1
|
Saadh MJ, Allela OQB, Kareem RA, Baldaniya L, Ballal S, Vashishth R, Parmar M, Sameer HN, Hamad AK, Athab ZH, Adil M. Prognostic gene expression profile of colorectal cancer. Gene 2025; 955:149433. [PMID: 40122415 DOI: 10.1016/j.gene.2025.149433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Colorectal cancer is a major global health burden, with significant heterogeneity in clinical outcomes among patients. Identifying robust prognostic gene expression signatures can help stratify patients, guide treatment decisions, and improve clinical management. This review provides an overview of current prognostic gene expression profiles in colorectal cancer research. We have synthesized evidence from numerous published studies investigating the association between tumor gene expression patterns and patient survival outcomes. The reviewed literature reveals several promising gene signatures that have demonstrated the ability to predict disease-free survival and overall survival in CRC patients, independent of standard clinicopathological risk factors. These genes are crucial in fundamental biological processes, including cell cycle control, epithelial-mesenchymal transition, and immune regulation. The implementation of prognostic gene expression tests in clinical practice holds great potential for enabling more personalized management strategies for colorectal cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | - Manisha Parmar
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India.
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq.
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
| | | |
Collapse
|
2
|
Fatfat Z, Hussein M, Fatfat M, Gali-Muhtasib H. Omics technologies as powerful approaches to unravel colorectal cancer complexity and improve its management. Mol Cells 2025; 48:100200. [PMID: 40024318 PMCID: PMC11976254 DOI: 10.1016/j.mocell.2025.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/31/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025] Open
Abstract
Colorectal cancer (CRC) continues to rank among the deadliest and most prevalent cancers worldwide, necessitating an innovative and comprehensive approach that addresses this serious health challenge at various stages, from screening and diagnosis to treatment and prognosis. As CRC research progresses, the adoption of an omics-centered approach holds transformative potential to revolutionize the management of this disease. Advances in omics technologies encompassing genomics, transcriptomics, proteomics, metabolomics, and epigenomics allow to unravel the oncogenic alterations at these levels, elucidating the intricacies and the heterogeneous nature of CRC. By providing a comprehensive molecular landscape of CRC, omics technologies enable the discovery of potential biomarkers for early non-invasive detection of CRC, definition of CRC subtypes, prediction of its staging, prognosis, and overall survival of CRC patients. They also allow the identification of potential therapeutic targets, prediction of drug response, tracking treatment efficacy, detection of residual disease and cancer relapse, and deciphering the mechanisms of drug resistance. Moreover, they allow the distinction of non-metastatic CRC patients from metastatic ones as well as the stratification of metastatic risk. Importantly, omics technologies open up new opportunities to establish molecular-based criteria to guide the selection of effective treatment paving the way for the personalization of therapy for CRC patients. This review consolidates current knowledge on the omics-based preclinical discoveries in CRC research emphasizing the significant potential of these technologies to improve CRC screening, diagnosis, and prognosis and promote the implementation of personalized medicine to ultimately reduce CRC prevalence and mortality.
Collapse
Affiliation(s)
- Zaynab Fatfat
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Marwa Hussein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Maamoun Fatfat
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | | |
Collapse
|
3
|
Wu P, Wen Z. ATM is associated with the prognosis of colorectal cancer: a systematic review. Front Oncol 2025; 15:1470939. [PMID: 40144209 PMCID: PMC11936800 DOI: 10.3389/fonc.2025.1470939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/12/2025] [Indexed: 03/28/2025] Open
Abstract
Objective Chemosensitivity and radiosensitivity are associated with the prognosis of colorectal cancer, and the expression of the ataxia-telangiectasia mutated (ATM) protein plays an essential role in these processes. The present study examined the relationship between ATM expression and the survival outcomes of colorectal cancer patients and explored the underlying mechanism and promising therapeutic strategies. Method A search including medical subject headings (MeSH), free terms, and combined words was conducted using Pubmed, EMBASE, and Cochrane. Studies had to meet the inclusion criteria as well as include processes such as data extraction and quality evaluation. The survival outcomes were assessed using hazard ratio (HR) and 95% confidence interval (CI). Heterogeneity, and publication bias were analyzed, and a P value <0.05 was considered statistically significant. Results Nine studies with 2883 patients were included in the meta-analysis. Low ATM expression level was related to poor overall survival (HR=0.542, 95% CI=0.447-0.637; P=0.000). Disease-free, progression-free, and recurrence-free survival rates were lower in patients with low ATM expression than in those with high ATM expression. There was no significant difference between Stage I-II and Stage III-IV colorectal cancer patients [risk ratio (RR)=1.173, 95% CI=0.970-1.417, P=0.690]. Conclusions Low ATM expression level may be a marker of poor survival in colorectal cancer and contributes to resistance to therapy. Targeting related factors in these pathways to sensitize tumors to treatment is a potential therapeutic strategy, and monitoring ATM status could be a valuable guide independent of the immunotherapy or chemotherapy strategy used.
