1
|
Zhang M, An Z, Jiang Y, Wei M, Li X, Wang Y, Wang H, Gong Y. Self-assembled redox-responsive BRD4 siRNA nanoparticles: fomulation and its in vitro delivery in gastric cancer cells. J Chemother 2025; 37:45-59. [PMID: 38291982 DOI: 10.1080/1120009x.2024.2308980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
With the development of newer biomarkers in the diagnosis of gastric cancer (GC), therapeutic targets are emerging and molecular-targeted therapy is in progress RNA interference has emerged as a promising method of gene targeting therapy. However, naked small interfering RNA (siRNA) is unstable and susceptible to degradation, so employing vectors for siRNA delivery is the focus of our research. Therefore, we developed LMWP modified PEG-SS-PEI to deliver siRNA targeting BRD4 (L-NPs/siBRD4) for GC therapy. L-NPs/siBRD4 were prepared by electrostatic interaction and characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The release characteristics, cellular uptake and intracellular localization were also investigated. The in vitro anticancer activity of the prepared nanoparticles was analysed by MTT, Transwell invasion and wound healing assay. Quantitative real time-polymerase chain reaction (qRT-PCR) and Western blot were used to detect the effect of gene silencing. The results showed that the optimal N/P was 30 and the prepared L-NPs/siBRD4 uniformly distributed in the system with a spherical and regular shape. L-NPs/siBRD4 exhibited an accelerated release in GSH-containing media from 12h to 24h. The uptake of L-NPs/siBRD4 was enhanced and mainly co-localized in the lysosomes. After 6h incubation, LMWP modified PEG-SS-PEI helped siRNA escape from the lysosomes and diffused into the cytoplasm. L-NPs/siBRD4 significantly inhibited the proliferation, migration and invasion of cells. This might be related with the silence of BRD4, then inhibition of PI3K/Akt and c-Myc. Our results demonstrate that L-NPs/siBRD4 are a novel delivery system with anticancer, which may provide a more effective strategy for GC treatment.
Collapse
Affiliation(s)
- Mengying Zhang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Zhonghua An
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yiming Jiang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Meijiao Wei
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiangbo Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yifan Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Hongbo Wang
- Gastrointestinal Surgery Department, Jimo District People's Hospital, Qingdao, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
2
|
Lv S, Jiang H, Yu L, Zhang Y, Sun L, Xu J. SNX14 inhibits autophagy via the PI3K/AKT/mTOR signaling cascade in breast cancer cells. J Mol Histol 2024; 55:391-401. [PMID: 38869753 DOI: 10.1007/s10735-024-10209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Sorting nexin 14 (SNX14) is a member of the sorting junction protein family. Its specific roles in cancer development remain unclear. Therefore, in this study, we aimed to determine the effects and underlying mechanisms of SNX14 on autophagy of breast cancer cells to aid in the therapeutic treatment of breast cancer. METHODS In this study, we performed in vitro experiments to determine the effect of SNX14 on breast cancer cell growth. Moreover, we used an MCF7 breast cancer tumor-bearing mouse model to confirm the effect of SNX14 on tumor cell growth in vivo. We also performed western blotting and quantitative polymerase chain reaction to identify the mechanism by which SNX14 affects breast cancer MCF7 cells. RESULTS We found that SNX14 regulated the onset and progression of breast cancer by promoting the proliferation and inhibiting the autophagy of MCF7 breast cancer cells. In vivo experiments further confirmed that SNX14 knockdown inhibited the tumorigenicity and inhibited the growth of tumor cells in tumor tissues of nude mice. In addition, western blotting analysis revealed that SNX14 modulate the autophagy of MCF7 breast cancer cells via the phosphoinositide 3-kinase/protein kinase B/mechanistic target of rapamycin kinase signaling pathway. CONCLUSION Our findings indicate that SNX14 is an essential tumor-promoting factor in the development of breast cancer.
