1
|
Liang X, Mohammadi H, Moreno KC, Beltran CJ, Holtzman AL. Heavy Ion Particle Therapy in Modern Day Radiation Oncology. Hematol Oncol Clin North Am 2025; 39:377-397. [PMID: 39694779 DOI: 10.1016/j.hoc.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Heavy ion radiotherapy is an emerging technology for treating radioresistant solid tumors. Unlike current low-linear energy transfer techniques, heavy ion radiotherapy, such as carbon ion radiotherapy, enhances the biologic effects related to cancer therapy. Prospective clinical evidence has demonstrated feasibility and efficacy in several disease sites, including head and neck, thoracic, central nervous system, gastrointestinal, pelvic tumors, and sarcomas. Although presently unavailable in the Americas, Mayo Clinic is constructing a heavy ion facility in the United States that is planned for clinical operation in 2028.
Collapse
Affiliation(s)
- Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Homan Mohammadi
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Kathryn C Moreno
- Department of Administration, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Adam L Holtzman
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
2
|
Ishizawa M, Miyasaka Y, Souda H, Ono T, Chai H, Sato H, Iwai T. Rectal Gas-Induced Dose Changes in Carbon Ion Radiation Therapy for Prostate Cancer: An In Silico Study. Int J Part Ther 2025; 15:100637. [PMID: 39760119 PMCID: PMC11697597 DOI: 10.1016/j.ijpt.2024.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 01/07/2025] Open
Abstract
PURPOSE This study aims to determine dosimetric influence of rectal gas in carbon ion radiation therapy (CIRT) for prostate cancer and to establish a procedure for removal rectal gas in clinical scenarios. MATERIALS AND METHODS We analyzed 18 prostate cancer cases with bulky rectal gas. The dose distribution was recalculated on computed tomography (CT) with bulky rectal gas (gasCT) after creating the initial plan on a CT without bulky rectal gas, and the doses were transformed using a displacement vector field. This created a dose distribution simulation irradiated with the residual rectal gas. Among 12 fractions (fx) for prostate cancer CIRT, different residual rectal gas fx were used to develop 12 dose distributions, each of which was compared with that in the initial plan. Clinical target volume (Dmin, D99.5%), rectum, and rectal wall (V95%, V80%) parameters were assessed. We investigated the indicators associated with these dose changes using digital reconstruction radiograph (DRR) images. RESULTS The dosimetric changes in the clinical target volume were not significantly different from that in the initial treatment plan for both Dmin and D99.5%. Compared to the initial plan, the dose-volume histogram parameters showed changes exceeding 1 cm3 when residual rectal gas was present in the following number of fractions: 8 fx for V95% rectum, 5 fx for V80% rectum, 10 fx for V95% rectal wall, and 11 fx for V80% rectal wall. Changes in rectal and rectal wall parameters were highly correlated with the extent of rectal gas assessed on DRR images. CONCLUSION Rectal gas removal may not be necessary up to 4 fx. Moreover, indicators related to dose changes based on DRR images were highly correlated with dose changes, revealing the possibilities of estimating dose changes due to rectal gas from kV-x-ray images and using gas effect evaluation during CIRT irradiation.
Collapse
Affiliation(s)
- Miyu Ishizawa
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Yuya Miyasaka
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Hikaru Souda
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Takashi Ono
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hongbo Chai
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Hiraku Sato
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takeo Iwai
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| |
Collapse
|
3
|
Kubo N, Ozawa T, Shioyama Y, Yamada S, Katoh H, Okimoto T, Ohno T. Impact of COVID-19 Pandemic on Carbon-Ion Radiation Therapy in Japan: A Japanese National Registry Study. Int J Part Ther 2024; 14:100634. [PMID: 39553844 PMCID: PMC11566714 DOI: 10.1016/j.ijpt.2024.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Purpose This study aimed to investigate the impact of the COVID-19 pandemic on carbon-ion radiation therapy (CIRT) in Japan by evaluating patient numbers and treatment trends from 2019 to 2022. Patients and Methods Data from 5 CIRT facilities were analyzed, encompassing a total of 13 224 patients treated over the 4-year period. Patient demographics, cancer types, treatment protocols, and adherence to national health insurance coverage were examined. The study period was divided into unaffected (2019), significantly affected (2020-2021), and poststabilization (2022) phases, corresponding to progression of the pandemic. For monthly analysis, the period during which a state of emergency was declared by the Japanese government was defined as the pandemic period. Results Prostate cancer comprised the majority of CIRT cases (62.4%), followed by hepatocellular carcinoma, bone and soft tissue tumors, locally advanced pancreatic cancer, and nonsquamous cell carcinoma of the head and neck. Despite the pandemic, the annual reduction in CIRT patients remained <5%, suggesting treatment continuity. Analysis of monthly treatment figures revealed a significant reduction in the number of patients with nonprostate cancers treated during the state of emergency, while a reduction in the number of prostate cancer treatments was observed approximately 6 months later. Although the number of COVID-19 patients continued to increase after 2022, the number of patients receiving CIRT increased after the state of emergency was declared. Conclusion Although there was a reduction in monthly CIRT patient numbers during the COVID-19 pandemic, yearly analysis revealed that this amounted to <5%.
Collapse
Affiliation(s)
- Nobuteru Kubo
- Gunma University Heavy Ion Medical Center, Gunma, Japan
| | - Toshiki Ozawa
- Gunma University Heavy Ion Medical Center, Gunma, Japan
| | | | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Tomoaki Okimoto
- Department of Radiology, Hyogo Ion Beam Medical Center, Hyogo, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Gunma, Japan
| |
Collapse
|
4
|
Miyazawa Y, Nakayama H, Kawamura H, Miyasaka Y, Onishi M, Kaminuma T, Sekine Y, Matsui H, Ohno T, Suzuki K. Analysis of urinary function and prostate volume changes in localized prostate cancer patients treated with carbon-ion radiotherapy; a prospective study. Radiat Oncol 2024; 19:165. [PMID: 39563371 PMCID: PMC11577577 DOI: 10.1186/s13014-024-02563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The potential of carbon ion radiation therapy (CIRT) as a curative treatment for localized prostate cancer (PCa) has garnered attention due to its characteristic dose distribution. We prospectively collected and analyzed over five years to investigate the outcomes of localized PCa treated with CIRT at our institution. PATIENTS AND METHODS The study included patients with histologically confirmed prostate adenocarcinoma. CIRT treatment was administered at a total dose of 57.6 Gy (RBE) in 16 fractions over four weeks. Uroflowmetry (UFM) and residual urine measurements were performed at various time points: before CIRT treatment, one month after starting CIRT, three months after treatment, and annually for five years starting from 1 year after the completion of CIRT. Prostate volume was measured using transrectal ultrasonography (TRUS). RESULTS A total of 304 prostate cancer patients were analyzed. UFM parameters were significantly worsened immediately after the treatment. However, they recovered to pretreatment levels after three months and remained stable until five years post-treatment. Notably, Average flow rate showed significant improvement after three years of treatment compared to before the treatment. Prostate volume decreased to 80% of baseline in patients treated with CIRT alone and to 60-70% of baseline in those receiving combined CIRT and either short- or long-term ADT. The logistic-binomial analysis identified post-voiding residual urine volume (PVR) as a significant factor for predicting adverse events in the acute phase. CONCLUSIONS Following CIRT treatment, the voiding parameters in PCa patients significantly deteriorated immediately. However, after three months, they returned to their pre-treatment levels and remained stable for five years.
