1
|
Cui Y, Zhao S, Zhang C, Su W, Chen X, Wang Y, Yang B, Wu K, Chen ZJ, Zhang H, Zhao H. Infertile females with biallelic mutations in APC/C genes are characterized by oocyte or early embryo defects. J Assist Reprod Genet 2025:10.1007/s10815-025-03465-x. [PMID: 40238067 DOI: 10.1007/s10815-025-03465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
PURPOSE The objective of this study was to elucidate the role of anaphase promoting complex/cyclosome (APC/C)-related genes in cases of female infertility characterized by disturbances in oocyte maturation, failure of fertilization, and cessation of early embryonic growth among three distinct Chinese familial lineages. METHODS We conducted whole-exome sequencing of patients with female infertility from 639 unrelated Chinese families and three probands with APC/C gene mutations were screened. Structure modeling and in vitro experiments were performed to analyze the effects of CDC23 and APC13 variants. RESULTS We identified six rare missense variants in APC/C genes, including two compound heterozygous missense variants of CDC23 (c.A1277G, c.A833G, c.C182T and c.C301T) from case 1 and case 2 and one compound heterozygous variant of APC13 (c.C6A and c.116_126del) from case 3. These APC/C gene mutations all showed a recessive inheritance pattern. These mutations are conserved across different species. Mutation Taster, SIFT and PPH2 forecast that these variants are inclined towards exerting a deleterious effect. Structural analysis indicated that these mutations may result in changes in the chemical bonds between themselves and other APC/C subunits. In vitro experimental data suggested that mutations associated with CDC23 result in dysregulated protein expression, whereas missense mutation in APC13 is implicated in aberrant cellular localization patterns. CONCLUSION Our findings expand the genetic spectrum of APC/C genes, especially CDC23 and APC13 in female infertility, indicating that the significance of APC/C genes in female sterility should be emphasized in the future. And it provides a new diagnostic and therapeutic target for genetic counseling.
Collapse
Affiliation(s)
- Ying Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Shuai Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- Shandong Health Commission Key Laboratory of Major Gynaecological Disease Control, Jinan, Shandong Province, China
- Department of Obstetrics and Gynecology, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Changlong Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Wei Su
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Xiaolei Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Yang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Bohan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Keliang Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honghui Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China.
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China.
| |
Collapse
|
2
|
Kline BL, Siddall NA, Wijaya F, Stuart CJ, Orlando L, Bakhshalizadeh S, Afkhami F, Bell KM, Jaillard S, Robevska G, van den Bergen JA, Shahbazi S, van Hoof A, Ayers KL, Hime GR, Sinclair AH, Tucker EJ. Functional characterization of human recessive DIS3 variants in premature ovarian insufficiency†. Biol Reprod 2025; 112:102-118. [PMID: 39400047 PMCID: PMC11736438 DOI: 10.1093/biolre/ioae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 10/15/2024] Open
Abstract
Premature ovarian insufficiency (POI) is characterized by the loss or complete absence of ovarian activity in women under the age of 40. Clinical presentation of POI varies with phenotypic severity ranging from premature loss of menses to complete gonadal dysgenesis. POI is genetically heterogeneous with >100 causative gene variants identified thus far. The etiology of POI varies from syndromic, idiopathic, monogenic to autoimmune causes the condition. Genetic diagnoses are beneficial to those impacted by POI as it allows for improved clinical management and fertility preservation. Identifying novel variants in candidate POI genes, however, is insufficient to make clinical diagnoses. The impact of missense variants can be predicted using bioinformatic algorithms but computational approaches have limitations and can generate false positive and false negative predictions. Functional characterization of missense variants, is therefore imperative, particularly for genes lacking a well-established genotype:phenotype correlation. Here we used whole-exome sequencing (WES) to identify the first case of a homozygous missense variant in DIS3 (c.2320C > T; p.His774Tyr) a critical component of the RNA exosome in a POI patient. This adds to the previously described compound heterozygous patient. We perform the first functional characterization of a human POI-associated DIS3 variant. A slight defect in mitotic growth was caused by the variant in a Saccharomyces cerevisiae model. Transgenic rescue of Dis3 knockdown in Drosophila melanogaster with human DIS3 carrying the patient variant led to aberrant ovarian development and egg chamber degeneration. This supports a potential deleterious impact of the human c.2320C > T; p.His774Tyr variant.
