEN, and DNM2. The genetic profile of the blood was similar to that of the tumor. Kappa coefficient analysis (14 patients, 56 time points, kappa = 1.0, p = 0.00) indicated a 92.6% agreement between ctDNA response and tumor volume measurements at post treatment when compared with baseline. Detection of ctDNA predicted disease relapse in two patients. Conclusion The prognosis of patients with adult T-LBL remains very poor. Detection of tumor-associated sequences in ctDNA may be an effective method for diagnosing T-LBL and measuring treatment efficacy. Incorporation of new drugs such as histone deacetylase inhibitors (HDACi)has the potential to improve outcomes in these patients.
Collapse
Affiliation(s)
- Feili Chen
- Lymphoma Division, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology Guangzhou, Guangdong, People's Republic of China
| | - Diwen Pang
- Lymphoma Division, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology Guangzhou, Guangdong, People's Republic of China
| | - Hanguo Guo
- Lymphoma Division, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology Guangzhou, Guangdong, People's Republic of China
| | - Xinmiao Jiang
- Lymphoma Division, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology Guangzhou, Guangdong, People's Republic of China
| | - Sichu Liu
- Lymphoma Division, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology Guangzhou, Guangdong, People's Republic of China
| | - Ling Huang
- Lymphoma Division, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology Guangzhou, Guangdong, People's Republic of China
| | - Xiaojuan Wei
- Lymphoma Division, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology Guangzhou, Guangdong, People's Republic of China
| | - Zhanli Liang
- Lymphoma Division, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology Guangzhou, Guangdong, People's Republic of China
| | - Xiaoxia Wang
- Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, People's Republic of China
| | - Wenyu Li
- Lymphoma Division, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
27
|
Xiao F, Lv S, Zong Z, Wu L, Tang X, Kuang W, Zhang P, Li X, Fu J, Xiao M, Wu M, Wu L, Zhu X, Huang K, Guo H. Cerebrospinal fluid biomarkers for brain tumor detection: clinical roles and current progress. Am J Transl Res 2020; 12:1379-1396. [PMID: 32355549 PMCID: PMC7191171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Brain tumors include those that originate within the brain (primary tumors) as well as those that arise from other cancers (metastatic tumors). The fragile nature of the brain poses a major challenge to access focal malignancies, which certainly limits both diagnostics and therapeutic approaches. This limitation has been alleviated with the advent of liquid biopsy technologies. Liquid biopsy represents a highly convenient, fast and non-invasive method, which allows multiple sampling and dynamic pathological detection. Biomarkers derived from liquid biopsies can promptly reflect changes on the gene expression profiling of tumors. Biomarkers derived from tumor cells contain abundant genetic information, which may provide a strong basis for the diagnosis and the individualized treatment of brain tumor patients. A series of body fluids can be assessed for liquid biopsy, including peripheral blood, cerebrospinal fluid (CSF), urine or saliva. Interestingly, the sensitivity and specificity of biomarkers from the CSF of patients with brain tumors is typically higher than those detected in the peripheral blood and other sources. Hence, here we describe and properly discuss the clinical roles of distinct classes of CSF biomarkers, isolated from patients with brain tumors, such as circulating tumor DNA (ctDNA), microRNA (miRNA), proteins, and extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Shigang Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Zhitao Zong
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Department of Neurosurgery, Jiujiang Hospital of Traditional Chinese MedicineJiujiang 332005, Jiangxi, China
| | - Lei Wu
- Department of Emergency, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Xueping Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Wei Kuang
- Department of Emergency, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Pei Zhang
- Department of Neurosurgery, The Third Hospital of NanchangNangchang 330009, Jiangxi, China
| | - Xin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Jun Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Menghua Xiao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| |
Collapse
|
28
|
Wright GW, Huang DW, Phelan JD, Coulibaly ZA, Roulland S, Young RM, Wang JQ, Schmitz R, Morin RD, Tang J, Jiang A, Bagaev A, Plotnikova O, Kotlov N, Johnson CA, Wilson WH, Scott DW, Staudt LM. A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications. Cancer Cell 2020; 37:551-568.e14. [PMID: 32289277 PMCID: PMC8459709 DOI: 10.1016/j.ccell.2020.03.015] [Citation(s) in RCA: 687] [Impact Index Per Article: 137.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/03/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022]
Abstract
The development of precision medicine approaches for diffuse large B cell lymphoma (DLBCL) is confounded by its pronounced genetic, phenotypic, and clinical heterogeneity. Recent multiplatform genomic studies revealed the existence of genetic subtypes of DLBCL using clustering methodologies. Here, we describe an algorithm that determines the probability that a patient's lymphoma belongs to one of seven genetic subtypes based on its genetic features. This classification reveals genetic similarities between these DLBCL subtypes and various indolent and extranodal lymphoma types, suggesting a shared pathogenesis. These genetic subtypes also have distinct gene expression profiles, immune microenvironments, and outcomes following immunochemotherapy. Functional analysis of genetic subtype models highlights distinct vulnerabilities to targeted therapy, supporting the use of this classification in precision medicine trials.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Cell Proliferation
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genetic Heterogeneity
- Humans
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Molecular Targeted Therapy
- Precision Medicine
- Tumor Cells, Cultured
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandrine Roulland
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan M Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Q Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roland Schmitz
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jeffrey Tang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Aixiang Jiang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | | | | | - Calvin A Johnson
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David W Scott
- British Columbia Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Abstract
Abstract
It is well documented that in the chain from sample to the result in a clinical laboratory, the pre-analytical phase is the weakest and most vulnerable link. This also holds for the use and analysis of extracellular nucleic acids. In this short review, we will summarize and critically evaluate the most important steps of the pre-analytical phase, i.e. the choice of the best control population for the patients to be analyzed, the actual blood draw, the choice of tubes for blood drawing, the impact of delayed processing of blood samples, the best method for getting rid of cells and debris, the choice of matrix, i.e. plasma vs. serum vs. other body fluids, and the impact of long-term storage of cell-free liquids on the outcome. Even if the analysis of cell-free nucleic acids has already become a routine application in the area of non-invasive prenatal screening (NIPS) and in the care of cancer patients (search for resistance mutations in the EGFR gene), there are still many unresolved issues of the pre-analytical phase which need to be urgently tackled.