Collapse
Affiliation(s)
- Yoshiyuki Miyazawa
- Department of Urology, Gunma University Graduate School of Medicine, 3-9-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | | | - Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Yuhei Miyasaka
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Masahiro Onishi
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Takuya Kaminuma
- Department of Radiation Oncology, NHO Shibukawa Medical Center, Shibukawa, Gunma, Japan
| | - Yoshitaka Sekine
- Department of Urology, Gunma University Graduate School of Medicine, 3-9-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiroshi Matsui
- Department of Urology, Gunma University Graduate School of Medicine, 3-9-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Kazuhiro Suzuki
- Department of Urology, Gunma University Graduate School of Medicine, 3-9-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| |
Collapse
|
5
|
Besuglow J, Tessonnier T, Mein S, Eichkorn T, Haberer T, Herfarth K, Abdollahi A, Debus J, Mairani A. Understanding Relative Biological Effectiveness and Clinical Outcome of Prostate Cancer Therapy Using Particle Irradiation: Analysis of Tumor Control Probability With the Modified Microdosimetric Kinetic Model. Int J Radiat Oncol Biol Phys 2024; 119:1545-1556. [PMID: 38423224 DOI: 10.1016/j.ijrobp.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/22/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE Recent experimental studies and clinical trial results might indicate that-at least for some indications-continued use of the mechanistic model for relative biological effectiveness (RBE) applied at carbon ion therapy facilities in Europe for several decades (LEM-I) may be unwarranted. We present a novel clinical framework for prostate cancer treatment planning and tumor control probability (TCP) prediction based on the modified microdosimetric kinetic model (mMKM) for particle therapy. METHODS AND MATERIALS Treatment plans of 91 patients with prostate tumors (proton: 46, carbon ions: 45) applying 66 GyRBE [RBE = 1.1 for protons and LEM-I, (α/β)x = 2.0 Gy, for carbon ions] in 20 fractions were recalculated using mMKM [(α/β)x = 3.1 Gy]). Based solely on the response data of photon-irradiated patient groups stratified according to risk and usage of androgen deprivation therapy, we derived parameters for an mMKM-based Poisson-TCP model. Subsequently, new carbon and helium ion plans, adhering to prescribed biological dose criteria, were generated. These were systematically compared with the clinical experience of Japanese centers employing an analogous fractionation scheme and existing proton plans. RESULTS mMKM predictions suggested significant biological dose deviation between the proton and carbon ion arms. Patients irradiated with protons received (3.25 ± 0.08) GyRBEmMKM/Fx, whereas patients treated with carbon ions received(2.51 ± 0.05) GyRBEmMKM/Fx. TCP predictions were (86 ± 3)% for protons and (52 ± 4)% for carbon ions, matching the clinical outcome of 85% and 50%. Newly optimized carbon ion plans, guided by the mMKM/TCP model, effectively replicated clinical data from Japanese centers. Using mMKM, helium ions exhibited similar target coverage as proton and carbon ions and improved rectum and bladder sparing compared with proton. CONCLUSIONS Our mMKM-based model for prostate cancer treatment planning and TCP prediction was validated against clinical data for proton and carbon ion therapy, and its application was extended to helium ion therapy. Based on the data presented in this work, mMKM seems to be a good candidate for clinical biological calculations in carbon ion therapy for prostate cancer.
Collapse
Affiliation(s)
- Judith Besuglow
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Thomas Tessonnier
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Stewart Mein
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tanja Eichkorn
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Thomas Haberer
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Klaus Herfarth
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Mairani
- Clinical Cooperation Unit Translational Radiation Oncology (E210), National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Medical Physics, National Centre of Oncological Hadrontherapy (CNAO), Pavia, Italy.
| |
Collapse
|
6
|
Miyasaka Y, Kawamura H, Sato H, Kubo N, Katoh H, Ishikawa H, Matsui H, Miyazawa Y, Ito K, Suzuki K, Ohno T. Carbon Ion Radiation Therapy for Nonmetastatic Castration-Resistant Prostate Cancer: A Retrospective Analysis. Adv Radiat Oncol 2024; 9:101432. [PMID: 38778824 PMCID: PMC11110035 DOI: 10.1016/j.adro.2023.101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/14/2023] [Indexed: 05/25/2024] Open
Abstract
Purpose Treatment outcomes of definitive photon radiation therapy for nonmetastatic castration-resistant prostate cancer (nmCRPC) are reportedly unsatisfactory. Carbon ion radiation therapy (CIRT) has shown favorable tumor control in various malignancies, including radioresistant tumors. Therefore, we retrospectively evaluated the clinical outcomes of CIRT for nmCRPC. Methods and Materials Patients with nmCRPC (N0M0) treated with CIRT at a total dose of 57.6 Gy (relative biologic effectiveness) in 16 fractions or 51.6 Gy (relative biologic effectiveness) in 12 fractions were included. The castration-resistant status received a diagnosis based on prostate-specific antigen kinetics showing a monotonic increase during primary androgen deprivation therapy or the need to change androgen deprivation therapy. Clinical factors associated with patient prognosis were explored. Twenty-three consecutive patients were identified from our database. The median follow-up period was 63.6 months (range, 14.1-120). Results Seven patients developed biochemical relapse, 6 had clinical relapse, and 4 died of the disease. The 5-year overall survival, local control rate, biochemical relapse-free survival, and clinical relapse-free survival were 87.5%, 95.7%, 70.3%, and 75.7%, respectively. One patient with diabetes mellitus requiring insulin injections and taking antiplatelet and anticoagulant drugs developed grade 3 hematuria and bladder tamponade after CIRT. None of the patients developed grade 4 or worse toxicity. Conclusions The present findings indicate the acceptable safety and favorable efficacy of CIRT, encouraging further research on CIRT for nmCRPC.