Collapse
Affiliation(s)
- Brianna L Kline
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Fernando Wijaya
- Department of Anatomy and Physiology, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Catherine J Stuart
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, 7000 Fannin, Suite 1706, Houston, TX 77030, USA
| | - Luisa Orlando
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, 7000 Fannin, Suite 1706, Houston, TX 77030, USA
| | - Shabnam Bakhshalizadeh
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Fateme Afkhami
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran Province, Tehran, Jalal Al Ahmad St, P9CJ+HC9, Iran
| | - Katrina M Bell
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
| | - Sylvie Jaillard
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
- INSERM, Institut de Recherche en Santé, Environement et Travail, University of Rennes, 9 Av. du Professeur Léon Bernard, 35000, Rennes, France
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, 2 rue Henri Le Guilloux, 35033 Rennes CEDEX 9F-35033, France
| | - Gorjana Robevska
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
| | - Jocelyn A van den Bergen
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
| | - Shirin Shahbazi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran Province, Tehran, Jalal Al Ahmad St, P9CJ+HC9, Iran
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, 7000 Fannin, Suite 1706, Houston, TX 77030, USA
| | - Katie L Ayers
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| | - Elena J Tucker
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville VIC 3052, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Melbourne, Australia
| |
Collapse
|
3
|
Gong W, Liu J, Mu Q, Chahaer T, Liu J, Ding W, Bou T, Wu Z, Zhao Y. Melatonin promotes proliferation of Inner Mongolia cashmere goat hair follicle papilla cells through Wnt10b. Genomics 2024; 116:110844. [PMID: 38608737 DOI: 10.1016/j.ygeno.2024.110844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The study demonstrated that melatonin (MT) can induce the development of secondary hair follicles in Inner Mongolian cashmere goats through the Wnt10b gene, leading to secondary dehairing. However, the mechanisms underlying the expression and molecular function of Wnt10b in dermal papilla cells (DPC) remain unknown. This research aimed to investigate the impact of MT on DPC and the regulation of Wnt10b expression, function, and molecular mechanisms in DPC. The findings revealed that MT promotes DPC proliferation and enhances DPC activity. Co-culturing DPC with overexpressed Wnt10b and MT showed a significant growth promotion. Subsequent RNA sequencing (RNA-seq) of overexpressed Wnt10b and control groups unveiled the regulatory role of Wnt10b in DPC. Numerous genes and pathways, including developmental pathways such as Wnt and MAPK, as well as processes like hair follicle morphogenesis and hair cycle, were identified. These results suggest that Wnt10b promotes the growth of secondary hair follicles in Inner Mongolian cashmere goats by regulating crucial factors and pathways in DPC proliferation.
Collapse
Affiliation(s)
- Wendian Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China; Equine Research Center, College of Animal Science, Hohhot, China
| | - Junyang Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China
| | - Qing Mu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China
| | - Tergel Chahaer
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China
| | - Jiasen Liu
- Department of Inner Mongolia Academy of Agricultural Animal & Husbandry Sciences, Hohhot, China
| | - Wenqi Ding
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Equine Research Center, College of Animal Science, Hohhot, China
| | - Tugeqin Bou
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Equine Research Center, College of Animal Science, Hohhot, China
| | - Zixian Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China; Department of Inner Mongolia Academy of Agricultural Animal & Husbandry Sciences, Hohhot, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China.
| |
Collapse
|
4
|
Zhang Y, Lai J, Wang X, Li M, Zhang Y, Ji C, Chen Q, Lu S. Genome-wide single nucleotide polymorphism (SNP) data reveal potential candidate genes for litter traits in a Yorkshire pig population. Arch Anim Breed 2023; 66:357-368. [PMID: 38111388 PMCID: PMC10726026 DOI: 10.5194/aab-66-357-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/10/2023] [Indexed: 12/20/2023] Open
Abstract
The litter trait is one of the most important economic traits, and increasing litter size is of great economic value in the pig industry. However, the molecular mechanisms underlying pig litter traits remain elusive. To identify molecular markers and candidate genes for pig litter traits, a genome-wide association study (GWAS) and selection signature analysis were conducted in a Yorkshire pig population. A total of 518 producing sows were genotyped with Illumina Porcine SNP 50 BeadChip, and 1969 farrowing records for the total number born (TNB), the number born alive (NBA), piglets born dead (PBD), and litter weight born alive (LWB) were collected. Then, a GWAS was performed for the four litter traits using a repeatability model. Based on the estimated breeding values (EBVs) of TNB, 15 high- and 15 low-prolificacy individuals were selected from the 518 sows to implement selection signature analysis. Subsequently, the selection signatures affecting the litter traits of sows were detected by using two methods including the fixation index (FST) and θ π . Combining the results of the GWAS and selection signature analysis, 20 promising candidate genes (NKAIN2, IGF1R, KISS1R, TYRO3, SPINT1, ADGRF5, APC2, PTBP1, CLCN3, CBR4, HPF1, FAM174A, SCP2, CLIC1, ZFYVE9, SPATA33, KIF5C, EPC2, GABRA2, and GABRA4) were identified. These findings provide novel insights into the genetic basis of pig litter traits and will be helpful for improving the reproductive performances of sows in pig breeding.