Collapse
Affiliation(s)
- Pei Wu
- Department of Gastrointestinal Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zelin Wen
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Zheng E, Włodarczyk M, Węgiel A, Osielczak A, Możdżan M, Biskup L, Grochowska A, Wołyniak M, Gajewski D, Porc M, Maryńczak K, Dziki Ł. Navigating through novelties concerning mCRC treatment-the role of immunotherapy, chemotherapy, and targeted therapy in mCRC. Front Surg 2024; 11:1398289. [PMID: 38948479 PMCID: PMC11211389 DOI: 10.3389/fsurg.2024.1398289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Over the course of nearly six decades since the inception of initial trials involving 5-FU in the treatment of mCRC (metastatic colorectal cancer), our progressive comprehension of the pathophysiology, genetics, and surgical techniques related to mCRC has paved the way for the introduction of novel therapeutic modalities. These advancements not only have augmented the overall survival but have also positively impacted the quality of life (QoL) for affected individuals. Despite the remarkable progress made in the last two decades in the development of chemotherapy, immunotherapy, and target therapies, mCRC remains an incurable disease, with a 5-year survival rate of 14%. In this comprehensive review, our primary goal is to present an overview of mCRC treatment methods following the latest guidelines provided by the National Comprehensive Cancer Network (NCCN), the American Society of Clinical Oncology (ASCO), and the American Society of Colon and Rectal Surgeons (ASCRS). Emphasis has been placed on outlining treatment approaches encompassing chemotherapy, immunotherapy, targeted therapy, and surgery's role in managing mCRC. Furthermore, our review delves into prospective avenues for developing new therapies, offering a glimpse into the future of alternative pathways that hold potential for advancing the field.
Collapse
Affiliation(s)
- Edward Zheng
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marcin Włodarczyk
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Węgiel
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Osielczak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maria Możdżan
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Laura Biskup
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Agata Grochowska
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maria Wołyniak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Dominik Gajewski
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Mateusz Porc
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kasper Maryńczak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
5
|
Azambuja DDB, E Gloria HDC, Montenegro GES, Kalil AN, Hoffmann JS, Leguisamo NM, Saffi J. High Expression of MRE11A Is Associated with Shorter Survival and a Higher Risk of Death in CRC Patients. Genes (Basel) 2023; 14:1270. [PMID: 37372450 DOI: 10.3390/genes14061270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Homologous recombination repair (HR) is the most accurate repair pathway for double-strand breaks and replication fork disruption that is capable of faithfully restoring the original nucleotide sequence of the broken DNA. The deficiency of this mechanism is a frequent event in tumorigenesis. Therapies that exploit defects in HR have been explored essentially in breast, ovarian, pancreatic, and prostate cancers, but poorly in colorectal cancers (CRC), although CRC ranks second in mortality worldwide. METHODS Tumor specimens and matched healthy tissues from 63 patients with CRC were assessed for gene expression of key HR components and mismatch repair (MMR) status, which correlated with clinicopathological features, progression-free survival, and overall survival (OS). RESULTS Enhanced expression of MRE11 homolog (MRE11A), the gene encoding a key molecular actor for resection, is significantly overexpressed in CRC, is associated with the occurrence of primary tumors, particularly T3-T4, and is found in more than 90% of the right-side of CRC, the location with the worst prognosis. Importantly, we also found that high MRE11A transcript abundance is associated with 16.7 months shorter OS and a 3.5 higher risk of death. CONCLUSION Monitoring of MRE11 expression could be used both as a predictor of outcome and as a marker to select CRC patients for treatments thus far adapted for HR-deficient cancers.