Collapse
Affiliation(s)
- Yuhei Miyasaka
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, Japan
- Gunma University Heavy Ion Medical Center, Showa-machi, Maebashi, Gunma, Japan
| | - Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, Japan
- Gunma University Heavy Ion Medical Center, Showa-machi, Maebashi, Gunma, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, Japan
- Gunma University Heavy Ion Medical Center, Showa-machi, Maebashi, Gunma, Japan
| | - Nobuteru Kubo
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, Japan
- Gunma University Heavy Ion Medical Center, Showa-machi, Maebashi, Gunma, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Nakao, Asahi-ku, Yokohama, Kanagawa, Japan
| | - Hitoshi Ishikawa
- QST Hospital, National Institutes for Quantum Science and Technology, Anagawa, Inage-ku, Chiba, Chiba, Japan
| | - Hiroshi Matsui
- Gunma University Heavy Ion Medical Center, Showa-machi, Maebashi, Gunma, Japan
- Department of Urology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, Japan
| | - Yoshiyuki Miyazawa
- Department of Urology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, Japan
| | - Kazuto Ito
- Department of Urology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, Japan
| | - Kazuhiro Suzuki
- Gunma University Heavy Ion Medical Center, Showa-machi, Maebashi, Gunma, Japan
- Department of Urology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, Japan
- Gunma University Heavy Ion Medical Center, Showa-machi, Maebashi, Gunma, Japan
| |
Collapse
|
7
|
Takakusagi Y, Koge H, Kano K, Shima S, Tsuchida K, Mizoguchi N, Yoshida D, Kamada T, Katoh H. Five-year clinical outcomes of scanning carbon-ion radiotherapy for prostate cancer. PLoS One 2024; 19:e0290617. [PMID: 38457424 PMCID: PMC10923478 DOI: 10.1371/journal.pone.0290617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/12/2023] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Carbon-ion radiotherapy (CIRT) has been associated with favorable clinical outcomes in patients with prostate cancer. At our facility, all patients are treated using scanning CIRT (sCIRT). We retrospectively analyzed five-year clinical outcomes of prostate cancer treated with sCIRT to investigate treatment efficacy and toxicity. METHODS In this study, we included 253 consecutive prostate cancer patients treated with sCIRT at the Kanagawa Cancer Center from December 2015 to December 2017. The total dose of sCIRT was set at 51.6 Gy (relative biological effect) in 12 fractions over three weeks. We employed the Phoenix definition for biochemical relapse. The overall survival (OS), biochemical relapse-free (bRF) rate, and cumulative incidence of late toxicity were estimated using the Kaplan-Meier method. Toxicity was assessed using the Common Terminology Criteria for Adverse Events version 4.0. RESULTS The median age of the patients was 70 years (range: 47-86 years). The median follow-up duration was 61.1 months (range: 4.1-80.3 months). Eight (3.2%), 88 (34.8%), and 157 (62.1%) patients were in the low-risk, intermediate-risk, and high-risk groups, respectively, according to the D'Amico classification system. The five-year OS and bRF were 97.5% and 93.3%, respectively. The five-year bRF rates for the low-risk, intermediate-risk, and high-risk groups were 87.5%, 93.7%, and 93.4%, respectively (p = 0.7215). The five-year cumulative incidence of Grade 2 or more late genitourinary and gastrointestinal toxicity was 7.4% and 1.2%, respectively. CONCLUSION The results of this study show that sCIRT has a favorable therapeutic effect and low toxicity in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Yosuke Takakusagi
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
- Department of Radiation Oncology, Yokohama Sakae Kyosai Hospital, Yokohama, Japan
| | - Hiroaki Koge
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Kio Kano
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Satoshi Shima
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Keisuke Tsuchida
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Nobutaka Mizoguchi
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Tadashi Kamada
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| |
Collapse
|
8
|
Miyazawa Y, Koike H, Oka D, Kawamura H, Kubo N, Miyasaka Y, Onishi M, Syuto T, Sekine Y, Matsui H, Ohno T, Suzuki K. Comparison of sexual function after robot-assisted radical prostatectomy and carbon-ion radiotherapy for Japanese prostate cancer patients using propensity score matching. BMC Cancer 2024; 24:300. [PMID: 38443871 PMCID: PMC10916055 DOI: 10.1186/s12885-024-12062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The quality of life of patients is an important consideration when selecting treatments for localized prostate cancer (PCa). We retrospectively compared sexual function after robot-assisted radical prostatectomy (RARP) and carbon-ion radiotherapy (CIRT) using propensity score matching. METHODS In total, 127 Japanese PCa patients treated with RARP and 190 treated with CIRT monotherapy were evaluated. We evaluated the Expanded Prostate Cancer Index Composite (EPIC) score before treatment and 12 and 24 months after treatment. After propensity score matching, data from 101 patients from each group were analyzed. The study protocol was approved by the Institutional Review Board of Gunma University Hospital (no. IRB2020-050, 1839). RESULTS After propensity score matching, the mean EPIC sexual function summary scores in the RARP and CIRT groups were 46.4 and 48.2, respectively. At 12 and 24 months after treatment, these scores were 27.9 (39.9% decrease) and 28.2 (39.2% decrease) in the RARP group and 41.4 (14.1% decrease) and 41.6 (13.7% decrease) in the CIRT group, respectively. Both groups demonstrated significantly decreased scores after 12 and 24 months of treatment compared to before treatment (all p < 0.05). At 12 and 24 months, the sexual function summary score was significantly higher in the CIRT group than in the RARP group (p < 0.001). CONCLUSIONS There was a smaller decrease in the EPIC sexual function score in the CIRT group than in the RARP group. These results provide useful information for treatment decision-making of Japanese PCa patients.
Collapse
Affiliation(s)
- Yoshiyuki Miyazawa
- Department of Urology, Gunma University Graduate School of Medicine & Gunma University Hospital, 3-39-22 Showa-Machi, 3718511, Maebashi, Gunma, Japan.
| | - Hidekazu Koike
- Department of Urology, Gunma University Graduate School of Medicine & Gunma University Hospital, 3-39-22 Showa-Machi, 3718511, Maebashi, Gunma, Japan
| | | | - Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Nobuteru Kubo
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Yuhei Miyasaka
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Masahiro Onishi
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | | | - Yoshitaka Sekine
- Department of Urology, Gunma University Graduate School of Medicine & Gunma University Hospital, 3-39-22 Showa-Machi, 3718511, Maebashi, Gunma, Japan
| | - Hiroshi Matsui
- Department of Urology, Gunma University Graduate School of Medicine & Gunma University Hospital, 3-39-22 Showa-Machi, 3718511, Maebashi, Gunma, Japan
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Kazuhiro Suzuki
- Department of Urology, Gunma University Graduate School of Medicine & Gunma University Hospital, 3-39-22 Showa-Machi, 3718511, Maebashi, Gunma, Japan
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| |
Collapse
|
9
|
Zhang G, Zhang Z, Pei Y, Hu W, Xue Y, Ning R, Guo X, Sun Y, Zhang Q. Biological and clinical significance of radiomics features obtained from magnetic resonance imaging preceding pre-carbon ion radiotherapy in prostate cancer based on radiometabolomics. Front Endocrinol (Lausanne) 2023; 14:1272806. [PMID: 38027108 PMCID: PMC10644841 DOI: 10.3389/fendo.2023.1272806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction We aimed to investigate the feasibility of metabolomics to explain the underlying biological implications of radiomics features obtained from magnetic resonance imaging (MRI) preceding carbon ion radiotherapy (CIRT) in patients with prostate cancer and to further explore the clinical significance of radiomics features on the prognosis of patients, based on their biochemical recurrence (BCR) status. Methods Metabolomic results obtained using high-performance liquid chromatography coupled with tandem mass spectrometry of urine samples, combined with pre-RT radiomic features extracted from MRI images, were evaluated to investigate their biological significance. Receiver operating characteristic (ROC) curve analysis was subsequently conducted to examine the correlation between these biological implications and clinical BCR status. Statistical and metabolic pathway analyses were performed using MetaboAnalyst and R software. Results Correlation analysis revealed that methionine alteration extent was significantly related to four radiomic features (Contrast, Difference Variance, Small Dependence High Gray Level Emphasis, and Mean Absolute Deviation), which were significantly correlated with BCR status. The area under the curve (AUC) for BCR prediction of these four radiomic features ranged from 0.704 to 0.769, suggesting that the higher the value of these four radiomic features, the greater the decrease in methionine levels after CIRT and the lower the probability of BCR. Pre-CIRT MRI radiomic features were associated with CIRT-suppressed metabolites. Discussion These radiomic features can be used to predict the alteration in the amplitude of methionine after CIRT and the BCR status, which may contribute to the optimization of the CIRT strategy and deepen the understanding of PCa.