Collapse
Affiliation(s)
- Yu Zhang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jinhua Lai
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiaoyi Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Mingli Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanlin Zhang
- Yunnan Fuyuefa Livestock and Poultry Feeding Company Limited, Kunming, 650300, China
| | - Chunlv Ji
- Yunnan Fuyuefa Livestock and Poultry Feeding Company Limited, Kunming, 650300, China
| | - Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
5
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Ma Y, Du C, Xie X, Zhang Y, Wang C, Xu J, Xia G, Yang Y. To explore the regulatory role of Wnt/P53/Caspase3 signal in mouse ovarian development based on LFQ proteomics. J Proteomics 2023; 272:104772. [PMID: 36414229 DOI: 10.1016/j.jprot.2022.104772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Early ovarian follicular development is regulated by multiple proteins and signaling pathways, including the Wnt gene. To explore the regulatory mechanism of Wnt signaling on early ovarian follicular development, ovaries from 17.5 days post coitum (17.5 dpc) mice were collected and cultured in vitro for four days in the presence of IWP2 as a Wnt activity inhibitor and KN93 as a CaMKII inhibitor. LFQ proteomics technique was then used to analyze the significant differentially abundant (P-SDA) 93 and 262 proteins in the IWP2 and KN93 groups, respectively. Of these, 63 up-regulated proteins and 30 down-regulated proteins were identified for IWP2, along with 3 significant KEGG pathways (P < 0.05). For the KN93 group, 168 up-regulated proteins and 94 down-regulated ones were P-SDA, with 9 significant KEGG pathways also noted (P < 0.05). In both IWP2 and KN93 groups, key pathways (Wnt signaling pathway, Notch signaling pathway, P53 signaling pathway, TGF-β signaling pathway, ovarian steroid production) and metabolic regulation (energy metabolism, metal ion metabolism) were found to be related to early ovarian follicular development. Finally, western blotting demonstrated the regulatory role of Wnt/P53/Caspase3 signaling pathway in mouse ovarian development. These results contribute new knowledge to the understanding of regulatory factors of early ovarian follicular development. SIGNIFICANCE: In this study, label-free quantification (LFQ) was used in combination with liquid chromatography-mass spectrometer (LC-MS/MS) to study potential changes in the proteomic profiles of embryonic mice subjected to Wnt inhibitor IWP2 and CaMKIIinhibitor KN93. In addition, bioinformatics and comparative analyses were performed using publicly available proteomics databases to further explore the underlying mechanisms associated with early mouse ovarian growth and development.
Collapse
Affiliation(s)
- Yabo Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Changzheng Du
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xianguo Xie
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yan Zhang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Chao Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinrui Xu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guoliang Xia
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, Ningxia 750021, China; School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
7
|
The role of circular RNAs in the pathophysiology of oral squamous cell carcinoma. Noncoding RNA Res 2022; 8:109-114. [DOI: 10.1016/j.ncrna.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
|
8
|
Chhetri D, Vengadassalapathy S, Venkadassalapathy S, Balachandran V, Umapathy VR, Veeraraghavan VP, Jayaraman S, Patil S, Iyaswamy A, Palaniyandi K, Gnanasampanthapandian D. Pleiotropic effects of DCLK1 in cancer and cancer stem cells. Front Mol Biosci 2022; 9:965730. [PMID: 36250024 PMCID: PMC9560780 DOI: 10.3389/fmolb.2022.965730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Doublecortin-like kinase 1 (DCLK1), a protein molecule, has been identified as a tumor stem cell marker in the cancer cells of gastrointestinal, pancreas, and human colon. DCLK1 expression in cancers, such as breast carcinoma, lung carcinoma, hepatic cell carcinoma, tuft cells, and human cholangiocarcinoma, has shown a way to target the DCLK1 gene and downregulate its expression. Several studies have discussed the inhibition of tumor cell proliferation along with neoplastic cell arrest when the DCLK1 gene, which is expressed in both cancer and normal cells, was targeted successfully. In addition, previous studies have shown that DCLK1 plays a vital role in various cancer metastases. The correlation of DCLK1 with numerous stem cell receptors, signaling pathways, and genes suggests its direct or an indirect role in promoting tumorigenesis. Moreover, the impact of DCLK1 was found to be related to the functioning of an oncogene. The downregulation of DCLK1 expression by using targeted strategies, such as embracing the use of siRNA, miRNA, CRISPR/Cas9 technology, nanomolecules, specific monoclonal antibodies, and silencing the pathways regulated by DCLK1, has shown promising results in both in vitro and in vivo studies on gastrointestinal (GI) cancers. In this review, we will discuss about the present understanding of DCLK1 and its role in the progression of GI cancer and metastasis.