Collapse
Affiliation(s)
- Daniel de Barcellos Azambuja
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Hospital Santa Rita, Irmandade Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre 90020-090, RS, Brazil
| | - Helena de Castro E Gloria
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Gabriel E Silva Montenegro
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Antonio Nocchi Kalil
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Hospital Santa Rita, Irmandade Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre 90020-090, RS, Brazil
| | - Jean-Sébastien Hoffmann
- Laboratoire d'Excellence Toulouse Cancer, Laboratoire de Pathologie, CHU Toulouse, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, CEDEX, 31059 Toulouse, France
| | - Natalia Motta Leguisamo
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Hospital Santa Rita, Irmandade Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre 90020-090, RS, Brazil
| | - Jenifer Saffi
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
6
|
Yang H, Huebner K, Hampel C, Erlenbach-Wuensch K, Selvamani SB, Shukla V, Geppert CI, Hartmann A, Mahadevan V, Schneider-Stock R. ATF2 loss promotes 5-FU resistance in colon cancer cells via activation of the ATR-Chk1 damage response pathway. BMC Cancer 2023; 23:480. [PMID: 37237279 DOI: 10.1186/s12885-023-10940-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The role of ATF2 in colon cancer (CC) is controversial. Recently, we reported that low ATF2 expression is characteristic of highly invasive tumors, suggesting that ATF2 might also be involved in therapy resistance. 5-Fluorouracil (5-FU) is the best-known chemotherapeutic drug for CC, but drug resistance affects its curative effect. To date, the role of ATF2 in the 5-FU response remains elusive. METHODS/RESULTS For our study, we had available HCT116 cells (wild-type p53) and HT29 colon tumor cells (mutant p53) and their corresponding CRISPR‒Cas9-generated ATF2-KO clones. We observed that loss of ATF2 triggered dose- and time-dependent 5-FU resistance in HCT116 cells by activating the DNA damage response (DDR) pathway with high p-ATRThr1989 and p-Chk1Ser317 levels accompanied by an increase in the DNA damage marker γ-H2AX in vitro and in vivo using the chicken chorioallantoic membrane (CAM) model. Chk1 inhibitor studies causally displayed the link between DDR and drug resistance. There were contradictory findings in HT29 ATF2-KO cells upon 5-FU exposure with low p-Chk1Ser317 levels, strong apoptosis induction, but no effects on DNA damage. In ATF2-silenced HCT116 p53-/- cells, 5-FU did not activate the DDR pathway. Co-immunoprecipitation and proximity ligation assays revealed that upon 5-FU treatment, ATF2 binds to ATR to prevent Chk1 phosphorylation. Indeed, in silico modelling showed reduced ATR-Chk1 binding when ATF2 was docked into the complex. CONCLUSIONS We demonstrated a novel ATF2 scaffold function involved in the DDR pathway. ATF2-negative cells are highly resistant due to effective ATR/Chk1 DNA damage repair. Mutant p53 seems to overwrite the tumor suppressor function of ATF2.
Collapse
Affiliation(s)
- Hao Yang
- Experimental Tumorpathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstr. 22, 91504, Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Kerstin Huebner
- Experimental Tumorpathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstr. 22, 91504, Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Chuanpit Hampel
- Experimental Tumorpathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstr. 22, 91504, Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Katharina Erlenbach-Wuensch
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Selva Babu Selvamani
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, 560100, India
| | - Vikas Shukla
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, 560100, India
| | - Carol I Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
- Comprehensive Cancer Center Erlangen‑EMN (CCC ER‑EMN), Östliche Stadtmauerstr. 30, Erlangen, 91054, Germany
| | | | - Regine Schneider-Stock
- Experimental Tumorpathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstr. 22, 91504, Erlangen, Germany.
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany.
- Comprehensive Cancer Center Erlangen‑EMN (CCC ER‑EMN), Östliche Stadtmauerstr. 30, Erlangen, 91054, Germany.