Collapse
Affiliation(s)
- Guangyuan Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Zhenshan Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yulei Pei
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Wei Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yushan Xue
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Renli Ning
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yun Sun
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
10
|
Pei Y, Ning R, Hu W, Li P, Zhang Z, Deng Y, Hong Z, Sun Y, Guo X, Zhang Q. Carbon Ion Radiotherapy Induce Metabolic Inhibition After Functional Imaging-Guided Simultaneous Integrated Boost for Prostate Cancer. Front Oncol 2022; 12:845583. [PMID: 35936669 PMCID: PMC9354483 DOI: 10.3389/fonc.2022.845583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeAs local recurrence remains a challenge and the advantages of the simultaneous integrated boost (SIB) technique have been validated in photon radiotherapy, we applied the SIB technique to CIRT. The aim was to investigate the metabolomic changes of the CIRT with concurrent androgen deprivation therapy (ADT) in localized prostate cancer (PCa) and the unique metabolic effect of the SIB technique.Material and MethodsThis study enrolled 24 pathologically confirmed PCa patients. All patients went through CIRT with concurrent ADT. The gross target volume (GTV) boost was defined as positive lesions on both 68Ga-PSMA PET/CT and mpMRI images. Urine samples collected before and after CIRT were analyzed by the Q-TOF UPLC-MS/MS system. R platform and MetDNA were used for peak detection and identification. Statistical analysis and metabolic pathway analysis were performed on Metaboanalyst.ResultsThe metabolite profiles were significantly altered after CIRT. The most significantly altered metabolic pathway is PSMA participated alanine, aspartate and glutamate metabolism. Metabolites in this pathway showed a trend to be better suppressed in the SIB group. A total of 11 identified metabolites were significantly discriminative between two groups and all of them were better down-regulated in the SIB group. Meanwhile, among these metabolites, three metabolites in DNA damage and repair related purine metabolism were down-regulated to a greater extent in the SIB group.ConclusionMetabolic dysfunction was one of the typical characteristics of PCa. CIRT with ADT showed a powerful inhibition of PCa metabolism, especially in PSMA participated metabolic pathway. The SIB CIRT showed even better performance on down-regulation of most metabolism than uniform-dose-distribution CIRT. Meanwhile, the SIB CIRT also showed its unique superiority to inhibit purine metabolism. PSMA PET/CT guided SIB CIRT showed its potentials to further benefit PCa patients.
Collapse
Affiliation(s)
- Yulei Pei
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
| | - Renli Ning
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Wei Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
| | - Ping Li
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Zhenshan Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
| | - Yong Deng
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Zhengshan Hong
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Yun Sun
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- *Correspondence: Qing Zhang, ; Xiaomao Guo, ; Yun Sun,
| | - Xiaomao Guo
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- *Correspondence: Qing Zhang, ; Xiaomao Guo, ; Yun Sun,
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy lon Radiation Therapy, Shanghai, China
- *Correspondence: Qing Zhang, ; Xiaomao Guo, ; Yun Sun,
| |
Collapse
|
11
|
Takakusagi Y, Suga M, Kusano Y, Kano K, Shima S, Tsuchida K, Mizoguchi N, Serizawa I, Yoshida D, Kamada T, Minohara S, Katoh H. Evaluation of Safety for Scanning Carbon-Ion Radiotherapy in Hemodialysis Patients With Prostate Cancer. Cureus 2022; 14:e22214. [PMID: 35308759 PMCID: PMC8925932 DOI: 10.7759/cureus.22214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/05/2022] Open
|
12
|
Marvaso G, Vischioni B, Pepa M, Zaffaroni M, Volpe S, Patti F, Bellerba F, Gandini S, Comi S, Corrao G, Zerini D, Augugliaro M, Fodor C, Russo S, Molinelli S, Ciocca M, Ricotti R, Valvo F, Giandini T, Avuzzi B, Valdagni R, De Cobelli O, Cattani F, Orlandi E, Jereczek-Fossa BA, Orecchia R. Mixed-Beam Approach for High-Risk Prostate Cancer Carbon-Ion Boost Followed by Photon Intensity-Modulated Radiotherapy: Preliminary Results of Phase II Trial AIRC-IG-14300. Front Oncol 2021; 11:778729. [PMID: 34869026 PMCID: PMC8635961 DOI: 10.3389/fonc.2021.778729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose This study represents a descriptive analysis of preliminary results of a Phase II trial on a novel mixed beam radiotherapy (RT) approach, consisting of carbon ions RT (CIRT) followed by intensity-modulated photon RT, in combination with hormonal therapy, for high-risk prostate cancer (HR PCa) with a special focus on acute toxicity. Methods Primary endpoint was the evaluation of safety in terms of acute toxicity. Secondary endpoints were early and long-term tolerability of treatment, quality of life (QoL), and efficacy. Data on acute and late toxicities were collected according to RTOG/EORTC. QoL of enrolled patients was assessed by IPSS, EORTC QLQ-C30, EORTC QLQ-PR25, and sexual activity by IIEF-5. Results Twenty-six patients were enrolled in the study, but only 15 completed so far the RT course and were included. Immediately after CIRT, no patients experienced GI/GU toxicity. At 1 and 3 months from the whole course RT completion, no GI/GU toxicities greater than grade 2 were observed. QoL scores were overall satisfactory. Conclusions The feasibility of the proposed mixed treatment schedule was assessed, and an excellent acute toxicity profile was recorded. Such findings instil confidence in the continuation of this mixed approach, with evaluation of long-term tolerability and efficacy.
Collapse
Affiliation(s)
- Giulia Marvaso
- Division of Radiotherapy, Istituto Europeo di Oncologia (IEO), European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Barbara Vischioni
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Matteo Pepa
- Division of Radiotherapy, Istituto Europeo di Oncologia (IEO), European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiotherapy, Istituto Europeo di Oncologia (IEO), European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Stefania Volpe
- Division of Radiotherapy, Istituto Europeo di Oncologia (IEO), European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Filippo Patti
- Division of Radiotherapy, Istituto Europeo di Oncologia (IEO), European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Federica Bellerba
- Department of Experimental Oncology, Istituto Europeo di Oncologia (IEO), European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Sara Gandini
- Department of Experimental Oncology, Istituto Europeo di Oncologia (IEO), European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Stefania Comi
- Medical Physics Unit, Istituto Europeo di Oncologia (IEO), European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giulia Corrao
- Division of Radiotherapy, Istituto Europeo di Oncologia (IEO), European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Dario Zerini
- Division of Radiotherapy, Istituto Europeo di Oncologia (IEO), European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Matteo Augugliaro
- Division of Radiotherapy, Istituto Europeo di Oncologia (IEO), European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Cristiana Fodor
- Division of Radiotherapy, Istituto Europeo di Oncologia (IEO), European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Stefania Russo
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Silvia Molinelli
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Mario Ciocca
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Rosalinda Ricotti
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Francesca Valvo
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Tommaso Giandini
- Medical Physics Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Barbara Avuzzi
- Department of Radiation Oncology 1, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Valdagni
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Radiation Oncology 1, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Ottavio De Cobelli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Division of Urology, Istituto Europeo di Oncologia (IEO), European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Federica Cattani
- Medical Physics Unit, Istituto Europeo di Oncologia (IEO), European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Ester Orlandi
- Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiotherapy, Istituto Europeo di Oncologia (IEO), European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Roberto Orecchia
- Scientific Directorate, Istituto Europeo di Oncologia (IEO), European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| |
Collapse
|
13
|
Chen X, Yu Q, Li P, Fu S. Landscape of Carbon Ion Radiotherapy in Prostate Cancer: Clinical Application and Translational Research. Front Oncol 2021; 11:760752. [PMID: 34804961 PMCID: PMC8602827 DOI: 10.3389/fonc.2021.760752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022] Open
Abstract
Carbon ion radiotherapy (CIRT) is a useful and advanced technique for prostate cancer. This study sought to investigate the clinical efficacy and translational research for prostate cancer with carbon ion radiotherapy. We integrated the data from published articles, clinical trials websites, and our data. The efficacy of CIRT for prostate cancer was assessed in terms of overall survival, biochemical recurrence-free survival, and toxicity response. Up to now, clinical treatment of carbon ion radiotherapy has been carried in only five countries. We found that carbon ion radiotherapy induced little genitourinary and gastrointestinal toxicity when used for prostate cancer treatment. To some extent, it led to improved outcomes in overall survival, biochemical recurrence-free survival than conventional radiotherapy, especially for high-risk prostate cancer. Carbon ion radiotherapy brought clinical benefits for prostate cancer patients, and quality of life assessment indicated that CIRT affected patients to a lesser extent. Potential biomarkers from our omics-based study could be used to predict the efficacy of prostate cancer with CIRT. Carbon ion radiotherapy brought clinical benefits for prostate cancer patients. The omics-based translational research may provide insights into individualized therapy.