Collapse
Affiliation(s)
- Dibyashree Chhetri
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| | - Srinivasan Vengadassalapathy
- Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | | - Varadharaju Balachandran
- Department of Physiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Chennai, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Ashok Iyaswamy
- Centre for Parkinsons Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Kanagaraj Palaniyandi, ; Dhanavathy Gnanasampanthapandian,
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Kanagaraj Palaniyandi, ; Dhanavathy Gnanasampanthapandian,
| |
Collapse
|
9
|
Zhang QY, Li X, Zhou XY, Li Y, Zhang J, Zhang XF, Liu YD, Chen YX, Wu XM, Ma LZ, Chen X, Chen SL. Study of differential proteomics in granulosa cells of premature ovarian insufficiency (POI) and the roles and mechanism of RAC1 in granulosa cells. Mol Cell Endocrinol 2022; 555:111719. [PMID: 35850487 DOI: 10.1016/j.mce.2022.111719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
In the present study, we focused on characterizing the proteome in granulosa cells in patients with biochemical premature ovarian insufficiency (bPOI) in order to identify differential proteins and investigate the fundamental mechanisms of POI. A total of 2688 proteins were identified based on the data-independent acquisition method, and 70 differentially expressed proteins were significant. Bioinformatic analyses, including gene expression pattern analysis, gene ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and Search Tool for the Retrieval of Interacting Genes/Proteins analysis, revealed discrete modules and the underlying molecular mechanisms in bPOI. Importantly, we observed that Ras-related C3 botulinum toxin substrate 1 (RAC1) was downregulated in the granulosa cells of bPOI. Low expression of RAC1 may affect the development process of POI by affecting the proliferation, apoptosis, and hormone synthesis of granulosa cells. Downregulation of RAC1 expression in the KGN and COV434 cells inhibited cell proliferation, blocked cells in the G1/G0 phase, and promoted apoptosis. Western blot results showed that β-catenin and cyclin D1 in the KGN and COV434 cells transfected with RAC1-siRNA were downregulated, while P21 and Bax were upregulated. Knocking down RAC1 in the KGN cells or adding the RAC1 enzyme inhibitor to the human luteinized granulosa cells (hLGC) inhibited the synthesis of E2, and the expression of aromatase and follicle-stimulating hormone receptor (FSHR) was reduced.
Collapse
Affiliation(s)
- Qing-Yan Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xin Li
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xing-Yu Zhou
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying Li
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Fei Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Dong Liu
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying-Xue Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Min Wu
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lin-Zi Ma
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xin Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shi-Ling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Zhu S, Bao H, Zhang MC, Liu H, Wang Y, Lin C, Zhao X, Liu SL. KAZN as a diagnostic marker in ovarian cancer: a comprehensive analysis based on microarray, mRNA-sequencing, and methylation data. BMC Cancer 2022; 22:662. [PMID: 35710397 PMCID: PMC9204993 DOI: 10.1186/s12885-022-09747-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Background Ovarian cancer (OC) is among the deadliest malignancies in women and the lack of appropriate markers for early diagnosis leads to poor prognosis in most cases. Previous studies have shown that KAZN is involved in multiple biological processes during development, such as cell proliferation, differentiation, and apoptosis, so defects or aberrant expression of KAZN might cause queer cell behaviors such as malignancy. Here we evaluated the KAZN expression and methylation levels for possible use as an early diagnosis marker for OC. Methods We used data from Gene Expression Omnibus (GEO) microarrays, The Cancer Genome Atlas (TCGA), and Clinical Proteomic Tumor Analysis Consortium (CPTAC) to investigate the correlations between KAZN expression and clinical characteristics of OC by comparing methylation levels of normal and OC samples. The relationships among differentially methylated sites in the KAZN gene, corresponding KAZN mRNA expression levels and prognosis were analyzed. Results KAZN was up-regulated in ovarian epithelial tumors and the expression of KAZN was correlated with the patients’ survival time. KAZN CpG site cg17657618 was positively correlated with the expression of mRNA and the methylation levels were significantly differential between the group of stage “I and II” and the group of stage “III and IV”. This study also presents a new method to classify tumor and normal tissue in OC using DNA methylation pattern in the KAZN gene body region. Conclusions KAZN was involved in ovarian cancer pathogenesis. Our results demonstrate a new direction for ovarian cancer research and provide a potential diagnostic biomarker as well as a novel therapeutic target for clinical application. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09747-2.
Collapse
Affiliation(s)
- Songling Zhu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Hongxia Bao
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Meng-Chun Zhang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Huidi Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yao Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Caiji Lin
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xingjuan Zhao
- Physical Examination Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China. .,HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China. .,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China. .,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.
| |
Collapse
|
11
|
The expression profile of WNT/β-catanin signalling genes in human oocytes obtained from polycystic ovarian syndrome (PCOS) patients. ZYGOTE 2022; 30:536-542. [PMID: 35357301 DOI: 10.1017/s0967199422000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is a chronic hormonal turmoil that is demonstrated in 2.2-27% of women of pre-menopausal age. This disease is a complex multigenic disorder that results from the interaction between excess androgen expression, genetic susceptibility and environmental influences. PCOS is associated with 40% of female infertility and endometrial cancer. The WNT/β-catenin signalling transduction pathway regulates aspects of cell proliferation, migration and cell fate determination in the tissue along with early embryonic development and controls the proper activation of the female reproductive system, along with regulating hormonal activity in ovarian granulosa cells. In the current study, we investigated the expression profiles of WNT/β-catenin signalling pathway genes (AXIN2, FZD4, TCF4, WNT3, WNT4, WNT5A, WNT7A, WNT1, APC, GSK3B and β-catenin) in a total of 13 oocyte samples. Seven of these samples were from polycystic women and six were from healthy women. The results of this study displayed the absence of expression of AXIN2, FZD4, TCF4, WNT5A, WNT3, WNT4 and WNT7A genes in ovaries from women with PCOS and from healthy women. While APC and β-catenin expression levels were similar in the oocytes of both patients and controls, conversely, WNT1 and GSK3β genes both showed elevated expression in the oocytes of patients with PCOS, therefore suggesting an association between aberrant expression of WNT1 and GSK3β and the pathogenesis of PCOS. The observations of the current study could be helpful to provide evidence regarding the pathogenesis of PCOS and its treatment.