| |
Collapse
|
7
|
Huang W, Li W, Xu N, Li H, Zhang Z, Zhang X, He T, Yao J, Xu M, He Q, Guo L, Zhang S. Differences in DNA damage repair gene mutations between left- and right-sided colorectal cancer. Cancer Med 2023; 12:10187-10198. [PMID: 37096801 DOI: 10.1002/cam4.5716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. Studies have shown that the DNA damage response (DDR) mutation is strongly associated with microsatellite instability (MSI) status and is an indication for patients with CRCs receiving immune checkpoint inhibitor (ICI) treatment. However, DDR mutation in microsatellite stable (MSS) CRC remains unclear. METHODS In this study, Fisher's exact test, Student'st-test, Wilcoxon rank-sum test and Cox proportional hazards regression model were performed, and a p value of < 0.05 was considered statistically significant. RESULTS The most common gene alterations were APC (77%), TP53 (73%), KRAS (48%), and PIK3CA (25%). The mutationfrequency of APC and TP53 in left-sided CRC was significantly higher than that for right-sided CRC, while the mutation frequency of PIK3CA, ACVR2A, FAT4, and RNF43 in right-sided CRC was significantly higher than that for left-sided CRC. DDR mutations occurred in100% of MSI CRCs and in 83.77% of MSS CRCs, with the most frequently mutated DDR genes being ARID1A (7.5%), ATM (5.7%,) and BRCA2 (2.6%). When right- and left-sided CRCs were compared, no significant difference was observed for DDR genes and pathways. A survival analysis indicated that the DDR mutation was not associated with overall survival (OS) in MSS CRCs, while left-sided patients with homologous recombination repair (HRR) pathway mutations had a significantly prolonged OS compared with right-sided CRCs. CONCLUSIONS Here, we found that stage and grade were statistically significant independent prognostic factors in the left-sided CRC and the right-sided CRC, recommending treatment for these patients stratified by stage. For the future, utilizing DDR gene defects for expanding treatment options and improving prognosis is an issue worth exploring.
Collapse
Affiliation(s)
- Wei Huang
- Department of Colorectal & Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenliang Li
- Department of Colorectal Surgery, Yunnan Cancer Hospital, Yunnan, China
| | - Ning Xu
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Hui Li
- Department of Colorectal & Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zihan Zhang
- Department of Colorectal & Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaolong Zhang
- Department of Colorectal & Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | | | | | - Mian Xu
- Shanghai OrigiMed Co., Ltd, Shanghai, China
| | | | - Lijie Guo
- Shanghai OrigiMed Co., Ltd, Shanghai, China
| | - Sen Zhang
- Department of Colorectal & Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Peng X, Zhang T, Jia X, Wang T, Lin H, Li G, Li R, Zhang A. Impact of a haplotype (composed of the APC, KRAS, and TP53 genes) on colorectal adenocarcinoma differentiation and patient prognosis. Cancer Genet 2022; 268-269:115-123. [PMID: 36288643 DOI: 10.1016/j.cancergen.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Many types of gene mutation are associated with the drug resistance of cancer cells. XELOX is a new and efficient surgical adjuvant chemotherapy for colorectal adenocarcinoma. However, drug-resistant related genetic mutations associated with this treatment remain unknown. METHODS Next-generation sequencing (NGS) was performed on 36 colorectal cancer patients to identify mutations among patients with residual tumors following preoperative chemotherapy. Enrichment and prognosis of these mutations were evaluated in a TCGA cohort. The pathology of cases with poor prognosis-related mutations was also determined. RESULTS A sequence of SNPs associated with the APC, KRAS, and TP53 genes in 13 of 19 subjects with residual tumors after preoperative chemotherapy was identified. Using survival analysis data from 317 cases in the TCGA database, a prognosis-related haplotype composed of SNPs from APC, KRAS, and TP53 was assembled. Colorectal cancer patients with these mutations had a lower 5-year tumor-specific survival rate than those without (p < 0.05). Most patients with these mutations were at a higher clinical stage (III-IV) of disease. Enrolled subjects with the identified haplotype tended to have poor cancer cell differentiation. CONCLUSIONS The prognosis-related haplotype can be used as a marker of drug resistance and prognosis in colorectal cancer patients after preoperative chemotherapy.
Collapse
Affiliation(s)
- Xinyu Peng
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000
| | - Tao Zhang
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000
| | - Xiongjie Jia
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000
| | - Tong Wang
- General Surgery Department, Laiyuan County Hospital, No. 299, Zhongxin Road, Laiyuan County, Baoding City, Hebei Province, PR China 074399
| | - Hengxue Lin
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000
| | - Gang Li
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000
| | - Riheng Li
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000.