Collapse
Affiliation(s)
- Xue Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qi Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.,Proton & Heavy Ion Medical Center, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Department of Radiation Oncology, Shanghai Concord Cancer Center, Shanghai, China
| | - Ping Li
- Department of Radiation Oncology, Shanghai Proton and Heavy lon Center, Shanghai, China
| | - Shen Fu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.,Proton & Heavy Ion Medical Center, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Department of Radiation Oncology, Shanghai Concord Cancer Center, Shanghai, China.,Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, China
| |
Collapse
|
14
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
15
|
Li M, Li X, Yao L, Han X, Yan W, Liu Y, Fu Y, Wang Y, Huang M, Zhang Q, Wang X, Yang K. Clinical Efficacy and Safety of Proton and Carbon Ion Radiotherapy for Prostate Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:709530. [PMID: 34712607 PMCID: PMC8547329 DOI: 10.3389/fonc.2021.709530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/15/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Carbon ion radiotherapy (CIRT) and proton beam therapy (PBT) are promising methods for prostate cancer, however, the consensus of an increasing number of studies has not been reached. We aimed to provide systematic evidence for evaluating the efficacy and safety of CIRT and PBT for prostate cancer by comparing photon radiotherapy. MATERIALS AND METHODS We searched for studies focusing on CIRT and PBT for prostate cancer in four online databases until July 2021. Two independent reviewers assessed the quality of included studies and used the GRADE approach to rate the quality of evidence. R 4.0.2 software was used to conduct the meta-analysis. A meta-regression test was performed based on the study design and tumor stage of each study. RESULTS A total of 33 studies including 13 CIRT- and 20 PBT-related publications, involving 54,101, participants were included. The quality of the included studies was found to be either low or moderate quality. Random model single-arm meta-analysis showed that both the CIRT and PBT have favorable efficacy and safety, with similar 5-year overall survival (OS) (94 vs 92%), the incidence of grade 2 or greater acute genitourinary (AGU) toxicity (5 vs 13%), late genitourinary (LGU) toxicity (4 vs 5%), acute gastrointestinal (AGI) toxicity (1 vs 1%), and late gastrointestinal (LGI) toxicity (2 vs 4%). However, compared with CIRT and PBT, photon radiotherapy was associated with lower 5-year OS (72-73%) and a higher incidence of grade 2 or greater AGU (28-29%), LGU (13-14%), AGI (14-19%), and LGI toxicity (8-10%). The meta-analysis showed the 3-, 4-, and 5-year local control rate (LCR) of CIRT for prostate cancer was 98, 97, and 99%; the 3-, 4-, 5-, and 8-year biochemical relapse-free rate (BRF) was 92, 91, 89, and 79%. GRADE assessment results indicated that the certainty of the evidence was very low. Meta-regression results did not show a significant relationship based on the variables studied (P<0.05). CONCLUSIONS Currently available evidence demonstrated that the efficacy and safety of CIRT and PBT for prostate cancer were similar, and they may significantly improve the OS, LCR, and reduce the incidence of GU and GI toxicity compared with photon radiotherapy. However, the quantity and quality of the available evidence are insufficient. More high-quality controlled studies are needed in the future.
Collapse
Affiliation(s)
- Meixuan Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiuxia Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China
| | - Liang Yao
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Xue Han
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wenlong Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yujun Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yiwen Fu
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yakun Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Min Huang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Xiaohu Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- Health Technology Assessment Center of Lanzhou University, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Zhou Y, Li Y, Kubota Y, Sakai M, Ohno T. Robust Angle Selection in Particle Therapy. Front Oncol 2021; 11:715025. [PMID: 34621672 PMCID: PMC8490826 DOI: 10.3389/fonc.2021.715025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
The popularity of particle radiotherapy has grown exponentially over recent years owing to the marked advantage of the depth–dose curve and its unique biological property. However, particle therapy is sensitive to changes in anatomical structure, and the dose distribution may deteriorate. In particle therapy, robust beam angle selection plays a crucial role in mitigating inter- and intrafractional variation, including daily patient setup uncertainties and tumor motion. With the development of a rotating gantry, angle optimization has gained increasing attention. Currently, several studies use the variation in the water equivalent thickness to quantify anatomical changes during treatment. This method seems helpful in determining better beam angles and improving the robustness of planning. Therefore, this review will discuss and summarize the robust beam angles at different tumor sites in particle radiotherapy.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yang Li
- Gunma University Heavy Ion Medical Center, Gunma University, Maebashi, Japan.,Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yoshiki Kubota
- Gunma University Heavy Ion Medical Center, Gunma University, Maebashi, Japan
| | - Makoto Sakai
- Gunma University Heavy Ion Medical Center, Gunma University, Maebashi, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Gunma University Heavy Ion Medical Center, Gunma University, Maebashi, Japan
| |
Collapse
|
17
|
Fukata K, Kawamura H, Kubo N, Kanai T, Torikoshi M, Nakano T, Tashiro M, Ohno T. Retrospective comparison of rectal toxicity between carbon-ion radiotherapy and intensity-modulated radiation therapy based on treatment plan, normal tissue complication probability model, and clinical outcomes in prostate cancer. Phys Med 2021; 90:6-12. [PMID: 34521017 DOI: 10.1016/j.ejmp.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022] Open
Abstract
This retrospective study assessed the treatment planning data and clinical outcomes for 152 prostate cancer patients: 76 consecutive patients treated by carbon-ion radiation therapy and 76 consequtive patients treated by moderate hypo-fractionated intensity-modulated photon radiation therapy. These two modalities were compared using linear quadratic model equivalent doses in 2 Gy per fraction for rectal or rectal wall dose-volume histogram, 3.6 Gy per fraction-converted rectal dose-volume histogram, normal tissue complication probability model, and actual clinical outcomes. Carbon-ion radiation therapy was predicted to have a lower probability of rectal adverse events than intensity-modulated photon radiation therapy based on dose-volume histograms and normal tissue complication probability model. There was no difference in the clinical outcome of rectal adverse events between the two modalities compared in this study.
Collapse
Affiliation(s)
- Kyohei Fukata
- Cancer Center, School of Medicine, Keio University, Tokyo, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan; Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Japan.
| | - Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan; Gunma University Heavy Ion Medical Center, Gunma, Japan
| | - Nobuteru Kubo
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Tatsuaki Kanai
- Gunma University Heavy Ion Medical Center, Gunma, Japan; Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Masami Torikoshi
- Gunma University Heavy Ion Medical Center, Gunma, Japan; International Science and Technology Center, Nur-Sultan, Kazakhstan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan; Gunma University Heavy Ion Medical Center, Gunma, Japan; Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan; Gunma University Heavy Ion Medical Center, Gunma, Japan
| |
Collapse
|
18
|
Kobayashi N, Oike T, Kubo N, Miyasaka Y, Mizukami T, Sato H, Adachi A, Katoh H, Kawamura H, Ohno T. Colorectal Cancer Screening Outcomes of 2412 Prostate Cancer Patients Considered for Carbon Ion Radiotherapy. Cancers (Basel) 2021; 13:cancers13174481. [PMID: 34503291 PMCID: PMC8431542 DOI: 10.3390/cancers13174481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) screening is effective for detecting cancer in average-risk adults. For prostate cancer (PCa) patients considered for carbon ion radiotherapy (CIRT), pre-treatment CRC screening is performed empirically to avoid post-treatment colonoscopic manipulation. However, the outcomes of screening this population remain unclear. Here, we compared the outcomes of routine pre-CIRT CRC screening of 2412 PCa patients at average risk for CRC with data from two published datasets: the Japan National Cancer Registry (JNCR) and a series of 17 large-scale screening studies analyzing average-risk adults. The estimated prevalence rate was calculated using the pooled sensitivity elucidated by a previous meta-analysis. Consequently, 28 patients (1.16%) were diagnosed with CRC. CRC morbidity was significantly associated with high pre-treatment levels of prostate-specific antigen (p = 0.023). The screening positivity rate in this study cohort exceeded the annual incidence reported in the JNCR for most age brackets. Furthermore, the estimated prevalence rate in this study cohort (1.46%) exceeded that reported in all 17 large-scale studies, making the result an outlier (p = 0.005). These data indicate the possibility that the prevalence of CRC in PCa patients is greater than that in general average-risk adults, warranting further research in a prospective setting.