Collapse
|
12
|
Vohra V, Chhotaray S, Gowane G, Alex R, Mukherjee A, Verma A, Deb SM. Genome-Wide Association Studies in Indian Buffalo Revealed Genomic Regions for Lactation and Fertility. Front Genet 2021; 12:696109. [PMID: 34616425 PMCID: PMC8488374 DOI: 10.3389/fgene.2021.696109] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
Murrah breed of buffalo is an excellent dairy germplasm known for its superior milk quality in terms of milk fat and solids-not-fat (SNF); however, it is often reported that Indian buffaloes had lower lactation and fertility potential compared to the non-native cattle of the country. Recent techniques, particularly the genome-wide association studies (GWAS), to identify genomic variations associated with lactation and fertility traits offer prospects for systematic improvement of buffalo. DNA samples were sequenced using the double-digestion restriction-associated DNA (RAD) tag genotyping-by-sequencing. The bioinformatics pipeline was standardized to call the variants, and single-nucleotide polymorphisms (SNPs) qualifying the stringent quality check measures were retained for GWAS. Over 38,000 SNPs were used to perform GWAS on the first two principal components of test-day records of milk yields, fat percentages, and SNF percentages, separately. GWAS was also performed on 305 days’ milk yield; lactation persistency was estimated through the rate of decline after attaining the peak yield method, along with three other standard methods; and breeding efficiency, post-partum breeding interval, and age at sexual maturity were considered fertility traits. Significant association of SNPs was observed for the first principal component, explaining the maximum proportion of variation in milk yield. Furthermore, some potential genomic regions were identified to have a potential role in regulating milk yield and fertility in Murrah. Identification of such genomic regions shall help in carrying out an early selection of high-yielding persistent Murrah buffaloes and, in the long run, would be helpful in shaping their future genetic improvement programs.
Collapse
Affiliation(s)
- Vikas Vohra
- Buffalo Breeding Lab, Animal Genetics and Breeding Division, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, India
| | - Supriya Chhotaray
- Buffalo Breeding Lab, Animal Genetics and Breeding Division, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, India
| | - Gopal Gowane
- Buffalo Breeding Lab, Animal Genetics and Breeding Division, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, India
| | - Rani Alex
- Buffalo Breeding Lab, Animal Genetics and Breeding Division, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, India
| | - Anupama Mukherjee
- Buffalo Breeding Lab, Animal Genetics and Breeding Division, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, India
| | - Archana Verma
- Buffalo Breeding Lab, Animal Genetics and Breeding Division, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, India
| | - Sitangsu Mohan Deb
- Buffalo Breeding Lab, Animal Genetics and Breeding Division, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, India
| |
Collapse
|
13
|
Guo S, Zhu KX, Yu WH, Wang T, Li S, Wang YX, Zhang CC, Guo JQ. SH3PXD2A-AS1/miR-330-5p/UBA2 ceRNA network mediates the progression of colorectal cancer through regulating the activity of the Wnt/β-catenin signaling pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:1969-1980. [PMID: 33073888 DOI: 10.1002/tox.23038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/17/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Long non-coding RNAs have important roles in the occurrence and progression of various cancers. However, the molecular mechanism of lncRNAs in colorectal cancer (CRC) is not well illustrated. Thus, we used bioinformatics methods to find potential lncRNAs associated with CRC progression, and chose SH3PXD2A-AS1 as a candidate for further analysis. The roles of SH3PXD2A-AS1 in CRC cells were determined by CCK-8, transwell invasion, wound healing and flow cytometry assays. Besides, we established the CRC tumor models in nude mice to study the effect of SH3PXD2A-AS1 on the tumor growth. Based on the ceRNA hypothesis, we used miRDB and miRTarBase websites to identify the SH3PXD2A-AS1-related ceRNA regulatory network, and measured the roles of this network in CRC cells. The results revealed that the expression profiles of SH3PXD2A-AS1 from GEO and TCGA databases showed an aberrant high level in CRC tissues compared with colorectal normal tissues. SH3PXD2A-AS1 over-expression was also found in CRC cells. SH3PXD2A-AS1 knockdown inhibited the CRC cellular proliferation, invasion and migration but induced apoptosis. Besides, SH3PXD2A-AS1 knockdown also suppressed the growth of CRC tumors. Furthermore, SH3PXD2A-AS1 could function as a ceRNA of miR-330-5p. Additionally, UBA2 was proved to be a target gene of miR-330-5p. Moreover, SH3PXD2A-AS1 knockdown downregulated UBA2 expression through sponging miR-330-5p to inactivate the Wnt/β-catenin signaling pathway, thereby inhibiting the cell growth and promoting apoptosis. Therefore, the SH3PXD2A-AS1/miR-330-5p/UBA2 network could regulate the progression of CRC through the Wnt/β-catenin pathway. These findings offer new sights for understanding the pathogenesis of CRC and provide potential biomarkers for CRC treatment.