| | - Aimin Zhang
- Department of Gastrointestinal Surgery,Affiliated Hospital of Hebei University, No.212 Yuhua East Road, Baoding City, Hebei Province, PR China 071000
| |
Collapse
|
9
|
Chen X, Hu M, Chen Y, Li A, Hua Y, Jiang H, Li H, Lin M. Targeted deep sequencing reveals APC mutations as predictors of overall survival in Chinese colorectal patients receiving adjuvant chemotherapy. Scand J Gastroenterol 2022; 57:465-472. [PMID: 34978498 DOI: 10.1080/00365521.2021.2022189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objective: Targeted deep sequencing was used to characterize the mutational spectrum of APC in Chinese colorectal tumors in comparison to that in Caucasians from The Cancer Genome Atlas (TCGA) and to investigate whether APC mutations can predict overall survival in CRC patients receiving adjuvant chemotherapy.Methods: A total of 315 Chinese CRC patients including 241 stage II/III patients receiving fluorouracil-based adjuvant chemotherapy were included in this study. Next generation sequencing was carried out to detect somatic mutations on all APC exons. The associations between APC mutations and overall survival were determined by the Cox proportional hazards model.Results:APC was mutated in 221 of 315 colorectal tumors (70.2%). Chinese CRC had a much higher frequency of missense mutations (16.2% vs. 2.4%), but a lower frequency of nonsense (41.0% vs. 54.2%) and frameshift mutations (10.5% vs. 18.4%) than Caucasian CRC. Among stage II/III patients receiving fluorouracil-based adjuvant chemotherapy, APC mutations showed a significant association with worse survival (HR = 1.69; 95% CI, 1.10-2.62; p = .0179). Of the mutation types, frameshift mutations conferred the highest risk of death (HR = 2.88; 95% CI, 1.54-5.37; p =.0009). Among individual mutation sites, Arg232Ter, the most frequent mutation in Chinese CRC, exhibited the strongest negative impact on survival (HR = 2.65; 95% CI, 1.16-6.03; p =.0202).Conclusion:APC overall mutation was an independent predictor for overall survival of stage II/III CRC patients receiving fluorouracil-based chemotherapy.
Collapse
Affiliation(s)
- Xin Chen
- Department of General Surgery, Yangpu Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Mengjun Hu
- Department of Pathology, Zhuji People's Hospital, Shaoxing, China
| | - Ying Chen
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai, China
| | - Ajian Li
- Department of General Surgery, Yangpu Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Yutong Hua
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai, China
| | - Huihong Jiang
- Department of General Surgery, Yangpu Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Huaguang Li
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai, China
| | - Moubin Lin
- Department of General Surgery, Yangpu Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China.,Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Alorda-Clara M, Torrens-Mas M, Morla-Barcelo PM, Martinez-Bernabe T, Sastre-Serra J, Roca P, Pons DG, Oliver J, Reyes J. Use of Omics Technologies for the Detection of Colorectal Cancer Biomarkers. Cancers (Basel) 2022; 14:817. [PMID: 35159084 PMCID: PMC8834235 DOI: 10.3390/cancers14030817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers with high mortality rates, especially when detected at later stages. Early detection of CRC can substantially raise the 5-year survival rate of patients, and different efforts are being put into developing enhanced CRC screening programs. Currently, the faecal immunochemical test with a follow-up colonoscopy is being implemented for CRC screening. However, there is still a medical need to describe biomarkers that help with CRC detection and monitor CRC patients. The use of omics techniques holds promise to detect new biomarkers for CRC. In this review, we discuss the use of omics in different types of samples, including breath, urine, stool, blood, bowel lavage fluid, or tumour tissue, and highlight some of the biomarkers that have been recently described with omics data. Finally, we also review the use of extracellular vesicles as an improved and promising instrument for biomarker detection.