Collapse
Affiliation(s)
- Nao Kobayashi
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi 371-8511, Japan; (N.K.); (N.K.); (A.A.); (T.O.)
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi 371-8511, Japan; (N.K.); (N.K.); (A.A.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi 371-8511, Japan; (Y.M.); (H.S.); (H.K.)
- Correspondence: ; Tel.: +81-27-220-8383
| | - Nobuteru Kubo
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi 371-8511, Japan; (N.K.); (N.K.); (A.A.); (T.O.)
| | - Yuhei Miyasaka
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi 371-8511, Japan; (Y.M.); (H.S.); (H.K.)
| | - Tatsuji Mizukami
- Department of Radiology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Hiro Sato
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi 371-8511, Japan; (Y.M.); (H.S.); (H.K.)
| | - Akiko Adachi
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi 371-8511, Japan; (N.K.); (N.K.); (A.A.); (T.O.)
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan;
| | - Hidemasa Kawamura
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi 371-8511, Japan; (Y.M.); (H.S.); (H.K.)
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi 371-8511, Japan; (N.K.); (N.K.); (A.A.); (T.O.)
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi 371-8511, Japan; (Y.M.); (H.S.); (H.K.)
| |
Collapse
|
19
|
Sato H, Kasuya G, Ishikawa H, Nomoto A, Ono T, Nakajima M, Isozaki Y, Yamamoto N, Iwai Y, Nemoto K, Ichikawa T, Tsuji H. Long-term clinical outcomes after 12-fractionated carbon-ion radiotherapy for localized prostate cancer. Cancer Sci 2021; 112:3598-3606. [PMID: 34107139 PMCID: PMC8409298 DOI: 10.1111/cas.15019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
There are no clinical reports of long-term follow-up after carbon-ion radiotherapy (CIRT) using a dose of 51.6 Gy (relative biological effectiveness [RBE]) in 12 fractions for localized prostate cancer, or of a comparison of clinical outcomes between passive and scanning beam irradiation. A total of 256 patients with localized prostate cancer who received CIRT at a dose of 51.6 Gy (RBE) in 12 fractions using two different beam delivery techniques (passive [n = 45] and scanning [n = 211]), and who were followed for more than 1 year, were analyzed. The biochemical relapse-free (bRF) rate was defined by the Phoenix definition, and the actuarial toxicity rates were evaluated using the Kaplan-Meier method. Of the 256 patients, 41 (16.0%), 111 (43.4%), and 104 (40.6%) were classified as low, intermediate, and high risk, respectively, after a median follow-up of 7.0 (range 1.1-10.4) years. Androgen deprivation therapy was performed in 212 patients (82.8%). The 5-year bRF rates of the low-, intermediate-, and high-risk patients were 95.1%, 90.9%, and 91.1%, respectively. The 5-year rates of grade 2 late gastrointestinal and genitourinary toxicities in all patients were 0.4% and 6.3%, respectively. No grade ≥3 toxicities were observed. There were no significant differences in the rates of bRF or grade 2 toxicities in patients who received passive irradiation versus scanning irradiation. Our long-term follow-up results showed that a CIRT regimen of 51.6 Gy (RBE) in 12 fractions for localized prostate cancer yielded a good therapeutic outcome and low toxicity rates irrespective of the beam delivery technique.
Collapse
Affiliation(s)
- Hiraku Sato
- Department of Radiation OncologyFaculty of MedicineYamagata UniversityYamagataJapan
| | - Goro Kasuya
- Quantum Medical Science DirectorateNational Institutes for Quantum and Radiological Science and Technology (formerly the National Institute of Radiological Science Hospital)QST HospitalChibaJapan
| | - Hitoshi Ishikawa
- Quantum Medical Science DirectorateNational Institutes for Quantum and Radiological Science and Technology (formerly the National Institute of Radiological Science Hospital)QST HospitalChibaJapan
| | - Akihiro Nomoto
- Quantum Medical Science DirectorateNational Institutes for Quantum and Radiological Science and Technology (formerly the National Institute of Radiological Science Hospital)QST HospitalChibaJapan
| | - Takashi Ono
- Department of Radiation OncologyFaculty of MedicineYamagata UniversityYamagataJapan
- Quantum Medical Science DirectorateNational Institutes for Quantum and Radiological Science and Technology (formerly the National Institute of Radiological Science Hospital)QST HospitalChibaJapan
| | - Mio Nakajima
- Quantum Medical Science DirectorateNational Institutes for Quantum and Radiological Science and Technology (formerly the National Institute of Radiological Science Hospital)QST HospitalChibaJapan
| | - Yuka Isozaki
- Quantum Medical Science DirectorateNational Institutes for Quantum and Radiological Science and Technology (formerly the National Institute of Radiological Science Hospital)QST HospitalChibaJapan
| | - Naoyoshi Yamamoto
- Quantum Medical Science DirectorateNational Institutes for Quantum and Radiological Science and Technology (formerly the National Institute of Radiological Science Hospital)QST HospitalChibaJapan
| | - Yuma Iwai
- Quantum Medical Science DirectorateNational Institutes for Quantum and Radiological Science and Technology (formerly the National Institute of Radiological Science Hospital)QST HospitalChibaJapan
- Department of RadiologyGraduate School of MedicineChiba UniversityChibaJapan
| | - Kenji Nemoto
- Department of Radiation OncologyFaculty of MedicineYamagata UniversityYamagataJapan
| | - Tomohiko Ichikawa
- Department of UrologyGraduate School of MedicineChiba UniversityChibaJapan
| | - Hiroshi Tsuji
- Quantum Medical Science DirectorateNational Institutes for Quantum and Radiological Science and Technology (formerly the National Institute of Radiological Science Hospital)QST HospitalChibaJapan
| | | |
Collapse
|
20
|
Marvaso G, Corrao G, Zaffaroni M, Pepa M, Augugliaro M, Volpe S, Musi G, Luzzago S, Mistretta FA, Verri E, Cossu Rocca M, Ferro M, Petralia G, Nolè F, De Cobelli O, Orecchia R, Jereczek-Fossa BA. Therapeutic Sequences in the Treatment of High-Risk Prostate Cancer: Paving the Way Towards Multimodal Tailored Approaches. Front Oncol 2021; 11:732766. [PMID: 34422672 PMCID: PMC8371196 DOI: 10.3389/fonc.2021.732766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
Various definitions are currently in use to describe high-risk prostate cancer. This variety in definitions is important for patient counseling, since predicted outcomes depend on which classification is applied to identify patient’s prostate cancer risk category. Historically, strategies for the treatment of localized high-risk prostate cancer comprise local approaches such as surgery and radiotherapy, as well as systemic approaches such as hormonal therapy. Nevertheless, since high-risk prostate cancer patients remain the group with higher-risk of treatment failure and mortality rates, nowadays, novel treatment strategies, comprising hypofractionated-radiotherapy, second-generation antiandrogens, and hadrontherapy, are being explored in order to improve their long-term oncological outcomes. This narrative review aims to report the current management of high-risk prostate cancer and to explore the future perspectives in this clinical setting.