Collapse
Affiliation(s)
- Sha Lv
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, 310013, China
| | - Hongyan Jiang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Lingyan Yu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yafei Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Liangliang Sun
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, 310013, China
| | - Junjun Xu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
3
|
Evergren E, Mills IG, Kennedy G. Adaptations of membrane trafficking in cancer and tumorigenesis. J Cell Sci 2024; 137:jcs260943. [PMID: 38770683 PMCID: PMC11166456 DOI: 10.1242/jcs.260943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Membrane trafficking, a fundamental cellular process encompassing the transport of molecules to specific organelles, endocytosis at the plasma membrane and protein secretion, is crucial for cellular homeostasis and signalling. Cancer cells adapt membrane trafficking to enhance their survival and metabolism, and understanding these adaptations is vital for improving patient responses to therapy and identifying therapeutic targets. In this Review, we provide a concise overview of major membrane trafficking pathways and detail adaptations in these pathways, including COPII-dependent endoplasmic reticulum (ER)-to-Golgi vesicle trafficking, COPI-dependent retrograde Golgi-to-ER trafficking and endocytosis, that have been found in cancer. We explore how these adaptations confer growth advantages or resistance to cell death and conclude by discussing the potential for utilising this knowledge in developing new treatment strategies and overcoming drug resistance for cancer patients.
Collapse
Affiliation(s)
- Emma Evergren
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ian G. Mills
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Grace Kennedy
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
4
|
Buenaventura RGM, Merlino G, Yu Y. Ez-Metastasizing: The Crucial Roles of Ezrin in Metastasis. Cells 2023; 12:1620. [PMID: 37371090 DOI: 10.3390/cells12121620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Ezrin is the cytoskeletal organizer and functions in the modulation of membrane-cytoskeleton interaction, maintenance of cell shape and structure, and regulation of cell-cell adhesion and movement, as well as cell survival. Ezrin plays a critical role in regulating tumor metastasis through interaction with other binding proteins. Notably, Ezrin has been reported to interact with immune cells, allowing tumor cells to escape immune attack in metastasis. Here, we review the main functions of Ezrin, the mechanisms through which it acts, its role in tumor metastasis, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rand Gabriel M Buenaventura
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Terrazzan A, Crudele F, Corrà F, Ancona P, Palatini J, Bianchi N, Volinia S. Inverse Impact of Cancer Drugs on Circular and Linear RNAs in Breast Cancer Cell Lines. Noncoding RNA 2023; 9:ncrna9030032. [PMID: 37218992 DOI: 10.3390/ncrna9030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Altered expression of circular RNAs (circRNAs) has previously been investigated in breast cancer. However, little is known about the effects of drugs on their regulation and relationship with the cognate linear transcript (linRNA). We analyzed the dysregulation of both 12 cancer-related circRNAs and their linRNAs in two breast cancer cell lines undergoing various treatments. We selected 14 well-known anticancer agents affecting different cellular pathways and examined their impact. Upon drug exposure circRNA/linRNA expression ratios increased, as a result of the downregulation of linRNA and upregulation of circRNA within the same gene. In this study, we highlighted the relevance of identifying the drug-regulated circ/linRNAs according to their oncogenic or anticancer role. Interestingly, VRK1 and MAN1A2 were increased by several drugs in both cell lines. However, they display opposite effects, circ/linVRK1 favors apoptosis whereas circ/linMAN1A2 stimulates cell migration, and only XL765 did not alter the ratio of other dangerous circ/linRNAs in MCF-7. In MDA-MB-231 cells, AMG511 and GSK1070916 decreased circGFRA1, as a good response to drugs. Furthermore, some circRNAs might be associated with specific mutated pathways, such as the PI3K/AKT in MCF-7 cells with circ/linHIPK3 correlating to cancer progression and drug-resistance, or NHEJ DNA repair pathway in TP-53 mutated MDA-MB-231 cells.