Collapse
Affiliation(s)
- Shuang Guo
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Kong-Xi Zhu
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Wei-Hua Yu
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Teng Wang
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Shuai Li
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Yun-Xia Wang
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Chen-Chen Zhang
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Jian-Qiang Guo
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| |
Collapse
|
14
|
Contrasting effects of the Toll-like receptor 4 in determining ovarian follicle endowment and fertility in female adult mice. ZYGOTE 2021; 30:227-233. [PMID: 34405787 DOI: 10.1017/s096719942100054x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Toll-like receptor 4 (TLR4) is best known for its role in bacteria-produced lipopolysaccharide recognition. Regarding female reproduction, TLR4 is expressed by murine cumulus cells and participates in ovulation and in cumulus-oocyte complex (COC) expansion, maternal-fetal interaction and preterm labour. Despite these facts, the role of TLR4 in ovarian physiology is not fully understood. Therefore, the aim of the present study was to investigate the effects of TLR4 genetic ablation on mice folliculogenesis and female fertility, through analysis of reproductive crosses, ovarian responsiveness and follicular quantification in TLR4-/- (n = 94) and C57BL/6 mice [wild type (WT), n = 102]. TLR4-deficient pairs showed a reduced number of pups per litter (P = 0.037) compared with WT. TLR4-/- mice presented more primordial, primary, secondary and antral follicles (P < 0.001), however there was no difference in estrous cyclicity (P > 0.05). A lower (P = 0.006) number of COC was recovered from TLR4-/- mice oviducts after superovulation, and in heterozygous pairs, TLR4-/- females also showed a reduction in the pregnancy rate and in the number of fetuses per uterus (P = 0.007) when compared with WT. Altogether, these data suggest that TLR4 plays a role in the regulation of murine folliculogenesis and in determining ovarian endowment. TLR4 deficiency may affect ovulation and pregnancy rates, potentially decreasing fertility, therefore the potential side effects of its blockade have to be carefully investigated.
Collapse
|
15
|
Leal LF, Szarek E, Berthon A, Nesterova M, Faucz FR, London E, Mercier C, Abu-Asab M, Starost MF, Dye L, Bilinska B, Kotula-Balak M, Antonini SR, Stratakis CA. Pde8b haploinsufficiency in mice is associated with modest adrenal defects, impaired steroidogenesis, and male infertility, unaltered by concurrent PKA or Wnt activation. Mol Cell Endocrinol 2021; 522:111117. [PMID: 33338547 DOI: 10.1016/j.mce.2020.111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/09/2020] [Accepted: 12/04/2020] [Indexed: 11/26/2022]
Abstract
PDE8B, PRKAR1A and the Wnt/β-catenin signaling are involved in endocrine disorders. However, how PDEB8B interacts with both Wnt and protein kinase A (PKA) signaling in vivo remains unknown. We created a novel Pde8b knockout mouse line (Pde8b-/-); Pde8b haploinsufficient (Pde8b+/-) mice were then crossed with mice harboring: (1) constitutive beta-catenin activation (Pde8b+/-;ΔCat) and (2) Prkar1a haploinsufficieny (Pde8b+/-;Prkar1a+/-). Adrenals and testes from mice (3-12-mo) were evaluated in addition to plasma corticosterone, aldosterone and Dkk3 concentrations, and the examination of expression of steroidogenesis-, Wnt- and cAMP/PKA-related genes. Pde8b-/- male mice were infertile with down-regulation of the Wnt/β-catenin pathway which did not change significantly in the Pde8b+/-;ΔCat mice. Prkar1a haploinsufficiency also did not change the phenotype significantly. In vitro studies showed that PDE8B knockdown upregulated the Wnt pathway and increased proliferation in CTNNB1-mutant cells, whereas it downregulated the Wnt pathway in PRKAR1A-mutant cells. These data support an overall weak, if any, role for PDE8B in adrenocortical tumorigenesis, even when co-altered with Wnt signaling or PKA upregulation; on the other hand, PDE8B appears to play a significant role in male fertility.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- Adaptor Proteins, Signal Transducing/blood
- Adrenal Glands/drug effects
- Adrenal Glands/pathology
- Adrenal Glands/physiopathology
- Aldosterone/blood
- Animals
- Cell Line
- Cell Proliferation/drug effects
- Corticosterone/blood
- Crosses, Genetic
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dexamethasone/pharmacology
- Female
- Gene Expression Regulation/drug effects
- Haploinsufficiency/genetics
- Infertility, Male/blood
- Infertility, Male/genetics
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Spermatogenesis/drug effects
- Spermatogenesis/genetics
- Steroids/biosynthesis
- Testis/drug effects
- Testis/ultrastructure
- Wnt Proteins/metabolism
- beta Catenin/metabolism
- Mice
Collapse
Affiliation(s)
- Leticia Ferro Leal
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA; Departments of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Sao Paulo, Brazil; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil; Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, Brazil
| | - Eva Szarek
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Annabel Berthon
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Nesterova
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fabio R Faucz
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Edra London
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher Mercier
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mones Abu-Asab
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew F Starost
- National Institutes of Health, Division of Veterinary Resources, Bethesda, MD, 20892, USA
| | - Louis Dye