Collapse
Affiliation(s)
- Giulia Marvaso
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giulia Corrao
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Pepa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Augugliaro
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Volpe
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Gennaro Musi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Urology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefano Luzzago
- Department of Urology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Elena Verri
- Department of Medical Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Cossu Rocca
- Department of Medical Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Ferro
- Department of Urology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Franco Nolè
- Medical Oncology Division of Urogenital & Head & Neck Tumors, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Ottavio De Cobelli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Urology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Orecchia
- Scientific Directorate, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
21
|
Miyasaka Y, Kawamura H, Sato H, Kubo N, Mizukami T, Matsui H, Miyazawa Y, Ito K, Nakano T, Suzuki K, Ohno T. Carbon ion radiotherapy for prostate cancer with bladder invasion. BMC Urol 2021; 21:106. [PMID: 34362355 PMCID: PMC8349048 DOI: 10.1186/s12894-021-00871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background The optimal management of clinical T4 (cT4) prostate cancer (PC) is still uncertain.
At our institution, carbon ion radiotherapy (CIRT) for nonmetastatic PC, including tumors invading the bladder, has been performed since 2010. Since carbon ion beams provide a sharp dose distribution with minimal penumbra and have biological advantages over photon radiotherapy, CIRT may provide a therapeutic benefit for PC with bladder invasion. Hence, we evaluated CIRT for PC with bladder invasion in terms of the safety and efficacy. Methods Between March 2010 and December 2016, a total of 1337 patients with nonmetastatic PC received CIRT at a total dose of 57.6 Gy (RBE) in 16 fractions over 4 weeks. Among them, seven patients who had locally advanced PC with bladder invasion were identified. Long-term androgen-deprivation therapy (ADT) was also administered to these patients. Adverse events were graded according to the Common Terminology Criteria for Adverse Event version 5.0. Results At the completion of our study, all the patients with cT4 PC were alive with a median follow-up period of 78 months. Grade 2 acute urinary disorders were observed in only one patient. Regarding late toxicities, only one patient developed grade 2 hematuria and urinary urgency. There was no grade 3 or worse toxicity, and gastrointestinal toxicity was not observed. Six (85.7%) patients had no recurrence or metastasis. One patient had biochemical and local failures 42 and 45 months after CIRT, respectively. However, the recurrent disease has been well controlled by salvage ADT. Conclusions Seven patients with locally advanced PC invading the bladder treated with CIRT were evaluated. Our findings seem to suggest positive safety and efficacy profiles for CIRT.
Collapse
Affiliation(s)
- Yuhei Miyasaka
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan. .,Gunma University Heavy Ion Medical Center, Maebashi, Japan.
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Nobuteru Kubo
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Tatsuji Mizukami
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroshi Matsui
- Gunma University Heavy Ion Medical Center, Maebashi, Japan.,Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshiyuki Miyazawa
- Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuto Ito
- Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Japan.,Kurosawa Hospital, Takasaki, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazuhiro Suzuki
- Gunma University Heavy Ion Medical Center, Maebashi, Japan.,Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Gunma University Heavy Ion Medical Center, Maebashi, Japan
| |
Collapse
|
22
|
Dosimetric Parameters Predicting Tooth Loss after Carbon Ion Radiotherapy for Head and Neck Tumors. RADIATION 2021. [DOI: 10.3390/radiation1030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Tooth loss reduces quality of life; however, little is known about tooth loss caused by carbon ion radiotherapy (CIRT). Here, we aimed to elucidate the incidence of tooth loss post-CIRT for head and neck tumors and to identify risk-predictive dosimetric parameters. Methods: This study enrolled 14 patients (i.e., 171 teeth in total) with head and neck non-squamous cell carcinoma. All patients received CIRT comprised of 57.6 or 64.0 Gy (relative biological effectiveness, RBE) in 16 fractions. Dose–volume analysis of the teeth was performed using receiver operating characteristic (ROC) curve analysis with VX (i.e., the volume irradiated with X Gy (RBE)). Results: The median follow-up period was 69.1 months. The median time of tooth loss was 38.6 months. The 5 year cumulative incidence of tooth loss was 13.3%. The volume of irradiated teeth was significantly greater for the lost teeth than for the remaining teeth throughout the dose range. Using the cut-offs calculated from ROC curve analysis, V30–V60 showed high accuracy (i.e., >94%) for predicting tooth loss, with V50 being the most accurate (cut-off, 58.1%; accuracy, 0.95). Conclusions: This is the first report to examine the incidence of tooth loss post-CIRT and to identify risk-predictive dosimetric parameters.
Collapse
|
23
|
Tsuchida K, Minohara S, Kusano Y, Kano K, Anno W, Takakusagi Y, Mizoguchi N, Serizawa I, Yoshida D, Imura K, Takayama Y, Kamada T, Katoh H, Ohno T. Interfractional robustness of scanning carbon ion radiotherapy for prostate cancer: An analysis based on dose distribution from daily in-room CT images. J Appl Clin Med Phys 2021; 22:130-138. [PMID: 34046997 PMCID: PMC8200452 DOI: 10.1002/acm2.13275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
Purpose We analyzed interfractional robustness of scanning carbon ion radiotherapy (CIRT) for prostate cancer based on the dose distribution using daily in‐room computed tomography (CT) images. Materials and Methods We analyzed 11 consecutive patients treated with scanning CIRT for localized prostate cancer in our hospital between December 2015 and January 2016. In‐room CT images were taken under treatment conditions in every treatment session. The dose distribution on each in‐room CT image was recalculated, while retaining the pencil beam arrangement of the initial treatment plan. Then, the dose–volume histogram (DVH) parameters including the percentage of the clinical target volume (CTV) with 95% and 90% of the prescribed dose area (V95% of CTV, V90% of CTV) and V80% of rectum were calculated. The acceptance criteria for the CTV and rectum were set at V95% of CTV ≥95%, V90% of CTV ≥98%, and V80% of rectum < 10 ml. Results V95% of CTV, V90% of CTV, and V80% of rectum for the reproduced plans were 98.8 ± 3.49%, 99.5 ± 2.15%, and 4.39 ± 3.96 ml, respectively. Acceptance of V95% of CTV, V90% of CTV, and V80% of rectum was obtained in 123 (94%), 125 (95%) and 117 sessions (89%), respectively. Acceptance of the mean dose of V95% of CTV, V90% of CTV, and V80% of rectum for each patient was obtained in 10 (91%), 10 (91%), and 11 patients (100%), respectively. Conclusions We demonstrated acceptable interfractional robustness based on the dose distribution in scanning CIRT for prostate cancer.
Collapse
Affiliation(s)
- Keisuke Tsuchida
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan.,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Shinichi Minohara
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yohsuke Kusano
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Kio Kano
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Wataru Anno
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yosuke Takakusagi
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Nobutaka Mizoguchi
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Itsuko Serizawa
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Koh Imura
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yoshiki Takayama
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Tadashi Kamada
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
24
|
Glowa C, Peschke P, Brons S, Debus J, Karger CP. Effectiveness of fractionated carbon ion treatments in three rat prostate tumors differing in growth rate, differentiation and hypoxia. Radiother Oncol 2021; 158:131-137. [PMID: 33587966 DOI: 10.1016/j.radonc.2021.01.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE To quantify the fractionation dependence of carbon (12C) ions and photons in three rat prostate carcinomas differing in growth rate, differentiation and hypoxia. MATERIAL AND METHODS Three sublines (AT1, HI, H) of syngeneic rat prostate tumors (R3327) were treated with six fractions of either 12C-ions or 6 MV photons. Dose-response curves were determined for the endpoint local tumor control within 300 days. The doses at 50% control probability (TCD50) and the relative biological effectiveness (RBE) of 12C-ions were calculated and compared with the values from single and split dose studies. RESULTS Experimental findings for the three tumor sublines revealed (i) a comparably increased RBE (2.47-2.67), (ii) a much smaller variation of the radiation response for 12C-ions (TCD50: 35.8-43.7 Gy) than for photons (TCD50: 91.3-116.6 Gy), (iii) similarly steep (AT1) or steeper (HI, H) dose-response curves for 12C-ions than for photons, (iv) a larger fractionation effect for photons than for 12C-ions, and (v) a steeper increase of the RBE with decreasing fractional dose for the well-differentiated H- than for the less-differentiated HI- and AT1-tumors, reflected by (vi) the smallest α/β-value for H-tumors after photon irradiation. CONCLUSION 12C-ions reduce the radiation response heterogeneity between the three tumor sublines as well as within each subline relative to photon treatments, independently of fractionation. The dose dependence of the RBE varies between tumors of different histology. The results support the use of hypofractionated carbon ion treatments in radioresistant tumors.