Collapse
Affiliation(s)
- Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Crudele
- Genetics Unit, Institute for Maternal and Child Health, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Burlo Garofolo, 34137 Trieste, Italy
| | - Fabio Corrà
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Jeffrey Palatini
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Centrum Nauk Biologiczno-Chemicznych (Biological and Chemical Research Centre), University of Warsaw, 02-089 Warsaw, Poland
| |
Collapse
|
6
|
Deb S, Sun J. Endosomal Sorting Protein SNX27 and Its Emerging Roles in Human Cancers. Cancers (Basel) 2022; 15:cancers15010070. [PMID: 36612066 PMCID: PMC9818000 DOI: 10.3390/cancers15010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
SNX27 belongs to the sorting nexin (SNX) family of proteins that play a critical role in protein sorting and trafficking in the endocytosis pathway. This protein family is characterized by the presence of a Phox (PX) domain; however, SNX27 is unique in containing an additional PDZ domain. Recently, SNX27 has gained popularity as an important sorting protein that is associated with the retromer complex and mediates the recycling of internalized proteins from endosomes to the plasma membrane in a PDZ domain-dependent manner. Over 100 cell surface proteins have been identified as binding partners of the SNX27-retromer complex. However, the roles and underlying mechanisms governed by SNX27 in tumorigenesis remains to be poorly understood. Many of its known binding partners include several G-protein coupled receptors, such as β2-andrenergic receptor and parathyroid hormone receptor, are associated with multiple pathways implicated in oncogenic signaling and tumorigenesis. Additionally, SNX27 mediates the recycling of GLUT1 and the activation of mTORC1, both of which can regulate intracellular energy balance and promote cell survival and proliferation under conditions of nutrient deprivation. In this review, we summarize the structure and fundamental roles of SNX proteins, with a focus on SNX27, and provide the current evidence indicating towards the role of SNX27 in human cancers. We also discuss the gap in the field and future direction of SNX27 research. Insights into the emerging roles and mechanism of SNX27 in cancers will provide better development strategies to prevent and treat tumorigenesis.
Collapse
Affiliation(s)
- Shreya Deb
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois at Chicago (UIC) Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence: ; Tel.: +1-312-996-5020
| |
Collapse
|
7
|
HPV-18E6 Inhibits Interactions between TANC2 and SNX27 in a PBM-Dependent Manner and Promotes Increased Cell Proliferation. J Virol 2022; 96:e0136522. [PMID: 36326272 PMCID: PMC9683006 DOI: 10.1128/jvi.01365-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While a great deal is known about the role of the E6 PDZ binding motif (PBM) in modulating the cellular proteins involved in regulating cell polarity, much less is known about the consequences of E6's interactions with SNX27 and the endocytic sorting machinery. We reasoned that a potential consequence of such interactions could be to affect the fate of multiple SNX27 endosomal partners, such as transmembrane proteins or soluble accessory proteins.
Collapse
|
8
|
Zhang D, Sheng Y, Piano N, Jakuszeit T, Cozens E, Dong L, Buell AK, Pollet A, Lei IM, Wang W, Terentjev E, Huang YYS. Cancer cell migration on straight, wavy, loop and grid microfibre patterns. Biofabrication 2022; 14. [PMID: 34991078 DOI: 10.1088/1758-5090/ac48e6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/06/2022] [Indexed: 11/11/2022]
Abstract
Cell migration plays an important role in physiological and pathological processes where the fibrillar morphology of extracellular matrices (ECM) could regulate the migration dynamics. To mimic the morphological characteristics of fibrillar matrix structures, low-voltage continuous electrospinning was adapted to construct straight, wavy, looped and gridded fibre patterns made of polystyrene (of fibre diameter ca. 3 μm). Cells were free to explore their different shapes in response to the directly-adhered fibre, as well as to the neighbouring patterns. For all the patterns studied, analysing cellular migration dynamics of MDA-MB-231 (a highly migratory breast cancer cell line) demonstrated two interesting findings: first, although cells dynamically adjust their shapes and migration trajectories in response to different fibrillar environments, their average step speed is minimally affected by the fibre global pattern; secondly, a switch in behaviour was observed when the pattern features approach the upper limit of the cell body's minor axis, reflecting that cells' ability to divert from an existing fibre track is limited by the size along the cell body's minor axis. It is therefore concluded that the upper limit of cell body's minor axis might act as a guide for the design of microfibre patterns for different purposes of cell migration.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Yaqi Sheng
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Nicholas Piano
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Theresa Jakuszeit
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Edward Cozens
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Lingqing Dong
- School of Medicine, Zhejiang University, The Affiliated Stomatology Hospital., Hangzhou, Zhejiang, 310058, CHINA