Collapse
Affiliation(s)
- Michael Fleischhacker
- DRK Kliniken Berlin Mitte , Klinik für Innere Medizin – Pneumologie und Schlafmedizin , Drontheimer Str. 39 – 40 , 13359 Berlin , Germany
| | - Bernd Schmidt
- DRK Kliniken Berlin Mitte , Klinik für Innere Medizin – Pneumologie und Schlafmedizin , Berlin , Germany
| |
Collapse
|
30
|
McEwen AE, Leary SES, Lockwood CM. Beyond the Blood: CSF-Derived cfDNA for Diagnosis and Characterization of CNS Tumors. Front Cell Dev Biol 2020; 8:45. [PMID: 32133357 PMCID: PMC7039816 DOI: 10.3389/fcell.2020.00045] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/17/2020] [Indexed: 12/15/2022] Open
Abstract
Genetic data are rapidly becoming part of tumor classification and are integral to prognosis and predicting response to therapy. Current molecular tumor profiling relies heavily on tissue resection or biopsy. Tissue profiling has several disadvantages in tumors of the central nervous system, including the challenge associated with invasive biopsy, the heterogeneous nature of many malignancies where a small biopsy can underrepresent the mutational profile, and the frequent lack of obtaining a repeat biopsy, which limits routine monitoring to assess therapy response and/or tumor evolution. Circulating tumor, cell-free DNA (cfDNA), has been proposed as a liquid biopsy to address some limitations of tissue-based genetics. In cancer patients, a portion of cfDNA is tumor-derived and may contain somatic genetic alterations. In central nervous system (CNS) neoplasia, plasma tumor-derived cfDNA is very low or absent, likely due to the blood brain barrier. Interrogating cfDNA in cerebrospinal fluid (CSF) has several advantages. Compared to blood, CSF is paucicellular and therefore predominantly lacks non-tumor cfDNA; however, patients with CNS-limited tumors have significantly enriched tumor-derived cfDNA in CSF. In patients with metastatic CNS disease, mutations in CSF cfDNA are most concordant with the intracranial process. CSF cfDNA can also occasionally uncover additional genetic alterations absent in concurrent biopsy specimens, reflecting tumor heterogeneity. Although CSF is enriched for tumor-derived cfDNA, absolute quantities are low. Highly sensitive, targeted methods including next-generation sequencing and digital PCR are required to detect mutations in CSF cfDNA. Additional technical and bioinformatic approaches also facilitate enhanced ability to detect tumor mutations in CSF cfDNA.
Collapse
Affiliation(s)
- Abbye E McEwen
- Department of Pathology, University of Washington, Seattle, WA, United States.,Department of Laboratory Medicine, University of Washington, Seattle, WA, United States.,Brotman Baty Institute for Precision Medicine, Seattle, WA, United States
| | - Sarah E S Leary
- Brotman Baty Institute for Precision Medicine, Seattle, WA, United States.,Seattle Children's Hospital, Cancer and Blood Disorders Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States.,Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Christina M Lockwood
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States.,Brotman Baty Institute for Precision Medicine, Seattle, WA, United States
| |
Collapse
|
31
|
Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. Molecular profiling for precision cancer therapies. Genome Med 2020; 12:8. [PMID: 31937368 PMCID: PMC6961404 DOI: 10.1186/s13073-019-0703-1] [Citation(s) in RCA: 521] [Impact Index Per Article: 104.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
The number of druggable tumor-specific molecular aberrations has grown substantially in the past decade, with a significant survival benefit obtained from biomarker matching therapies in several cancer types. Molecular pathology has therefore become fundamental not only to inform on tumor diagnosis and prognosis but also to drive therapeutic decisions in daily practice. The introduction of next-generation sequencing technologies and the rising number of large-scale tumor molecular profiling programs across institutions worldwide have revolutionized the field of precision oncology. As comprehensive genomic analyses become increasingly available in both clinical and research settings, healthcare professionals are faced with the complex tasks of result interpretation and translation. This review summarizes the current and upcoming approaches to implement precision cancer medicine, highlighting the challenges and potential solutions to facilitate the interpretation and to maximize the clinical utility of molecular profiling results. We describe novel molecular characterization strategies beyond tumor DNA sequencing, such as transcriptomics, immunophenotyping, epigenetic profiling, and single-cell analyses. We also review current and potential applications of liquid biopsies to evaluate blood-based biomarkers, such as circulating tumor cells and circulating nucleic acids. Last, lessons learned from the existing limitations of genotype-derived therapies provide insights into ways to expand precision medicine beyond genomics.
Collapse
Affiliation(s)
- Eoghan R Malone
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Department of Medicine, University Avenue, University of Toronto, Toronto, Ontario, M5G 1Z5, Canada
| | - Marc Oliva
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Department of Medicine, University Avenue, University of Toronto, Toronto, Ontario, M5G 1Z5, Canada
| | - Peter J B Sabatini
- Department of Clinical Laboratory Genetics, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Tracy L Stockley
- Department of Clinical Laboratory Genetics, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Department of Medicine, University Avenue, University of Toronto, Toronto, Ontario, M5G 1Z5, Canada.
| |
Collapse
|