Collapse
Affiliation(s)
- Marina Alorda-Clara
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Translational Research in Aging and Longevity (TRIAL) Group, Instituto de Investigación Sanitaria Illes Balears (IdISBa), E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Pere Miquel Morla-Barcelo
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
| | - Toni Martinez-Bernabe
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, E-28029 Madrid, Madrid, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, E-28029 Madrid, Madrid, Spain
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, E-28029 Madrid, Madrid, Spain
| | - Jose Reyes
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Servicio Aparato Digestivo, Hospital Comarcal de Inca, E-07300 Inca, Illes Balears, Spain
| |
Collapse
|
11
|
Jeong S, Lee G, Choi S, Kim KH, Chang J, Kim SM, Kim K, Son JS, Cho Y, Park SM. Estimating Risk of Cardiovascular Disease Among Long-Term Colorectal Cancer Survivors: A Nationwide Cohort Study. Front Cardiovasc Med 2022; 8:721107. [PMID: 35111822 PMCID: PMC8801493 DOI: 10.3389/fcvm.2021.721107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022] Open
Abstract
Background Concerns about a growing number of colorectal cancer survivors have emerged regarding cardiovascular disease (CVD) risks. However, there is not yet a predictive tool that can estimate CVD risk and support the management of healthcare as well as disease prevention in terms of CVD risk among long-term colorectal cancer survivors. Aim To develop predictive tools to estimate individualized overall and each subtype of CVD risk using a nationwide cohort in South Korea. Methods and Results A total of 4,709 newly diagnosed patients with colorectal cancer who survived at least 5 years in the National Health Insurance System were analyzed. Cox proportional hazard regression was used for the identification of independent risk factors for the derivation of predictive nomograms, which were validated in an independent cohort (n = 3,957). Age, fasting serum glucose, γ-glutamyl transpeptidase, Charlson comorbidity index, household income, body mass index, history of chemotherapy, cigarette smoking, and alcohol consumption were identified as independent risk factors for either overall CVD or each subtype of CVD subtype. Based on the identified independent risk factors, six independent nomograms for each CVD category were developed. Validation by an independent cohort demonstrated a good calibration with a median C-index of 0.687. According to the nomogram-derived median score, relative risks of 2.643, 1.821, 4.656, 2.629, 4.248, and 5.994 were found for overall CVD, ischemic heart disease, myocardial infarction, total stroke, ischemic stroke, and hemorrhage stroke in the validation cohort. Conclusions The predictive tools were developed with satisfactory accuracy. The derived nomograms may support the estimation of overall and individual CVD risk for long-term colorectal cancer survivors.
Collapse
Affiliation(s)
- Seogsong Jeong
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Gyeongsil Lee
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Seulggie Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Kyae Hyung Kim
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jooyoung Chang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Sung Min Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Kyuwoong Kim
- National Cancer Control Institute, National Cancer Center, Goyang-si, South Korea
| | - Joung Sik Son
- Department of Family Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Yoosun Cho
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Min Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
- *Correspondence: Sang Min Park
| |
Collapse
|
12
|
Tomasini PP, Guecheva TN, Leguisamo NM, Péricart S, Brunac AC, Hoffmann JS, Saffi J. Analyzing the Opportunities to Target DNA Double-Strand Breaks Repair and Replicative Stress Responses to Improve Therapeutic Index of Colorectal Cancer. Cancers (Basel) 2021; 13:3130. [PMID: 34201502 PMCID: PMC8268241 DOI: 10.3390/cancers13133130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the ample improvements of CRC molecular landscape, the therapeutic options still rely on conventional chemotherapy-based regimens for early disease, and few targeted agents are recommended for clinical use in the metastatic setting. Moreover, the impact of cytotoxic, targeted agents, and immunotherapy combinations in the metastatic scenario is not fully satisfactory, especially the outcomes for patients who develop resistance to these treatments need to be improved. Here, we examine the opportunity to consider therapeutic agents targeting DNA repair and DNA replication stress response as strategies to exploit genetic or functional defects in the DNA damage response (DDR) pathways through synthetic lethal mechanisms, still not explored in CRC. These include the multiple actors involved in the repair of DNA double-strand breaks (DSBs) through homologous recombination (HR), classical non-homologous end joining (NHEJ), and microhomology-mediated end-joining (MMEJ), inhibitors of the base excision repair (BER) protein poly (ADP-ribose) polymerase (PARP), as well as inhibitors of the DNA damage kinases ataxia-telangiectasia and Rad3 related (ATR), CHK1, WEE1, and ataxia-telangiectasia mutated (ATM). We also review the biomarkers that guide the use of these agents, and current clinical trials with targeted DDR therapies.
Collapse
Affiliation(s)
- Paula Pellenz Tomasini
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| | - Temenouga Nikolova Guecheva
- Cardiology Institute of Rio Grande do Sul, University Foundation of Cardiology (IC-FUC), Porto Alegre 90620-000, Brazil;
| | - Natalia Motta Leguisamo
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
| | - Sarah Péricart
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Anne-Cécile Brunac
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jean Sébastien Hoffmann
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| |
Collapse
|