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 227, 061 2800 Kgs. Lyngby, Lyngby, 2800, DENMARK
| | - Andreas Pollet
- Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, Eindhoven, Noord-Brabant, 5600 MB, NETHERLANDS
| | - Iek Man Lei
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Wenyu Wang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Eugene Terentjev
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CAMBRIDGE CB3 0HE, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
9
|
Lu J, Xu S, Huo Y, Sun D, Hu Y, Wang J, Zhang X, Wang P, Li Z, Liang M, Wu Z, Liu P. Sorting nexin 3 induces heart failure via promoting retromer-dependent nuclear trafficking of STAT3. Cell Death Differ 2021; 28:2871-2887. [PMID: 33947971 DOI: 10.1038/s41418-021-00789-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
Sorting nexins (SNXs), the retromer-associated cargo binding proteins, have emerged as critical regulators of the trafficking of proteins involved in the pathogenesis of diverse diseases. However, studies of SNXs in the development of cardiovascular diseases, especially cardiac hypertrophy and heart failure, are lacking. Here, we ask whether SNX3, the simplest structured isoform in the SNXs family, may act as a key inducer of myocardial injury. An increased level of SNX3 was observed in failing hearts from human patients and mice. Cardiac-specific Snx3 knockout (Snx3-cKO) mice and Snx3 transgenic (Snx3-cTg) mice were generated to evaluate the role of Snx3 in myocardial hypertrophy, fibrosis, and heart function by morphology, echocardiography, histological staining, and hypertrophic biomarkers. We report that Snx3-cKO in mice significantly protected against isoproterenol (ISO)-induced cardiac hypertrophy at 12 weeks. Conversely, Snx3-cTg mice were more susceptible to ISO-induced cardiac hypertrophy at 12 weeks and showed aggravated cardiac injury even heart failure at 24 weeks. Immunoprecipitation-based mass spectrometry, immunofluorescent staining, co-immunoprecipitation, localized surface plasmon resonance, and proximity ligation assay were performed to examine the direct interaction of SNX3-retromer with signal transducer and activator of transcription 3 (STAT3). We discovered that STAT3 was a new interacting partner of SNX3-retromer, and SNX3-retromer served as an essential platform for assembling gp130/JAK2/STAT3 complexes and subsequent phosphorylation of STAT3 by direct combination at EE. SNX3-retromer and STAT3 complexes were transiently imported into the nucleus after hypertrophic stimuli. The pharmacological inhibition or knockdown of STAT3 reversed SNX3 overexpression-induced myocardial injury. STAT3 overexpression blunts the beneficial function of SNX3 knockdown on hypertrophic cardiomyocytes. We show that SNX3-retromer promoted importin α3-mediated STAT3 nuclear trafficking and ultimately leading to cardiac injury. Taken together, our study reveals that SNX3 plays a key role in cardiac function and implicates SNX3 as a potential therapeutic target for cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Yuqing Huo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Yuehuai Hu
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Junjian Wang
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaolei Zhang
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Panxia Wang
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhuoming Li
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Mengya Liang
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhongkai Wu
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China.
| | - Peiqing Liu
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China.
| |
Collapse
|
10
|
Chandra M, Kendall AK, Jackson LP. Toward Understanding the Molecular Role of SNX27/Retromer in Human Health and Disease. Front Cell Dev Biol 2021; 9:642378. [PMID: 33937239 PMCID: PMC8083963 DOI: 10.3389/fcell.2021.642378] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
Aberrations in membrane trafficking pathways have profound effects in cellular dynamics of cellular sorting processes and can drive severe physiological outcomes. Sorting nexin 27 (SNX27) is a metazoan-specific sorting nexin protein from the PX-FERM domain family and is required for endosomal recycling of many important transmembrane receptors. Multiple studies have shown SNX27-mediated recycling requires association with retromer, one of the best-known regulators of endosomal trafficking. SNX27/retromer downregulation is strongly linked to Down's Syndrome (DS) via glutamate receptor dysfunction and to Alzheimer's Disease (AD) through increased intracellular production of amyloid peptides from amyloid precursor protein (APP) breakdown. SNX27 is further linked to addiction via its role in potassium channel trafficking, and its over-expression is linked to tumorigenesis, cancer progression, and metastasis. Thus, the correct sorting of multiple receptors by SNX27/retromer is vital for normal cellular function to prevent human diseases. The role of SNX27 in regulating cargo recycling from endosomes to the cell surface is firmly established, but how SNX27 assembles with retromer to generate tubulovesicular carriers remains elusive. Whether SNX27/retromer may be a putative therapeutic target to prevent neurodegenerative disease is now an emerging area of study. This review will provide an update on our molecular understanding of endosomal trafficking events mediated by the SNX27/retromer complex on endosomes.