- Program in Developmental Endocrinology and Genetics, Microscopy and Imaging Core Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa, Krakow, Poland
| | - Malgorzata Kotula-Balak
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza, Krakow, Poland
| | - Sonir R Antonini
- Departments of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Sao Paulo, Brazil
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Zhong ZA, Michalski MN, Stevens PD, Sall EA, Williams BO. Regulation of Wnt receptor activity: Implications for therapeutic development in colon cancer. J Biol Chem 2021; 296:100782. [PMID: 34000297 PMCID: PMC8214085 DOI: 10.1016/j.jbc.2021.100782] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperactivation of Wnt/β-catenin (canonical) signaling in colorectal cancers (CRCs) was identified in the 1990s. Most CRC patients have mutations in genes that encode components of the Wnt pathway. Inactivating mutations in the adenomatous polyposis coli (APC) gene, which encodes a protein necessary for β-catenin degradation, are by far the most prevalent. Other Wnt signaling components are mutated in a smaller proportion of CRCs; these include a FZD-specific ubiquitin E3 ligase known as ring finger protein 43 that removes FZDs from the cell membrane. Our understanding of the genetic and epigenetic landscape of CRC has grown exponentially because of contributions from high-throughput sequencing projects such as The Cancer Genome Atlas. Despite this, no Wnt modulators have been successfully developed for CRC-targeted therapies. In this review, we will focus on the Wnt receptor complex, and speculate on recent discoveries about ring finger protein 43regulating Wnt receptors in CRCs. We then review the current debate on a new APC-Wnt receptor interaction model with therapeutic implications.
Collapse
Affiliation(s)
- Zhendong A Zhong
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Megan N Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Payton D Stevens
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Emily A Sall
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
17
|
Sun Y, Tian H, Xu X, Wang L. Low expression of adenomatous polyposis coli 2 correlates with aggressive features and poor prognosis in colorectal cancer. Bioengineered 2020; 11:1027-1033. [PMID: 32951505 PMCID: PMC8291837 DOI: 10.1080/21655979.2020.1820823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Currently, there are no relevant findings on the diagnostic and prognostic roles of adenomatous polyposis coli 2 (APC2) in colorectal cancer (CRC). This study investigated the clinical value of APC2 dysregulation in the prognosis of CRC. Immunohistochemical scores obtained from tissue microarrays were used to quantify the expression of APC2 protein in 201 CRC tissues and 139 adjacent normal tissues. A chi-squared test was performed to analyze the association between APC2 expression and various clinical characteristics. Differences in 5-year survival between groups were analyzed. A receiver operating characteristic (ROC) curve was generated to investigate the potential association between APC2 and CRC diagnosis. Compared with adjacent normal tissues, APC2 was downregulated in CRC tissues (P = 0.0004). Survival analyses revealed that CRC patients with high APC2 expression (96.74%) obtained better 5-year survival rates than those with low APC2 expression (88.07%). CRC patients with low APC2 expression exhibited obvious lymphovascular invasion (P = 0.010), lymph node metastasis (P = 0.007), and high tumor node metastasis (TNM) stage (P = 0.007). Furthermore, ROC curves confirmed that APC2 was associated with lymphovascular invasion (P = 0.004), lymph node metastasis (P = 0.002), and TNM staging (P = 0.002). In summary, low APC2 expression in CRC tissues was associated with poor prognosis and may be a useful biomarker for the prognosis and clinical classification of CRC.
Collapse
Affiliation(s)
- Yan Sun
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Hua Tian
- Department of Gastroenterology, Houjie Hospital Affiliated to Guangdong Medical College , Dongguan, China
| | - Xuehu Xu
- Department of General Surgery, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Lin Wang
- Department of Oncology, Guangzhou Red Cross Hospital, Medical College, Jinan University , Guangzhou, China
| |
Collapse
|
18
|
The Circular RNA-miRNA Axis: A Special RNA Signature Regulatory Transcriptome as a Potential Biomarker for OSCC. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:352-361. [PMID: 33230440 PMCID: PMC7530261 DOI: 10.1016/j.omtn.2020.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a highly recurrent form of cancer arising from the oral epithelium, which is the result of mutational change due to etiological factors such as tobacco, smoking, chewing of areca nuts, and alcohol consumption. OSCC occurrence has been observed to be prevalent in different regions of Pacific countries and in most Asian countries. Despite the accessibility of the oral cavity, OSCC is diagnosed at an extremely late stage of pathogenic tumor node metastasis pTNM (III–IV), resulting in a poor prognosis for the individual. Therefore, it is important to make definitive, early, and efficient diagnoses. Owing to the development of omic-natured studies, the presence of proteins, transcribed elements, metabolic products, and even microflora detected in saliva helps us to select biomarkers, which is an especially exciting potential because of the availability and the non-invasive nature of sample collection. Since the discovery of circular RNA (circRNA) by Sanger sequencing, it has been reported to play a pivotal role in several human diseases, including cancer. circRNA functions as a microRNA (miRNA) sponge in the regulation of mRNA expression, forming the circRNA-miRNA regulatory axis. In the case of OSCC, overexpression of different circRNAs exhibits both tumor-progressive and tumor-suppressive effects.
