1
|
Gola C, Maniscalco L, Iussich S, Morello E, Olimpo M, Martignani E, Accornero P, Giacobino D, Mazzone E, Modesto P, Varello K, Aresu L, De Maria R. Hypoxia-associated markers in the prognosis of oral canine melanoma. Vet Pathol 2024; 61:721-731. [PMID: 38613423 DOI: 10.1177/03009858241244853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
Canine oral malignant melanoma (COMM) is the most common neoplasm in the oral cavity characterized by local invasiveness and high metastatic potential. Hypoxia represents a crucial feature of the solid tumor microenvironment promoting cancer progression and drug resistance. Hypoxia-inducible factor-1α (HIF-1α) and its downstream effectors, vascular endothelial growth factor A (VEGF-A), glucose transporter isoform 1 (GLUT1), C-X-C chemokine receptor type 4 (CXCR4), and carbonic anhydrase IX (CAIX), are the main regulators of the adaptive response to low oxygen availability. The prognostic value of these markers was evaluated in 36 COMMs using immunohistochemistry. In addition, the effects of cobalt chloride-mediated hypoxia were evaluated in 1 primary COMM cell line. HIF-1α expression was observed in the nucleus, and this localization correlated with the presence or enhanced expression of HIF-1α-regulated genes at the protein level. Multivariate analysis revealed that in dogs given chondroitin sulfate proteoglycan-4 (CSPG4) DNA vaccine, COMMs expressing HIF-1α, VEGF-A, and CXCR4 were associated with shorter disease-free intervals (DFI) compared with tumors that were negative for these markers (P = .03), suggesting hypoxia can influence immunotherapy response. Western blotting showed that, under chemically induced hypoxia, COMM cells accumulate HIF-1α and smaller amounts of CAIX. HIF-1α induction and stabilization triggered by hypoxia was corroborated by immunofluorescence, showing its nuclear translocation. These findings reinforce the role of an hypoxic microenvironment in tumor progression and patient outcome in COMM, as previously established in several human and canine cancers. In addition, hypoxic markers may represent promising prognostic markers, highlighting opportunities for their use in therapeutic strategies for COMMs.
Collapse
Affiliation(s)
- Cecilia Gola
- University of Surrey, Guildford, UK
- University of Turin, Grugliasco, Turin, Italy
| | | | | | | | | | | | | | | | | | - Paola Modesto
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Katia Varello
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Luca Aresu
- University of Turin, Grugliasco, Turin, Italy
| | | |
Collapse
|
2
|
Imperiale A, Berti V, Burgy M, Cazzato RL, Piccardo A, Treglia G. Molecular imaging and related therapeutic options for medullary thyroid carcinoma: state of the art and future opportunities. Rev Endocr Metab Disord 2024; 25:187-202. [PMID: 37715050 DOI: 10.1007/s11154-023-09836-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Due to its rarity and non-specific clinical presentation, accurate diagnosis, and optimal therapeutic strategy of medullary thyroid carcinoma (MTC) remain challenging. Molecular imaging provides valuable tools for early disease detection, monitoring treatment response, and guiding personalized therapies. By enabling the visualization of molecular and cellular processes, these techniques contribute to a deeper understanding of disease mechanisms and the development of more effective clinical interventions. Different nuclear imaging techniques have been studied for assessing MTC, and among them, PET/CT utilizing multiple radiotracers has emerged as the most effective imaging method in clinical practice. This review aims to provide a comprehensive summary of the current use of advanced molecular imaging modalities, with a particular focus on PET/CT, for the management of patients with MTC. It aims to guide physicians towards a rationale for the use of molecular imaging also including theranostic approaches and novel therapeutical opportunities. Overall, we emphasize the evolving role of nuclear medicine in MTC. The integration of diagnostics and therapeutics by in vivo molecular imaging represents a major opportunity to personalize treatment for individual patients, with targeted radionuclide therapy being one representative example.
Collapse
Affiliation(s)
- Alessio Imperiale
- Nuclear Medicine and Molecular Imaging, Institut de Cancérologie de Strasbourg Europe (ICANS), Strasbourg University Hospitals, Strasbourg, France.
- Molecular Imaging, DRHIM, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR7178, CNRS, University of Strasbourg, Strasbourg, France.
| | - Valentina Berti
- Nuclear Medicine, Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Mickaël Burgy
- Medical Oncology, Institut de Cancérologie de Strasbourg Europe (ICANS), Strasbourg, France
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, Illkirch, 67401, France
| | - Roberto Luigi Cazzato
- Interventional Radiology, Strasbourg University Hospitals, Strasbourg University, Strasbourg, France
| | - Arnoldo Piccardo
- Nuclear Medicine, Ente Ospedaliero Ospedali Galliera, Genoa, Italy
| | - Giorgio Treglia
- Clinic for Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
3
|
Oron-Herman M, Kirmayer D, Lupp A, Schulz S, Kostenich G, Afargan M. Expression prevalence and dynamics of GPCR somatostatin receptors 2 and 3 as cancer biomarkers beyond NET: a paired immunohistochemistry approach. Sci Rep 2023; 13:20857. [PMID: 38012197 PMCID: PMC10682014 DOI: 10.1038/s41598-023-47877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
Somatostatin receptors are clinically validated GPCR biomarkers for diagnosis and treatment of various neuroendocrine tumors (NET). Among the five somatostatin receptors, SST2 and SST3 are associated with apoptosis and cell cycle arrest, making these receptor subtypes better differentiated targets in precision oncology. In this study we performed immunohistochemistry of paired tissue microarrays containing 1125 cores, representing 43 tumor types, each stained for SST2 and SST3. A 12-point immunoreactive scoring (IRS) range was used for interpretation of the staining results. We analyzed the results twice, using the conventional positivity IRS cutoffs ≥ 3 and more stringent ≥ 6. Evaluation of receptors expression dynamics was performed for tumor-nodes-metastases (TNM) defined subgroups (ovarian and hepatocellular adenocarcinomas) as a function of their tumor stage. Our results indicate that two-thirds of tested cores exhibit clinically significant expression of at least SST2 or SST3 (IRS ≥ 6). The expression prevalence of both receptors tends to decline with tumor progression. However, an unexpected upregulation of both SST2 and SST3 reemerged in metastases suggesting conserved receptors genetic potential during tumor life cycle. We suggest that SST2 and SST3 should be further explored as potential biomarkers and therapeutic tools for maximizing the efficiency of somatostatin-based precision oncology of solid tumors beyond NET.
Collapse
Affiliation(s)
- Mor Oron-Herman
- Starget Pharma, 26 Snir st., 4704086, Ramat Hasharon, Israel.
| | - David Kirmayer
- Starget Pharma, 26 Snir st., 4704086, Ramat Hasharon, Israel
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - Genady Kostenich
- Starget Pharma, 26 Snir st., 4704086, Ramat Hasharon, Israel
- The Advanced Technology Center, Sheba Medical Center, Tel Hashomer, 5262000, Ramat Gan, Israel
| | - Michel Afargan
- Starget Pharma, 26 Snir st., 4704086, Ramat Hasharon, Israel
| |
Collapse
|