Collapse
Affiliation(s)
- Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
11
|
Bao Z, Zhou S, Zhou H. Sorting Nexin 27 as a potential target in G protein‑coupled receptor recycling for cancer therapy (Review). Oncol Rep 2020; 44:1779-1786. [PMID: 33000258 PMCID: PMC7551096 DOI: 10.3892/or.2020.7766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
G protein‑coupled receptors (GPCRs) are the largest family of membrane receptors and activate several downstream signaling pathways involved in numerous physiological cellular processes. GPCRs are usually internalized and desensitized by intracellular signals. Numerous studies have shown that several GPCRs interact with sorting nexin 27 (SNX27), a cargo selector of the retromer complex, and are recycled from endosomes to the plasma membrane. Recycled GPCRs usually contain specific C‑terminal postsynaptic density protein 95/Discs large protein/Zonula occludens 1 (PDZ) binding motifs, which are specifically recognized by SNX27, and return to the cell surface as functionally naïve receptors. Aberrant endosome‑to‑membrane recycling of GPCRs mediated by SNX27 may serve a critical role in cancer growth and development. Therefore, SNX27 may be a novel target for cancer therapies.
Collapse
Affiliation(s)
- Zixu Bao
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of Clinical Medicine (5+3 Programme), Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shijun Zhou
- Department of Infectious Disease, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Haisheng Zhou
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Center for Scientific Research, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
12
|
Yang L, Tan W, Yang X, You Y, Wang J, Wen G, Zhong J. Sorting nexins: A novel promising therapy target for cancerous/neoplastic diseases. J Cell Physiol 2020; 236:3317-3335. [PMID: 33090492 DOI: 10.1002/jcp.30093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
Sorting nexins (SNXs) are a diverse group of cytoplasmic- and membrane-associated phosphoinositide-binding proteins containing the PX domain proteins. The function of SNX proteins in regulating intracellular protein trafficking consists of endocytosis, endosomal sorting, and endosomal signaling. Dysfunctions of SNX proteins are demonstrated to be involved in several cancerous/neoplastic diseases. Here, we review the accumulated evidence of the molecular structure and biological function of SNX proteins and discuss the regulatory role of SNX proteins in distinct cancerous/neoplastic diseases. SNX family proteins may be a valuable potential biomarker and therapeutic strategy for diagnostics and treatment of cancerous/neoplastic diseases.