Collapse
Affiliation(s)
- Christin Glowa
- Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Germany; Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Peter Peschke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Germany; Clinical Cooperation Unit Radiation Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| |
Collapse
|
25
|
Yokoyama A, Kubota Y, Kawamura H, Miyasaka Y, Kubo N, Sato H, Abe S, Tsuda K, Sutou T, Ohno T, Nakano T. Impact of Inter-fractional Anatomical Changes on Dose Distributions in Passive Carbon-Ion Radiotherapy for Prostate Cancer: Comparison of Vertical and Horizontal Fields. Front Oncol 2020; 10:1264. [PMID: 32850384 PMCID: PMC7399086 DOI: 10.3389/fonc.2020.01264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose: We quantified the inter-fractional changes associated with passive carbon-ion radiotherapy using vertical and horizontal beam fields for prostate cancer. Methods: In total, 118 treatment-room computed tomography (TRCT) image sets were acquired from 10 patients. Vertical (anterior–posterior) and horizontal (left–right) fields were generated on the planning target volume identified by treatment planning CT. The dose distribution for each field was recalculated on each TRCT image set at the bone-matching position and evaluated using the dose–volume parameters for the prostate and rectum V95 values. To confirm adequate margins, we generated vertical and horizontal fields with 0-, 2-, 4-, and 6-mm isotropic margins from the prostate and recalculated the dose distributions on all TRCT image sets. Sigmoid functions were fitted to a plot of acceptable ratios (that is, when prostate V95 > 98%) vs. the isotropic margin size to identify the margin at which this ratio was achieved in 95% of patients with a vertical or horizontal field. Results: The prostate V95 values (mean ± standard deviation) were 99.89 ± 0.62% and 99.99 ± 0.00% with vertical and horizontal fields, respectively; this difference was not statistically significant (p = 0.067). The rectum V95 values were 1.93 ± 1.25 and 1.88 ± 0.96 ml with vertical and horizontal fields, respectively; the difference was not statistically significant (p = 0.432). The estimated adequate margins were 2.2 and 3.0 mm for vertical and horizontal fields, respectively. Conclusions: Although there is no significant difference, horizontal fields offer higher reproducibility for prostate dosing than vertical fields in our clinical setting, and 3.0 mm was found to be an adequate margin for inter-fractional changes.
Collapse
Affiliation(s)
- Ayaka Yokoyama
- Department of Radiology, Gunma University Hospital, Maebashi, Japan
| | - Yoshiki Kubota
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | | | - Yuhei Miyasaka
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Nobuteru Kubo
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Hiro Sato
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Satoshi Abe
- Department of Radiology, Gunma University Hospital, Maebashi, Japan
| | - Kazuhisa Tsuda
- Department of Radiology, Gunma University Hospital, Maebashi, Japan
| | - Takayuki Sutou
- Department of Radiology, Gunma University Hospital, Maebashi, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Takashi Nakano
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| |
Collapse
|
26
|
Optimal Androgen Deprivation Therapy Combined with Proton Beam Therapy for Prostate Cancer: Results from a Multi-Institutional Study of the Japanese Radiation Oncology Study Group. Cancers (Basel) 2020; 12:cancers12061690. [PMID: 32630494 PMCID: PMC7352923 DOI: 10.3390/cancers12061690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Androgen deprivation therapy (ADT) combined with radiation therapy benefits intermediate- and high-risk prostate cancer (PC) patients. The optimal ADT duration in combination with high-dose proton beam therapy (PBT) remains unknown. Methods: Intermediate- and high-risk PC patients treated with PBT combined with ADT for various durations were analyzed retrospectively. To assess the relationship between ADT and biochemical relapse-free (bRF) rate, Cox proportional hazards models including T stage, prostate specific antigen (PSA) level, Gleason score (GS), and total radiation dose were used. Results: In the intermediate-risk PC patients (n = 520), ADT use improved bRF (HR 0.49, 95% CI 0.26–0.93; p = 0.029), especially in those with multiple intermediate-risk factors (T2b–2c, PSA 10–20 ng/mL, and GS 7). In the high-risk PC patients (n = 555), a longer ADT duration (>6 months) conferred a benefit for bRF (HR 0.54, 95% CI 0.32–0.90; p = 0.018), which was most apparent in patients with multiple high-risk factors (T3a–4, PSA > 20 ng/mL, and GS ≥ 8) treated with ADT for ≥21 months. Conclusions: Short-term (≤6 months) ADT is beneficial for intermediate-risk PC patients, but likely unnecessary for those with a single risk factor, whereas ADT for >6 months is necessary for high-risk PC patients and ADT for ≥21 months might be optimal for those with multiple risk factors in combination of high-dose PBT.
Collapse
|
27
|
Takakusagi Y, Katoh H, Kano K, Anno W, Tsuchida K, Mizoguchi N, Serizawa I, Yoshida D, Kamada T. Preliminary result of carbon-ion radiotherapy using the spot scanning method for prostate cancer. Radiat Oncol 2020; 15:127. [PMID: 32460889 PMCID: PMC7254700 DOI: 10.1186/s13014-020-01575-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Carbon-ion radiotherapy (CIRT) for prostate cancer was initiated at Kanagawa Cancer Center in 2015. The present study analyzed the preliminary clinical outcomes of CIRT for prostate cancer. METHODS The clinical outcomes of 253 patients with prostate cancer who were treated with CIRT delivered using the spot scanning method between December 2015 and December 2017 were retrospectively analyzed. The irradiation dose was set at 51.6 Gy (relative biological effectiveness) delivered in 12 fractions over 3 weeks. Biochemical relapse was defined using the Phoenix definition. Toxicities were assessed according to CTCAE version 4.0. RESULTS The median patient age was 70 (47-86) years. The median follow-up duration was 35.3 (4.1-52.9) months. According to the D'Amico classification system, 8, 88, and 157 patients were classified as having low, intermediate, and high risks, respectively. Androgen deprivation therapy was administered in 244 patients. The biochemical relapse-free rate in the low-, intermediate-, and high-risk groups at 3 years was 87.5, 88.0, and 97.5%, respectively (P = 0.036). Grade 2 acute urinary toxicity was observed in 12 (4.7%) patients. Grade 2 acute rectal toxicity was not observed. Grade 2 late urinary toxicity and grade 2 late rectal toxicity were observed in 17 (6.7%) and 3 patients (1.2%), respectively. Previous transurethral resection of the prostate was significantly associated with late grade 2 toxicity in univariate analysis. The predictive factor for late rectal toxicity was not detected. CONCLUSION The present study demonstrated that CIRT using the spot scanning method for prostate cancer produces favorable outcomes.
Collapse
Affiliation(s)
- Yosuke Takakusagi
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan.
| | - Kio Kano
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Wataru Anno
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Keisuke Tsuchida
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Nobutaka Mizoguchi
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Itsuko Serizawa
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Tadashi Kamada
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| |
Collapse
|