Collapse
|
19
|
Ma S, Zheng Y, Fei C. Identification of key factors associated with early- and late-onset ovarian serous cystadenocarcinoma. Future Oncol 2020; 16:2821-2833. [PMID: 32885674 DOI: 10.2217/fon-2020-0668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To uncover the molecular mechanisms of early-onset ovarian serous cystadenocarcinoma (EOOSC; patients <50 years old) and late-onset ovarian serous cystadenocarcinoma (LOOSC; patients ≥50 years old). Materials & methods: Bioinformatics was utilized to identify the key factors. Results: 478 EOOSC and 899 LOOSC individual differentially expressed genes were identified and enriched in different pathways. The expression of key genes LAG3, LRRC63 and MT1B significantly influenced the overall survival of EOOSC patients. The expression of key genes RDH12, NTSR1, ZSCAN16, CT45A3 and EPPIN_WFDC6 significantly affected the overall survival of LOOSC patients. Conclusions: The molecular mechanisms of EOOSC and LOOSC appear to be different, so that patients might be treated individually in respect of age.
Collapse
Affiliation(s)
- Shuang Ma
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yang Zheng
- Genenexus Technology Corporation, Shanghai, 200438, PR China
| | - Chengwei Fei
- Department of Aeronautics & Astronautics, Fudan University, Shanghai, 200433, PR China
| |
Collapse
|
20
|
LY75 Ablation Mediates Mesenchymal-Epithelial Transition (MET) in Epithelial Ovarian Cancer (EOC) Cells Associated with DNA Methylation Alterations and Suppression of the Wnt/β-Catenin Pathway. Int J Mol Sci 2020; 21:ijms21051848. [PMID: 32156068 PMCID: PMC7084525 DOI: 10.3390/ijms21051848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Growing evidence demonstrates that epithelial-mesenchymal transition (EMT) plays an important role in epithelial ovarian cancer (EOC) progression and spreading; however, its molecular mechanisms remain poorly defined. We have previously shown that the antigen receptor LY75 can modulate EOC cell phenotype and metastatic potential, as LY75 depletion directed mesenchymal-epithelial transition (MET) in EOC cell lines with mesenchymal phenotype. We used the LY75-mediated modulation of EMT as a model to investigate for DNA methylation changes during EMT in EOC cells, by applying the reduced representation bisulfite sequencing (RRBS) methodology. Numerous genes have displayed EMT-related DNA methylation patterns alterations in their promoter/exon regions. Ten selected genes, whose DNA methylation alterations were further confirmed by alternative methods, were further identified, some of which could represent new EOC biomarkers/therapeutic targets. Moreover, our methylation data were strongly indicative for the predominant implication of the Wnt/β-catenin pathway in the EMT-induced DNA methylation variations in EOC cells. Consecutive experiments, including alterations in the Wnt/β-catenin pathway activity in EOC cells with a specific inhibitor and the identification of LY75-interacting partners by a proteomic approach, were strongly indicative for the direct implication of the LY75 receptor in modulating the Wnt/β-catenin signaling in EOC cells.
Collapse
|
21
|
Wnt Signaling in Ovarian Cancer Stemness, EMT, and Therapy Resistance. J Clin Med 2019; 8:jcm8101658. [PMID: 31614568 PMCID: PMC6832489 DOI: 10.3390/jcm8101658] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancers represent the deadliest among gynecologic malignancies and are characterized by a hierarchical structure with cancer stem cells (CSCs) endowed with self-renewal and the capacity to differentiate. The Wnt/β-catenin signaling pathway, known to regulate stemness in a broad spectrum of stem cell niches including the ovary, is thought to play an important role in ovarian cancer. Importantly, Wnt activity was shown to correlate with grade, epithelial to mesenchymal transition, chemotherapy resistance, and poor prognosis in ovarian cancer. This review will discuss the current knowledge of the role of Wnt signaling in ovarian cancer stemness, epithelial to mesenchymal transition (EMT), and therapy resistance. In addition, the alleged role of exosomes in the paracrine activation of Wnt signaling and pre-metastatic niche formation will be reviewed. Finally, novel potential treatment options based on Wnt inhibition will be highlighted.
Collapse
|