Collapse
Affiliation(s)
- Lu Yang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Weihua Tan
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Emergency Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xinzhi Yang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Yong You
- Research Lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jing Wang
- Research Lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Gebo Wen
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing Zhong
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
13
|
Sharma P, Parveen S, Shah LV, Mukherjee M, Kalaidzidis Y, Kozielski AJ, Rosato R, Chang JC, Datta S. SNX27-retromer assembly recycles MT1-MMP to invadopodia and promotes breast cancer metastasis. J Cell Biol 2020; 219:132732. [PMID: 31820782 PMCID: PMC7039210 DOI: 10.1083/jcb.201812098] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/26/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
Recycling of MT-MMPs to actin-rich membrane-protrusive structures promotes breast cancer invasion. This study shows that SNX27–retromer, an endosomal sorting and recycling machinery, interacts with MT1-MMP and regulates its transport to the cell surface, thus promoting matrix invasive activity of the breast cancer cells. A variety of metastatic cancer cells use actin-rich membrane protrusions, known as invadopodia, for efficient ECM degradation, which involves trafficking of proteases from intracellular compartments to these structures. Here, we demonstrate that in the metastatic breast cancer cell line MDA-MB-231, retromer regulates the matrix invasion activity by recycling matrix metalloprotease, MT1-MMP. We further found that MT2-MMP, another abundantly expressed metalloprotease, is also invadopodia associated. MT1- and MT2-MMP showed a high degree of colocalization but were located on the distinct endosomal domains. Retromer and its associated sorting nexin, SNX27, phenocopied each other in matrix degradation via selectively recycling MT1-MMP but not MT2-MMP. ITC-based studies revealed that both SNX27 and retromer could directly interact with MT1-MMP. Analysis from a publicly available database showed SNX27 to be overexpressed or frequently altered in the patients having invasive breast cancer. In xenograft-based studies, SNX27-depleted cell lines showed prolonged survival of SCID mice, suggesting a possible implication for overexpression of the sorting nexin in tumor samples.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Sameena Parveen
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Lekha V Shah
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Madhumita Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | | | | | | | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| |
Collapse
|
14
|
Lenka G, Shan J, Halabi N, Abuaqel SWJ, Goswami N, Schmidt F, Zaghlool S, Romero AR, Subramanian M, Boujassoum S, Al‐Bozom I, Gehani S, Khori NA, Bedognetti D, Suhre K, Ma X, Dömling A, Rafii A, Chouchane L. STXBP6, reciprocally regulated with autophagy, reduces triple negative breast cancer aggressiveness. Clin Transl Med 2020. [PMCID: PMC7418817 DOI: 10.1002/ctm2.147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Govinda Lenka
- Department of Microbiology and ImmunologyWeill Cornell Medicine New York USA
- Genetic Intelligence Laboratory, Weill Cornell Medicine‐QatarQatar Foundation Doha Qatar
| | - Jingxuan Shan
- Genetic Intelligence Laboratory, Weill Cornell Medicine‐QatarQatar Foundation Doha Qatar
- Department of Genetic MedicineWeill Cornell Medicine New York USA
| | - Najeeb Halabi
- Genetic Intelligence Laboratory, Weill Cornell Medicine‐QatarQatar Foundation Doha Qatar
- Department of Genetic MedicineWeill Cornell Medicine New York USA
| | - Sirin W J Abuaqel
- Department of Microbiology and ImmunologyWeill Cornell Medicine New York USA
- Genetic Intelligence Laboratory, Weill Cornell Medicine‐QatarQatar Foundation Doha Qatar
- Department of Genetic MedicineWeill Cornell Medicine New York USA
| | - Neha Goswami
- Proteomics Core, Weill Cornell Medicine‐QatarQatar Foundation Doha Qatar
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine‐QatarQatar Foundation Doha Qatar
| | - Shaza Zaghlool
- Bioinformatics Core, Weill Cornell Medicine‐QatarQatar foundation Doha Qatar
| | - Atilio Reyes Romero
- Drug Design Group, Department of PharmacyUniversity of Groningen Groningen Netherlands
| | - Murugan Subramanian
- Department of Microbiology and ImmunologyWeill Cornell Medicine New York USA
- Genetic Intelligence Laboratory, Weill Cornell Medicine‐QatarQatar Foundation Doha Qatar
- Department of Genetic MedicineWeill Cornell Medicine New York USA
| | - Salha Boujassoum
- Department of Medical OncologyNational Center for Cancer Care and ResearchHamad Medical Corporation Doha Qatar
| | - Issam Al‐Bozom
- Department of Laboratory Medicine and PathologyHamad Medical Corporation Doha Qatar
| | - Salah Gehani
- Department of SurgeryHamad Medical Corporation Doha Qatar
| | | | | | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine‐QatarQatar foundation Doha Qatar
| | - Xiaojing Ma
- Department of Microbiology and ImmunologyWeill Cornell Medicine New York USA
| | - Alexander Dömling
- Drug Design Group, Department of PharmacyUniversity of Groningen Groningen Netherlands
| | - Arash Rafii
- Genetic Intelligence Laboratory, Weill Cornell Medicine‐QatarQatar Foundation Doha Qatar
- Department of Genetic MedicineWeill Cornell Medicine New York USA
| | - Lotfi Chouchane
- Department of Microbiology and ImmunologyWeill Cornell Medicine New York USA
- Genetic Intelligence Laboratory, Weill Cornell Medicine‐QatarQatar Foundation Doha Qatar
- Department of Genetic MedicineWeill Cornell Medicine New York USA
| |
Collapse
|
15
|
González-Mancha N, Mérida I. Interplay Between SNX27 and DAG Metabolism in the Control of Trafficking and Signaling at the IS. Int J Mol Sci 2020; 21:ijms21124254. [PMID: 32549284 PMCID: PMC7352468 DOI: 10.3390/ijms21124254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Recognition of antigens displayed on the surface of an antigen-presenting cell (APC) by T-cell receptors (TCR) of a T lymphocyte leads to the formation of a specialized contact between both cells named the immune synapse (IS). This highly organized structure ensures cell–cell communication and sustained T-cell activation. An essential lipid regulating T-cell activation is diacylglycerol (DAG), which accumulates at the cell–cell interface and mediates recruitment and activation of proteins involved in signaling and polarization. Formation of the IS requires rearrangement of the cytoskeleton, translocation of the microtubule-organizing center (MTOC) and vesicular compartments, and reorganization of signaling and adhesion molecules within the cell–cell junction. Among the multiple players involved in this polarized intracellular trafficking, we find sorting nexin 27 (SNX27). This protein translocates to the T cell–APC interface upon TCR activation, and it is suggested to facilitate the transport of cargoes toward this structure. Furthermore, its interaction with diacylglycerol kinase ζ (DGKζ), a negative regulator of DAG, sustains the precise modulation of this lipid and, thus, facilitates IS organization and signaling. Here, we review the role of SNX27, DAG metabolism, and their interplay in the control of T-cell activation and establishment of the IS.
Collapse
|
16
|
Zhang J, Lu R, Zhang Y, Matuszek Ż, Zhang W, Xia Y, Pan T, Sun J. tRNA Queuosine Modification Enzyme Modulates the Growth and Microbiome Recruitment to Breast Tumors. Cancers (Basel) 2020; 12:E628. [PMID: 32182756 PMCID: PMC7139606 DOI: 10.3390/cancers12030628] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transfer RNA (tRNA) queuosine (Q)-modifications occur specifically in 4 cellular tRNAs at the wobble anticodon position. tRNA Q-modification in human cells depends on the gut microbiome because the microbiome product queuine is required for its installation by the enzyme Q tRNA ribosyltransferase catalytic subunit 1 (QTRT1) encoded in the human genome. Queuine is a micronutrient from diet and microbiome. Although tRNA Q-modification has been studied for a long time regarding its properties in decoding and tRNA fragment generation, how QTRT1 affects tumorigenesis and the microbiome is still poorly understood. RESULTS We generated single clones of QTRT1-knockout breast cancer MCF7 cells using Double Nickase Plasmid. We also established a QTRT1-knockdown breast MDA-MB-231 cell line. The impacts of QTRT1 deletion or reduction on cell proliferation and migration in vitro were evaluated using cell culture, while the regulations on tumor growth in vivo were evaluated using a xenograft BALB/c nude mouse model. We found that QTRT1 deficiency in human breast cancer cells could change the functions of regulation genes, which are critical in cell proliferation, tight junction formation, and migration in human breast cancer cells in vitro and a breast tumor mouse model in vivo. We identified that several core bacteria, such as Lachnospiraceae, Lactobacillus, and Alistipes, were markedly changed in mice post injection with breast cancer cells. The relative abundance of bacteria in tumors induced from wildtype cells was significantly higher than those of QTRT1 deficiency cells. CONCLUSIONS Our results demonstrate that the QTRT1 gene and tRNA Q-modification altered cell proliferation, junctions, and microbiome in tumors and the intestine, thus playing a critical role in breast cancer development.
Collapse
Affiliation(s)
- Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
| | - Rong Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
| | - Żaneta Matuszek
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA; (Ż.M.); (T.P.)
| | - Wen Zhang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA;
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
| | - Tao Pan
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA; (Ż.M.); (T.P.)
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|